首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural analysis of peptide fragments has provided useful information on the secondary structure of integral membrane proteins built from a helical bundle (up to seven transmembrane segments). Comparison of those results to recent X-ray crystallographic results showed agreement between the structures of the fragments and the structures of the intact proteins. Lactose permease of Escherichia coli (lac Y) offers an opportunity to test that hypothesis on a substantially larger integral membrane protein. Lac Y contains a bundle of 12 transmembrane segments connected by 11 loops. Eleven segments, each corresponding to one of the loops in this protein, were studied. Five of these segments form defined structures in solution as determined by multidimensional nuclear magnetic resonance. Four peptides form turns, and one peptide reveals the end of one of the transmembrane helices. These results suggest that some loops in helical bundles are stabilized by short-range interactions, particularly in smaller bundles, and such intrinsically stable loops may contribute to protein stability and influence the pathway of folding. Greater conformational flexibility may be found in large integral membrane proteins.  相似文献   

2.
The Na(+)/H(+) exchanger isoform 1 is an integral membrane protein that regulates intracellular pH by exchanging one intracellular H(+) for one extracellular Na(+). It is composed of an N-terminal membrane domain of 12 transmembrane segments and an intracellular C-terminal regulatory domain. We characterized the structural and functional aspects of the critical transmembrane segment VII (TM VII, residues 251-273) by using alanine scanning mutagenesis and high resolution NMR. Each residue of TM VII was mutated to alanine, the full-length protein expressed, and its activity characterized. TM VII was sensitive to mutation. Mutations at 13 of 22 residues resulted in severely reduced activity, whereas other mutants exhibited varying degrees of decreases in activity. The impaired activities sometimes resulted from low expression and/or low surface targeting. Three of the alanine scanning mutant proteins displayed increased, and two displayed decreased resistance to the Na(+)/H(+) exchanger isoform 1 inhibitor EMD87580. The structure of a peptide of TM VII was determined by using high resolution NMR in dodecylphosphocholine micelles. TM VII is predominantly alpha-helical, with a break in the helix at the functionally critical residues Gly(261)-Glu(262). The relative positions and orientations of the N- and C-terminal helical segments are seen to vary about this extended segment in the ensemble of NMR structures. Our results show that TM VII is a critical transmembrane segment structured as an interrupted helix, with several residues that are essential to both protein function and sensitivity to inhibition.  相似文献   

3.
Critical to the use of solution NMR to describe the structure and flexibility of membrane proteins is the thorough understanding of the degree of perturbation induced by the detergent or other membrane mimetic. To develop a deeper understanding of the interaction between membrane proteins and micelles or bicelles, we will investigate the differences in structure and flexibility of a model membrane protein TM0026 from Thermotoga maritima using solution NMR. A comparison of the structural differences between TM0026 solubilized in different detergent combinations will provide important insight into the degree of modulation of membrane proteins by detergent physical properties. Here we report the nearly complete backbone and Cβ resonance assignments of the two transmembrane helical model protein TM0026. These assignments are the first step to using TM0026 to elucidate the interaction between membrane proteins and membrane mimetics.  相似文献   

4.
High-resolution structural analysis of membrane proteins by X-ray crystallography or solution NMR spectroscopy often requires their solubilization in the membrane-mimetic environments of detergents. Yet the choice of a detergent suitable for a given study remains largely empirical. In the present work, we considered the micelle-crystallized structures of lactose permease (LacY), the sodium/galactose symporter (vSGLT), the vitamin B(12) transporter (BtuCD), and the arginine/agmatine antiporter (AdiC). Representative transmembrane (TM) segments were selected from these proteins based on their relative contact(s) with water, lipid, and/or within the protein, and were synthesized as Lys-tagged peptides. Each peptide was studied by circular dichroism and fluorescence spectroscopy in water, and in the presence of the detergents sodium dodecylsulfate (SDS, anionic); n-dodecyl phosphatidylcholine (DPC, zwitterionic); n-dodecyl-β-d-maltoside (DDM, neutral); and n-octyl-β-d-glucoside (OG, neutral, varying acyl tail length). We found that (i) the secondary structures of the TM segments were statistically indistinguishable in the four detergents studied; and (ii) a strong correlation exists between the extent of helical structure of each individual TM segment in detergents with its helicity level as it exists in the full-length protein, indicating that helix adoption is fundamentally the same in both environments. The denaturing properties of so-called 'harsh' detergents may thus largely be due to their interactions with non-membranous regions of proteins. Given the consistency of structural features observed for each TM segment in a variety of micellar media, the overall results suggest that the structure likely corresponds to its relevant biological form in the intact protein in its native lipid bilayer environment.  相似文献   

5.
The considerable flexibility of side-chains in folded proteins is important for protein stability and function, and may have a role in mediating allosteric interactions. While sampling side-chain degrees of freedom has been an integral part of several successful computational protein design methods, the predictions of these approaches have not been directly compared to experimental measurements of side-chain motional amplitudes. In addition, protein design methods frequently keep the backbone fixed, an approximation that may substantially limit the ability to accurately model side-chain flexibility. Here, we describe a Monte Carlo approach to modeling side-chain conformational variability and validate our method against a large dataset of methyl relaxation order parameters derived from nuclear magnetic resonance (NMR) experiments (17 proteins and a total of 530 data points). We also evaluate a model of backbone flexibility based on Backrub motions, a type of conformational change frequently observed in ultra-high-resolution X-ray structures that accounts for correlated side-chain backbone movements. The fixed-backbone model performs reasonably well with an overall rmsd between computed and predicted side-chain order parameters of 0.26. Notably, including backbone flexibility leads to significant improvements in modeling side-chain order parameters for ten of the 17 proteins in the set. Greater accuracy of the flexible backbone model results from both increases and decreases in side-chain flexibility relative to the fixed-backbone model. This simple flexible-backbone model should be useful for a variety of protein design applications, including improved modeling of protein-protein interactions, design of proteins with desired flexibility or rigidity, and prediction of correlated motions within proteins.  相似文献   

6.
De novo folding simulations of the major pVIII coat protein from filamentous fd bacteriophage, using a newly developed implicit membrane generalized Born model and replica-exchange molecular dynamics, are presented and discussed. The quality of the predicted structures, judged by comparison of the root-mean-square deviations of a room temperature ensemble of conformations from the replica-exchange simulations and experimental structures from both solid-state NMR in lipid bilayers and solution-phase NMR on the protein in micelles, was quite good, reinforcing the general quality of the folding simulations. The transmembrane helical segment of the protein was well defined in comparison with experiment and the amphipathic helical fragment remained at the membrane/aqueous phase boundary while undergoing significant conformational flexibility due to the loop connecting the two helical segments of the protein. Additional comparisons of computed solid-state NMR properties, the 15N chemical shift and 15N-1H dipolar coupling constants, showed semi-quantitative agreement with the corresponding measurements. These findings suggest an emerging potential for the de novo investigation of integral membrane peptides and proteins and a mechanism to assist experimental approaches to the characterization and structure determination of these important systems.  相似文献   

7.
We present an approach for calculating conformational changes in membrane proteins using limited distance information. The method, named restraint-driven Cartesian transformations, involves 1) the use of relative distance changes; 2) the systematic sampling of rigid body movements in Cartesian space; 3) a penalty evaluation; and 4) model refinement using energy minimization. As a test case, we have analyzed the structural basis of activation gating in the Streptomyces lividans potassium channel (KcsA). A total of 10 pairs of distance restraints derived from site-directed spin labeling and electron paramagnetic resonance (SDSL-EPR) spectra were used to calculate the open conformation of the second transmembrane domains of KcsA (TM2). The SDSL-EPR based structure reveals a gating mechanism consistent with a scissoring-type motion of the TM2 segments that includes a pivot point near middle of the helix. The present approach considerably reduces the amount of time and effort required to establish the overall nature of conformational changes in membrane proteins. It is expected that this approach can be implemented into restrained molecular dynamics protocol to calculate the structure and conformational changes in a variety of membrane protein systems.  相似文献   

8.
Chemical shift frequencies represent a time-average of all the conformational states populated by a protein. Thus, chemical shift prediction programs based on sequence and database analysis yield higher accuracy for rigid rather than flexible protein segments. Here we show that the prediction accuracy can be significantly improved by averaging over an ensemble of structures, predicted solely from amino acid sequence with the Rosetta program. This approach to chemical shift and structure prediction has the potential to be useful for guiding resonance assignments, especially in solid-state NMR structural studies of membrane proteins in proteoliposomes.  相似文献   

9.
Recently, there have been several technical advances in the use of solution and solid-state NMR spectroscopy to determine the structures of membrane proteins. The structures of several isolated transmembrane (TM) helices and pairs of TM helices have been solved by solution NMR methods. Similarly, the complete folds of two TM beta-barrel proteins with molecular weights of 16 and 19 kDa have been determined by solution NMR in detergent micelles. Solution NMR has also provided a first glimpse at the dynamics of an integral membrane protein. Structures of individual TM helices have also been determined by solid-state NMR. A combination of NMR with site-directed spin-label electron paramagnetic resonance or Fourier transform IR spectroscopy allows one to assemble quite detailed protein structures in the membrane.  相似文献   

10.
Modeling of integral membrane proteins and the prediction of their functional sites requires the identification of transmembrane (TM) segments and the determination of their angular orientations. Hydrophobicity scales predict accurately the location of TM helices, but are less accurate in computing angular disposition. Estimating lipid-exposure propensities of the residues from statistics of solved membrane protein structures has the disadvantage of relying on relatively few proteins. As an alternative, we propose here a scale of knowledge-based Propensities for Residue Orientation in Transmembrane segments (kPROT), derived from the analysis of more than 5000 non-redundant protein sequences. We assume that residues that tend to be exposed to the membrane are more frequent in TM segments of single-span proteins, while residues that prefer to be buried in the transmembrane bundle interior are present mainly in multi-span TMs. The kPROT value for each residue is thus defined as the logarithm of the ratio of its proportions in single and multiple TM spans. The scale is refined further by defining it for three discrete sections of the TM segment; namely, extracellular, central, and intracellular. The capacity of the kPROT scale to predict angular helical orientation was compared to that of alternative methods in a benchmark test, using a diversity of multi-span alpha-helical transmembrane proteins with a solved 3D structure. kPROT yielded an average angular error of 41 degrees, significantly lower than that of alternative scales (62 degrees -68 degrees ). The new scale thus provides a useful general tool for modeling and prediction of functional residues in membrane proteins. A WWW server (http://bioinfo.weizmann.ac.il/kPROT) is available for automatic helix orientation prediction with kPROT.  相似文献   

11.
Knowing the ligand or peptide binding site in proteins is highly important to guide drug discovery, but experimental elucidation of the binding site is difficult. Therefore, various computational approaches have been developed to identify potential binding sites in protein structures. However, protein and ligand flexibility are often neglected in these methods due to efficiency considerations despite the recognition that protein–ligand interactions can be strongly affected by mutual structural adaptations. This is particularly true if the binding site is unknown, as the screening will typically be performed based on an unbound protein structure. Herein we present DynaBiS, a hierarchical sampling algorithm to identify flexible binding sites for a target ligand with explicit consideration of protein and ligand flexibility, inspired by our previously presented flexible docking algorithm DynaDock. DynaBiS applies soft-core potentials between the ligand and the protein, thereby allowing a certain protein–ligand overlap resulting in efficient sampling of conformational adaptation effects. We evaluated DynaBiS and other commonly used binding site identification algorithms against a diverse evaluation set consisting of 26 proteins featuring peptide as well as small ligand binding sites. We show that DynaBiS outperforms the other evaluated methods for the identification of protein binding sites for large and highly flexible ligands such as peptides, both with a holo or apo structure used as input.  相似文献   

12.
Molecular Dynamics (MD) simulations at low dielectric constant have been carried out for peptides matching the double spanning segments of transmembrane proteins. Different folding dynamics have been observed. The peptides folded into the stable helix-turn-helix conformation-alpha-hairpin-with antiparallel-oriented strands or unstable alpha-hairpin conformation that unfolded later into the straight helical structure. The peptide having flexible residues in the TM helices often misfolded into a tangled structure that can be avoided by restricting the flexibility of these residues. General conclusions can be drawn from the observed folding dynamics. The stability and folding of some double spanning transmembrane fragments are self-assembling. The following and/or neighboring peptide chains of the protein may support the stability of the hairpin structure of other fragments. The stability of the TM helices containing flexible residues could be maintained due to contacts with neighboring TM segments.  相似文献   

13.
Protein structure alignment methods are used for the detection of evolutionary and functionally related positions in proteins. A wide array of different methods are available, but the choice of the best method is often not apparent to the user. Several studies have assessed the alignment accuracy and consistency of structure alignment methods, but none of these explicitly considered membrane proteins, which are important targets for drug development and have distinct structural features. Here, we compared 13 widely used pairwise structural alignment methods on a test set of homologous membrane protein structures (called HOMEP3). Each pair of structures was aligned and the corresponding sequence alignment was used to construct homology models. The model accuracy compared to the known structures was assessed using scoring functions not incorporated in the tested structural alignment methods. The analysis shows that fragment‐based approaches such as FR‐TM‐align are the most useful for aligning structures of membrane proteins. Moreover, fragment‐based approaches are more suitable for comparison of protein structures that have undergone large conformational changes. Nevertheless, no method was clearly superior to all other methods. Additionally, all methods lack a measure to rate the reliability of a position within a structure alignment. To solve both of these problems, we propose a consensus‐type approach, combining alignments from four different methods, namely FR‐TM‐align, DaliLite, MATT, and FATCAT. Agreement between the methods is used to assign confidence values to each position of the alignment. Overall, we conclude that there remains scope for the improvement of structural alignment methods for membrane proteins. Proteins 2015; 83:1720–1732. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Sequence-specific noncovalent helix-helix interactions between transmembrane (TM) segments in proteins are investigated by incorporating selected TM sequences into synthetic peptides using the construct CKKK-TM-KKK. The peptides are of suitable hydrophobicity for spontaneous membrane insertion, whereas formation of an N-terminal S-S bond can bring pairs of TM helices into proximity and promote their parallel orientation. Using the propensity of the protein to undergo thermally induced alpha-helix --> beta-sheet transitions as a parameter for helix stability, we compared the wild type and mutant (V29A and V31A) bacteriophage M13 coat proteins with their corresponding TM peptide constructs (M13 residues 24-42). Our results demonstrated that the relevant helix-helix tertiary contacts found in the intact proteins persist in the peptide mimics. Molecular dynamics simulations support the tight "two in-two out" dimerization motif for V31A consistent with mutagenesis data. The overall results reinforce the notion of TM segments as autonomous folding domains and suggest that the generic peptide construct provides a viable reductionist system for membrane protein structural and computational analysis.  相似文献   

15.
The structure and membrane interaction of the internal fusion peptide (IFP) fragment of the avian sarcoma and leucosis virus (ASLV) envelope glycoprotein was studied by an array of biophysical methods. The peptide was found to induce lipid mixing of vesicles more strongly than the fusion peptide derived from the N-terminal fusion peptide of influenza virus (HA2-FP). It was observed that the helical structure was enhanced in association with the model membranes, particularly in the N-terminal portion of the peptide. According to the infrared study, the peptide inserted into the membrane in an oblique orientation, but less deeply than the influenza HA2-FP. Analysis of NMR data in sodium dodecyl sulfate micelle suspension revealed that Pro13 of the peptide was located near the micelle-water interface. A type II beta-turn was deduced from NMR data for the peptide in aqueous medium, demonstrating a conformational flexibility of the IFP in analogy to the N-terminal FP such as that of gp41. A loose and multimodal self-assembly was deduced from the rhodamine fluorescence self-quenching experiments for the peptide bound to the membrane bilayer. Oligomerization of the peptide and its variants can also be observed in the electrophoretic experiments, suggesting a property in common with other N-terminal FP of class I fusion proteins.  相似文献   

16.
The function of membrane proteins is inextricably linked to the proper packing and assembly of their independently helical transmembrane (TM) segments. Here we examined whether an externally added TM peptide analogue could specifically inhibit the function of the membrane protein from which it is derived by competing for native TM helix packing sites, thereby producing a non-functional peptide-protein complex. This hypothesis was tested using Lys-tagged peptides synthesized with sequences corresponding to the three TM segments of the homotrimeric Escherichia coli diacylglycerol kinase (DGK). The peptide corresponding to wild-type DGK TM-2 inhibited the protein's enzymatic activity in a dose-dependent manner through formation of an inactive pseudo-complex, whereas peptides derived from TM-1 and TM-3 were benign toward DGK structure/function. Also, substitution of a conserved residue (Glu-69) within the TM-2 peptide abolished these effects, demonstrating the strict sequence requirements for TM-2-mediated association. This strategy, coupled with the practical advantages of the water solubility of Lys-tagged TM peptides, may constitute an attractive approach for the design of therapeutic membrane protein modulators even in the absence of a high resolution structure.  相似文献   

17.
The nicotinic acetylcholine receptor (nAChR) is an important therapeutic target for a wide range of pathophysiological conditions, for which rational drug designs often require receptor structures at atomic resolution. Recent proof-of-concept studies demonstrated a water-solubilization approach to structure determination of membrane proteins by NMR (Slovic et al., PNAS, 101: 1828-1833, 2004; Ma et al., PNAS, 105: 16537-42, 2008). We report here the computational design and experimental characterization of WSA, a water-soluble protein with ~83% sequence identity to the transmembrane (TM) domain of the nAChR α1 subunit. Although the design was based on a low-resolution structural template, the resulting high-resolution NMR structure agrees remarkably well with the recent crystal structure of the TM domains of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC), demonstrating the robustness and general applicability of the approach. NMR T(2) dispersion measurements showed that the TM2 domain of the designed protein was dynamic, undergoing conformational exchange on the NMR timescale. Photoaffinity labeling with isoflurane and propofol photolabels identified a common binding site in the immediate proximity of the anesthetic binding site found in the crystal structure of the anesthetic-GLIC complex. Our results illustrate the usefulness of high-resolution NMR analyses of water-solubilized channel proteins for the discovery of potential drug binding sites.  相似文献   

18.
The lipid modified human N-Ras protein, implicated in human cancer development, is of particular interest due to its membrane anchor that determines the activity and subcellular location of the protein. Previous solid-state NMR investigations indicated that this membrane anchor is highly dynamic, which may be indicative of backbone conformational flexibility. This article aims to address if a dynamic exchange between three structural models exist that had been determined previously. We applied a combination of solid-state nuclear magnetic resonance (NMR) methods and replica exchange molecular dynamics (MD) simulations using a Ras peptide that represents the terminal seven amino acids of the human N-Ras protein. Analysis of correlations between the conformations of individual amino acids revealed that Cys 181 and Met 182 undergo collective conformational exchange. Two major structures constituting about 60% of all conformations could be identified. The two conformations found in the simulation are in rapid exchange, which gives rise to low backbone order parameters and nuclear spin relaxation as measured by experimental NMR methods. These parameters were also determined from two 300 ns conventional MD simulations, providing very good agreement with the experimental data.  相似文献   

19.
20.
MotA and MotB are membrane proteins that form the stator of the bacterial flagellar motor. Each motor contains several MotA 4MotB 2 complexes, which function independently to conduct protons across the membrane and couple proton flow to rotation. The mechanism of rotation is not understood in detail but is thought to involve conformational changes in the stator complexes driven by proton association/dissociation at a critical Asp residue of MotB (Asp 32 in the protein of Escherichia coli). MotA has four membrane segments and MotB has one. Previous studies using targeted disulfide cross-linking showed that the membrane segments of the two MotB subunits are together at the center of the complex, surrounded by the TM3 and TM4 segments of the four MotA subunits. Here, the cross-linking studies are extended to TM1 and TM2 of MotA, using Cys residues introduced in several positions in the segments. The observed patterns of disulfide cross-linking indicate that the TM2 segment is positioned between segments TM3 and TM4 of the same subunit, where it could contribute to the proton-channel-forming part of the structure. TM1 is at the interface between TM4 of its own subunit and the TM3 segment of another subunit, where it could stabilize the complex. A structural model based on the cross-linking results shows unobstructed pathways reaching from the periplasm to the Asp 32 residues near the inner ends of the MotB segments. The model indicates a close proximity for certain conserved, functionally important residues. The results are used to develop an explicit model for the proton-induced conformational change in the stator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号