首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rumen bacterium Pseudobutyrivibrio xylanivorans strain Mz5T possessed a potent xylanolytic enzyme system consisting of at least 7 different xylan hydrolases with molar mass 27-145 kDa. Three of them were successfully isolated in active native form. This strain produced butyrate and lactate on different saccharides. cis-9, trans-11-Conjugated linoleic acid was also detected in the culture medium. Bacteriocin-like inhibitory substances of Mz5T were active against some strains of rumen bacteria and against selected Salmonella and E. coli isolates from poultry meat. The strain Mz5T retained viability and xylanolytic activity also under not fully anaerobic conditions; its cells attached to the Caco-2 cells so that its successful association with gut epithelial cells may be expected. These in vitro results confirmed several probiotic traits of the isolate Mz5T and justified further in vivo experiments to test its ability to improve animal health and performance.  相似文献   

2.
3.
Abstract Salmonella typhimurium and enteropathogenic Escherichia coli (EPEC) were found to adhere to the brush border of differentiated human intestinal epithelial Caco-2 cells in culture, whereas Yersinia pseudotuberculosis and Listeria monocytogenes adhered to the periphery of undifferentiated Caco-2 cells. All these enterovirulent strains invaded the Caco-2 cells. Using a heat-killed human Lactobacillus acidophilus (strain LB) which strongly adheres both to undifferentiated and differentiated Caco-2 cells, we have studied inhibition of cell association with and invasion within Caco-2 cells by enterovirulent bacteria. Living and heat-killed Lactobacillus acidophilus strain LB inhibited both cell association and invasion of Caco-2 cells by enterovirulent bacteria in a concentration-dependent manner. The mechanism of inhibition of both adhesion and invasion appears to be due to steric hindrance of human enterocytic pathogen receptors by whole-cell lactobacilli rather than to a specific blockade of receptors.  相似文献   

4.
The establishment of the intestinal microflora, and probiotic bacteria, may control the inflammatory conditions in the gut. As polyunsaturated fatty acids (PUFA) possess antimicrobial activities, they may deter the action of probiotics. We assessed whether free linoleic, gamma-linolenic, arachidonic, alpha-linolenic and docosahexaenoic acids at physiological concentrations in the growth media would influence the growth and adhesion of Lactobacillus GG (probiotic), Lactobacillus casei Shirota (probiotic) and Lactobacillus bulgaricus (dairy strain). Higher concentrations of PUFA (10-40 microg PUFA ml(-1)) inhibited growth and mucus adhesion of all tested bacterial strains, whilst growth and mucus adhesion of L. casei Shirota was promoted by low concentrations of gamma-linolenic acid and arachidonic acid (at 5 microg ml(-1)), respectively. PUFA also altered bacterial adhesion sites on Caco-2 cells. Caco-2 cells grown in the presence of arachidonic acid were less adhered to by all three bacterial strains. Yet, L. casei Shirota adhered better on Caco-2 cells grown in the presence of alpha-linolenic acid. As the adhesion to mucosal surfaces is pivotal in health promoting effects by probiotics, our results indicate that the action of probiotics in the gut may be modulated by dietary PUFA.  相似文献   

5.
To describe the phenomena of bacterial adhesion to intestinal cells and the competition for adhesion between bacteria, mathematical equations based on a simple dissociation process involving a finite number of bacterial receptors on intestinal cell surface were developed. The equations allow the estimation of the maximum number of Lactobacillus sp. and Escherichia coli cells that can adhere to Caco-2 cells and intestinal mucus; they also characterize the affinity of the bacteria to Caco-2 cells and intestinal and fecal mucus and the theoretical adhesion ratio of two bacteria present in a mixed suspension. The competition for adhesion between Lactobacillus rhamnosus GG and E. coli TG1 appeared to follow the proposed kinetics, whereas the competition between Lactobacillus casei Shirota and E. coli TG1 may involve multiple adhesion sites or a soluble factor in the culture medium of the former. The displacement of the adhered Lactobacillus by E. coli TG1 seemed to be a rapid process, whereas the displacement of E. coli TG1 by the Lactobacillus took more than an hour.  相似文献   

6.
F. SAREM, L.O. SAREM-DAMERDJI AND J.P. NICOLAS. 1996. Adhesion of three Lactobacillus strains onto human epithelial intestinal Caco-2 and Int-407 cell lines was compared. More adhesion occurred onto Int-407. The trypsin and sodium periodate pretreatment of bacteria revealed different mechanisms of adhesion depending on the Caco-2 and Int-407, involving carbohydrates and proteins. The absence of adherence for one Lactobacillus strain onto both cell lines indicated the specificity of the adhesion. Electron microscopic observations showed that bacteria adhered by underlying the brush border microvilli of the Caco-2 surface contrasting onto the Int-407 which entrapped and surrounded them by fimbrial extracellular cell matrix material.  相似文献   

7.
Cytokines secreted by human enterocytes play a critical role in mucosal and systemic immunity. Intestinal microorganisms can influence this secretion. In the present study, 30 strains of lactic acid bacteria were characterized for their adhesion to Caco-2 cells and their potential to stimulate proinflammatory cytokine secretion by this cell line. The bacteria adhered in a strain-dependent manner to Caco-2 cells. Contact with lactobacilli did not result in the production of IL-6 or IL-8. A slight IL-6 and IL-8 production by a Caco-2 cell was detected after exposure to 8 of the tested Bifidobacterium strains. No correlation was found between adhesion and cytokine induction among the bacteria tested. This indicates that lactic acid bacteria, even those with strong adhesive properties, are not very likely to trigger an inflammatory response in human enterocytes.  相似文献   

8.
Aims:  To evaluate the adhesion ability of intestinal bacteria to different in vitro models of intestinal epithelia, and to estimate the suitability of these models and the type of interactions involved.
Methods and results:  The adhesion of probiotic ( Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp . lactis Bb12), commensal ( B. animalis IATA-A2 and B. bifidum IATA-ES2) and potentially pathogenic bacteria ( E. coli and L. monocytogenes ) was determined. The adhesion models used were polycarbonate-well plates, with or without mucin, and different configurations of Caco-2 and/or HT29-MTX cell cultures. All bacteria adhered to wells without mucin (2·6–27·3%), the values being highly variable depending on the bacterial strain. Adhesion percentages of potentially probiotic bacteria to Caco-2 cultures were remarkably lower ( P  <   0·05) than those to mucin, and more similar to those of pathogenic strains. The lowest adhesion of different bacterial strains was detected on HT29-MTX (0·5–2·3%) cultures and Caco-2/HT29-MTX (0·6–3·2%) cocultures, while these values were increased in Caco-2 cultures plus mucin.
Conclusions:  The results suggested that bacterial strains exhibit different capacities to adhere to cellular components and several types of mucin present in different models, showing preferences for intestinal MUC2.
Significance and impact of the study:  The use of Caco-2 cells monolayer plus mucin (type II) better approaches the physiological characteristics of in vivo situation, providing a reliable and suitable in vitro model to evaluate bacterial adhesion.  相似文献   

9.
There have been few studies on the probiotic activity of Lactococcus strains although they are commonly used as starter bacteria in manufacturing many kinds of fermented dairy products. Nine strains of the genus Lactococcus were examined for their probiotic properties, such as adherence to human enterocyte-like Caco-2 cells and tolerance to acid and bile. Six strains were adhesive and the highest adhesion was observed with Lactcoccus lactis ssp. lactis NIAI527. This strain adhered to the microvilli of cells as observed by scanning electron microscopy and also tolerated low pH and bile. These properties should make strain 527 a potential new probiotic strain.  相似文献   

10.
The adhesion of Lactobacillus acidophilus BG2FO4, a human stool isolate, to two human enterocytelike cell lines (Caco-2 and HT-29) and to the mucus secreted by a subpopulation of mucus-secreting HT29-MTX cells was investigated. Scanning electron microscopy revealed that the bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage and with the mucus secreted by the subpopulation of HT29-MTX cells. The adhesion to Caco-2 cells did not require calcium and involved an adhesion-promoting factor that was present in the spent supernatant of L. acidophilus cultures. This factor promoted adhesion of poorly adhering human Lactobacillus casei GG but did not promote adhesion of L. casei CNRZ 387, a strain of dairy origin. The adherence components on the bacterial cells and in the spent supernatant were partially characterized. Carbohydrates on the bacterial cell wall appeared to be partly responsible for the interaction between the bacteria and the extracellular adhesion-promoting factor. The adhesion-promoting factor was proteinaceous, since trypsin treatment dramatically decreased the adhesion of the L. acidophilus strain. The adhesion-promoting factor may be an important component of Lactobacillus species that colonize the gastrointestinal tract.  相似文献   

11.
The adhesion of Lactobacillus acidophilus BG2FO4, a human stool isolate, to two human enterocytelike cell lines (Caco-2 and HT-29) and to the mucus secreted by a subpopulation of mucus-secreting HT29-MTX cells was investigated. Scanning electron microscopy revealed that the bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage and with the mucus secreted by the subpopulation of HT29-MTX cells. The adhesion to Caco-2 cells did not require calcium and involved an adhesion-promoting factor that was present in the spent supernatant of L. acidophilus cultures. This factor promoted adhesion of poorly adhering human Lactobacillus casei GG but did not promote adhesion of L. casei CNRZ 387, a strain of dairy origin. The adherence components on the bacterial cells and in the spent supernatant were partially characterized. Carbohydrates on the bacterial cell wall appeared to be partly responsible for the interaction between the bacteria and the extracellular adhesion-promoting factor. The adhesion-promoting factor was proteinaceous, since trypsin treatment dramatically decreased the adhesion of the L. acidophilus strain. The adhesion-promoting factor may be an important component of Lactobacillus species that colonize the gastrointestinal tract.  相似文献   

12.
To describe the phenomena of bacterial adhesion to intestinal cells and the competition for adhesion between bacteria, mathematical equations based on a simple dissociation process involving a finite number of bacterial receptors on intestinal cell surface were developed. The equations allow the estimation of the maximum number of Lactobacillus sp. and Escherichia coli cells that can adhere to Caco-2 cells and intestinal mucus; they also characterize the affinity of the bacteria to Caco-2 cells and intestinal and fecal mucus and the theoretical adhesion ratio of two bacteria present in a mixed suspension. The competition for adhesion between Lactobacillus rhamnosus GG and E. coli TG1 appeared to follow the proposed kinetics, whereas the competition between Lactobacillus casei Shirota and E. coli TG1 may involve multiple adhesion sites or a soluble factor in the culture medium of the former. The displacement of the adhered Lactobacillus by E. coli TG1 seemed to be a rapid process, whereas the displacement of E. coli TG1 by the Lactobacillus took more than an hour.  相似文献   

13.
The rate of tritiated-thymidine incorporation into DNA was used to estimate Clostridium cellulolyticum H10 growth rates on Avicel cellulose, taking into consideration both the unattached cells and the cells adhered to the substrate. The generation time on cellobiose calculated from the data on cell density (4.5 h) agreed well with the generation time calculated by tritiated-thymidine incorporation (3.8 h). Growth on Avicel cellulose occurred when bacteria were adhered to their substrate; 80% of the biomass was detected on the cellulose. Taking into consideration attached and free bacteria, the generation time as determined by thymidine incorporation was about 8 h, whereas by bacterial-protein estimation it was about 13 h. In addition to the growth rate of the bacteria on the cellulose, the release of adhered cells constituted an important factor in the efficiency of the cellulolysis. The stage of growth influenced adhesion of C. cellulolyticum; maximum adhesion was found during the exponential phase. Under the conditions used, the end of growth was characterized by an acute release of biomass and cellulase activity from the cellulose. An exhaustion of the accessible cellulose could be responsible for this release.  相似文献   

14.
The antifouling potential of commercial hydrolases, four proteases, seven glycosidases and one lipase was evaluated on the adhesion of marine Pseudoalteromonas sp. D41. The experimental method, adapted to screen antifouling agents, was based on bacterial adhesion in natural sterile sea water in a microtiter plate and on total biomass quantification by the fluorescent dye DAPI (4[prime]6-diamidino-2-phenylindole). Savinase (subtilisin) was the most effective hydrolase in both the prevention of bacterial adhesion and the removal of adhered bacteria. However, some enzymatic preparations tested such as Amano protease were not only ineffective but also increased the number of adhered bacterial cells. Enumeration using epifluorescence microscopy of CTC (5-cyano-2,3-ditolyl tetrazolium chloride) and DAPI stained adhered D41 cells confirmed these observations. Overall, these results demonstrated that hydrolases could either prevent adhesion and remove adhered bacterial cells effectively, or conversely increase bacterial adhesion, depending on enzymatic concentrations and the type of enzymes tested.  相似文献   

15.
The rumen bacterium Pseudobutyrivibrio xylanivorans Mz5T has a potent xylanolytic enzyme system. A small native peptide (approximately 30-kDa, designated Xyn11A) from the bacterium was first isolated and characterized by Edman degradation. The gene coding for Xyn11A was identified using PCR amplification with consensus primers. It was then fully sequenced to reveal an open reading frame of 1809 bp. The predicted N-terminal domain exhibited xylanolytic activity and was classed to the family 11 of glycosyl hydrolases; it is followed by a region with homology to a family 6 cellulose binding module. The C-terminal domain codes for a putative NodB-like polysaccharide deacetylase which is predicted to be an acetyl esterase implicated in debranching activity in the xylan backbone. As similar domain organization was also found in several other xylanases from a diverse range of bacteria, a common ancestor of such a xylanase is considered to be present and spread, possibly by horizontal gene transfer, to other microorganisms from different ecological niches.  相似文献   

16.
Three bacteriocin-producing bifidobacterial isolates from newborns were identified as Bifidobacterium thermacidophilum (two strains) and B. thermophilum (one strain). This study was undertaken to evaluate the ability of these strains to compete with food-borne Listeria monocytogenes for adhesion and invasion sites on Caco-2 and HT-29 cells. The bifidobacteria adhered at levels ranging from 4% to 10% of the CFU added, but none of the bifidobacteria were able to invade cells. The abilities of Listeria to adhere to and to invade cells varied widely depending on the strain tested. Three groups of Listeria were identified based on invasiveness: weakly invasive, moderately invasive, and highly invasive strains. One strain from each group was tested in competition with bifidobacteria. B. thermacidophilum RBL70 was the most effective in blocking invasion of Listeria, and the decreases in invasion ranged from 38% to 90%. For all three bifidobacterial strains, contact between the cell monolayer and the bifidobacteria for 1 h before exposure to Listeria increased the degree of inhibition. Finally, visualization of competition for adhesion sites on cells by fluorescent in situ hybridization suggested that the two bacteria tended to adhere in close proximity.  相似文献   

17.
Lactic Acid Bacteria (LAB) regulate and maintain the stability of healthy microbial flora, inhibit the adhesion of pathogenic bacteria and promote the colonization of beneficial micro-organisms. The drug resistance and pathogenicity of Salmonella enteritis SE47 isolated from retail eggs were investigated. Meanwhile, Enterococcus faecalis L76 and Lactobacillus salivarius LAB35 were isolated from intestine of chicken. With SE47 as indicator bacteria, the diameters of L76 and LAB35 inhibition zones were 12 mm and 8·5 mm, respectively, by agar inhibition circle method, which indicated that both of them had inhibitory effect on Salmonella, and L76 had better antibacterial effect; two chicken-derived lactic acid bacteria isolates and Salmonella SE47 were incubated with Caco-2. The adhesion index of L76 was 17·5%, which was much higher than that of LAB35 (10·21%) and SE47 (4·89%), this experiment shows that the higher the bacteriostatic effect of potential probiotics, the stronger the adhesion ability; then Caco-2 cells were incubated with different bacteria, and the survival of Caco-2 cells was observed by flow cytometry. Compared with Salmonella SE47, the results showed that lactic acid bacteria isolates could effectively protect Caco-2 cells; finally, after different bacteria incubated Caco-2 cells, according to the cytokine detection kit, the RNA of Caco-2 cells was extracted and transcribed into cDNA, then detected by fluorescence quantitative PCR, the results showed that L76 could protect Caco-2 cells from the invasion of Salmonella SE47, with less cell membrane rupture and lower expression of MIF and TNF genes. Therefore, the lactic acid bacteria isolates can effectively inhibit the adhesion of Salmonella and protect the integrity of intestinal barrier.  相似文献   

18.
AIMS: To develop a method to screen antifouling agents against marine bacterial adhesion as a sensitive, rapid and quantitative microplate fluorescent test. METHODS AND RESULTS: Our experimental method is based on a natural biofilm formed by mono-incubation of the marine bacterium Pseudoalteromonas sp. D41 in sterile natural sea water in a 96-well polystyrene microplate. The 4'6-diamidino-2-phenylindole dye was used to quantify adhered bacteria in each well. The total measured fluorescence in the wells was correlated with the amount of bacteria showing a detection limit of one bacterium per 5 microm(2) and quantifying 2 x 10(7) to 2 x 10(8) bacteria adhered per cm(2). The antifouling properties of three commercial surface-active agents and chlorine were tested by this method in the prevention of adhesion and also in the detachment of already adhered bacteria. The marine bacterial adhesion inhibition rate depending on the agent concentration showed a sigmoid shaped dose-response curve. CONCLUSIONS: This test is well adapted for a rapid and quantitative first screening of antifouling agents directly in seawater in the early steps of marine biofilm formation. Significance AND IMPACT OF THE STUDY: In contrast to the usual screenings of antifouling products which detect a bactericidal activity, this test is more appropriate to screen antifouling agents for bacterial adhesion removal or bacterial adhesion inhibition activities. This screening test focuses on the antifouling properties of the products, especially the initial steps of marine biofilm formation.  相似文献   

19.
Bacterial Adhesion to Soil Contaminants in the Presence of Surfactants   总被引:12,自引:2,他引:10       下载免费PDF全文
It has been proposed that addition of surfactants to contaminated soil enhances the solubility of target compounds; however, surfactants may simultaneously reduce the adhesion of bacteria to hydrophobic surfaces. If the latter mechanism is important for the biodegradation of virtually insoluble contaminants, then the use of surfactants may not be beneficial. The adhesion of a Mycobacterium strain and a Pseudomonas strain, isolated from a creosote-contaminated soil, to the surfaces of highly viscous non-aqueous-phase liquids (NAPLs) was measured. The NAPLs were organic material extracted from soils from two creosote-contaminated sites and two petroleum-contaminated sites. Cells suspended in media with and without surfactant were placed in test tubes coated with an NAPL, and the percentages of cells that adhered to the surface of the NAPL in the presence and absence of surfactant were compared by measuring optical density. Test tubes without NAPLs were used as controls. The presence of either Triton X-100 or Dowfax 8390 at a concentration that was one-half the critical micelle concentration (CMC) inhibited adhesion of both species of bacteria to the NAPLs. Both surfactants, when added at concentrations that were one-half the CMCs to test tubes containing previously adhered bacteria, also promoted the removal of the cells from the surfaces of the NAPL-coated test tubes. Neither surfactant was toxic to the bacteria. Further investigation showed that a low concentration of surfactant also inhibited the growth of both species on anthracene, indicating that the presence of a surfactant resulted in a reduction in the uptake of the solid carbon source.  相似文献   

20.
In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, we need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. We studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can constitute a tetrachloroethylene- and trichloroethylene-dechlorinating consortium. Adhesion of these organisms was evaluated by microscopic determination of the numbers of cells that attached to glass coverslips exposed to cell suspensions under anaerobic conditions. We studied the effects of the growth phase of the organisms on adhesion, as well as the influence of electrostatic and hydrophobic properties of the substratum. Results indicate that S. wolfei adheres in considerably higher numbers to glass surfaces than the other three organisms. Starvation greatly decreases adhesion of S. wolfei and Desulfovibrio sp. strain G11 but seems to have less of an effect on the adhesion of the other bacteria. The presence of Fe(3+) on the substratum, which would be electropositive, significantly increased the adhesion of S. wolfei, whereas the presence of silicon hydrophobic groups decreased the numbers of attached cells of all species. Measurements of transport of cells through hydrophobic-interaction and electrostatic-interaction columns indicated that all four species had negatively charged cell surfaces and that D. tiedjei and Desulfovibrio sp. strain G11 possessed some hydrophobic cell surface properties. These findings are an early step toward understanding the dynamic attachment of anaerobic bacteria in anoxic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号