首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Total internal reflection fluorescence (TIRF) microscopy reveals highly mobile structures containing enhanced green fluorescent protein-tagged glucose transporter 4 (GLUT4) within a zone about 100 nm beneath the plasma membrane of 3T3-L1 adipocytes. We developed a computer program (Fusion Assistant) that enables direct analysis of the docking/fusion kinetics of hundreds of exocytic fusion events. Insulin stimulation increases the fusion frequency of exocytic GLUT4 vesicles by approximately 4-fold, increasing GLUT4 content in the plasma membrane. Remarkably, insulin signaling modulates the kinetics of the fusion process, decreasing the vesicle tethering/docking duration prior to membrane fusion. In contrast, the kinetics of GLUT4 molecules spreading out in the plasma membrane from exocytic fusion sites is unchanged by insulin. As GLUT4 accumulates in the plasma membrane, it is also immobilized in punctate structures on the cell surface. A previous report suggested these structures are exocytic fusion sites (Lizunov et al., J. Cell Biol. 169:481-489, 2005). However, two-color TIRF microscopy using fluorescent proteins fused to clathrin light chain or GLUT4 reveals these structures are clathrin-coated patches. Taken together, these data show that insulin signaling accelerates the transition from docking of GLUT4-containing vesicles to their fusion with the plasma membrane and promotes GLUT4 accumulation in clathrin-based endocytic structures on the plasma membrane.  相似文献   

2.
The action of insulin on tyrosine phosphorylation of plasma membrane-associated proteins in rat adipocytes was investigated. Incubation of plasma membranes from insulin-treated adipocytes with [gamma-32P] ATP results in a marked increase in tyrosine phosphorylation of Mr = 160,000 (P160) and Mr = 92,000 proteins when compared to controls. Based on the immunoreactivities of these two proteins with anti-insulin receptor antibodies, the Mr = 92,000 species is identified as the insulin receptor beta subunit while P160 is unrelated to the receptor structure. P160 appears to be a glycoprotein as evidenced by its adsorption to wheat germ agglutinin-agarose. The tyrosine phosphorylation of P160 exhibits a rapid response to insulin (maximal within 2 min at 37 degrees C) and is readily reversed following removal of the free hormone by anti-insulin serum. The time courses of insulin-stimulated phosphorylation as well as the dephosphorylation of P160 coincide with those of the activation and deactivation of the insulin receptor kinase in the same plasma membrane preparation. Concanavalin A and hydrogen peroxide mimic insulin stimulation of the insulin receptor kinase and enhance the tyrosine phosphorylation of P160. Isoproterenol, epidermal growth factor, and phorbol diester are without effects. Analysis of the insulin dose-response relationship between P160 tyrosine phosphorylation and insulin receptor kinase activity reveals that maximal phosphorylation of P160 occurs when only a fraction (25%) of the receptor kinase is activated by the hormone. A similar relationship between these two parameters is observed for the insulinomimetic agent hydrogen peroxide. The close correlation between the level of P160 phosphorylation and insulin receptor kinase activity suggests that P160 may be tyrosine phosphorylated by the receptor kinase following receptor kinase activation by the hormone or insulin-like agents. This hypothesis is further supported by the finding that the insulin receptor kinase is the only insulin-sensitive tyrosine kinase detectable in adipocyte plasma membranes under the conditions of our experiments.  相似文献   

3.
A self-association reaction involving the plasma membrane-associated clathrin assembly protein AP-2 has been detected by incubating AP-2 alone under solution conditions that would favor the assembly of complete coat structures if clathrin were present. Self-association was rapid, unaffected by nonionic detergents, readily reversible, and gave rise to sedimentable aggregates. Only the AP subtype AP-2 exhibited self-association: the structurally or functionally related assembly proteins AP-1 and AP-3 and unrelated proteins neither self-associated nor were incorporated into the AP-2 aggregate. AP-2 interactions responsible for self-association were of high affinity, with an apparent Kd of approximately 10(-8)M. By proteolytic dissection, the self-association domain was localized to the core of the molecule containing the intact 50- and 16-kDa polypeptides in association with the truncated 60-66-kDa moieties of the parent alpha/beta polypeptides. Self-association of the intact AP-2 molecule was pH-dependent, exhibiting an apparent pKa approximately 7.4. While it is unlikely that the large AP-2 aggregates formed in solution are themselves biologically relevant structures, the AP-2 interactions involved in their formation have properties consistent with their occurrence in intact cells and thus may be important in cellular functions of the plasma membrane-localized assembly protein.  相似文献   

4.
Several substrates of endogenous Ca2+- and phospholipid-sensitive protein kinase have been identified in plasma membranes and cytosol from rat adipocytes. Specifically, Ca2+ stimulates phosphorylation of a 40-kDa protein in isolated plasma membranes, an effect which is further enhanced by the addition of the phorbol ester tetradecanoylphorbol acetate and phospholipase C. The 40-kDa phosphoprotein is also present in the cytosol, and its phosphorylation is stimulated in a Ca2+-dependent manner by phosphatidylserine, diacylglycerol, and phorbol ester. Direct addition of insulin to adipocyte plasma membranes stimulates phosphorylation of the 40-kDa protein in a concentration-dependent manner. Maximal stimulation was observed at 10(-8) M insulin. At 6.7 X 10(-8) M insulin, phosphorylation of the 40-kDa protein was stimulated by 68 +/- 9% (n = 6). Addition of phorbol ester (1, 10, and 100 ng/ml) plus insulin further enhanced the phosphorylation (286 +/- 39, n = 3; 350 +/- 65, n = 4; and 323 +/- 42%, n = 5, stimulation, respectively). Analysis of the 40-kDa phosphoprotein by two-dimensional polyacrylamide gel electrophoresis revealed that incubations containing no additions, insulin, and/or phorbol ester all resulted in the generation of a single and apparently identical phosphorylated 40-kDa species. These studies indicate that insulin and Ca2+- and phospholipid-dependent protein kinase stimulate phosphorylation of a 40-kDa protein in adipocyte plasma membranes.  相似文献   

5.
We have observed increases in assembled clathrin on the plasma membrane during "frustrated phagocytosis," the spreading of macrophages on immobilized immune complexes. Resident macrophages freshly harvested from the peritoneal cavity of mice and attached to bovine serum albumin (BSA)-anti-BSA-coated surfaces at 4 degrees C had almost no clathrin basketworks on their adherent plasma membrane (less than 0.01 coated patch/micron 2), as observed by immunofluorescence, immunoperoxidase, and platinum-carbon replica techniques, although abundant assembled clathrin was observed in the perinuclear Golgi region. When the cells were warmed to 37 degrees C they started to spread by 4 min and reached their maximum extent by 20 min. Spreading preceded clathrin assembly at the plasma membrane. Clathrin-coated patches were first observed on the adherent plasma membrane at 6 min. Between 12 and 20 min assembled clathrin coats appeared on both adherent and nonadherent plasma membranes with a concomitant decrease in identifiable clathrin in the perinuclear region. A new steady state emerged by 2 h, as perinuclear clathrin began to reappear. At 20 min at 37 degrees C the adherent plasma membranes of macrophages spreading on BSA alone had 0.9 coated patch/micron 2, whereas in cells spread on immune complex-coated surfaces, the clathrin patches increased, dependent on ligand concentration, to a maximum of 2.1 coated patches/micron 2. Because frustrated phagocytosis of immune complex-coated surfaces at 37 degrees C increased the area of adherent plasma membrane, the total area coated by clathrin basket-works increased 5-fold (28 micron 2/cell) as compared with cells plated on BSA alone (5.6 micron 2/cell) and 200-fold as compared with cells adhering to immune complexes at 4 degrees C. We then determined that macrophages cultured on BSA-coated coverslips for 24 h already have abundant surface clathrin. When immune complexes were formed by the addition of anti-BSA IgG to already spread macrophages cultured on BSA-coated coverslips for 24 h, clathrin assembled at the sites of ligand-receptor interaction even at 4 degrees C, before spreading, and a 2.6-fold increase in assembled clathrin was observed on the adherent plasma membrane of cells on immune complexes as compared with cells on BSA alone. Clathrin was reversibly redistributed to the Golgi region, returning to the steady state by 2 h.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Incubation of a rat liver particulate fraction with physiological concentrations of insulin enhances the production of a small molecular weight substance which modulates adipocyte as well as liver mitochondrial pyruvate dehydrogenase. While low concentrations of insulin enhance production of this activity, levels of greater than 10?9M produce significantly less. Similarly, while increasing concentrations of mediator cause increased stimulation of pyruvate dehydrogenase activity, higher concentrations no longer exhibit this effect. The putative insulin mediator was partially purified on HPLC and Sephadex G-25 columns. Its molecular weight was about 1000–2000. These results indicate the presence of a chemical mediator of insulin action in liver similar to that observed in other insulin target tissues.  相似文献   

7.
Plasma membranes (1–2 mg protein) prepared from the livers of adult male rats and human organ donors were incubated with 0.6 μM [α-32P] guanosine triphosphate (GTP) in an adenosine triphosphate (ATP)-regenerating buffer at 37°C for 1 h; during this incubation, the [32P]GTP is hydrolyzed and the nucleotide that is predominantly bound to the membranes is [32P] guanosine diphosphate (GDP). [32P]GDP release from the liver membranes was proportional to the protein concentration and increased as a function of time. At 5 mM, Ca2+, Mg2+, Mn2+, and Zn2+ maximally inhibited GDP release by 80–90%, whereas, 5 mM Cu2+ maximally stimulated the reaction by 100%. Therefore, cations were not included in the buffer used in the GDP release step. One μM Gpp(NH)p (5′-guanylylimidodiphosphate), a nonhydrolyzable analog of GTP, maximally stimulated [32P]GDP release in the liver membranes by up to 30%. Although 10 nM Gpp(NH)p had no effect on GDP release, it appeared to stabilize the hormonal effect by blocking further GDP/GTP exchange. In the rat membranes, 1–100 nM glucagon (used as a positive control) stimulated [32P]GDP release by about 17% (P < .05); similarly, 0.1–100 nM insulin stimulated [32P]GDP release by 10–13% (P < .05). In the human membranes, 10 pM to 100 nM insulin stimulated [32P]GDP release by 7–10%. In the rat membranes, 10 nM insulin stimulated [32P]GDP release by 17 and 24% at 2 and 4 min, respectively (P < .05); in the human membranes, 10 nM insulin stimulated [32P]GDP release by about 9% at 2 and 4 min. Normal rabbit IgG (used as a control for insulin receptor antibody) by itself stimulated the GDP release by rat and human membranes. However, the stimulation of the GDP release by insulin receptor antibody was consistently higher than that observed with normal rabbit IgG. Four to 15 μg of insulin receptor antibody stimulated [32P]GDP release by 12–22% (P < .05) and 7–14% in rat and human membranes, respectively. These results indicate that ligand binding to the insulin receptor results in a functional interaction of the receptor with a guanine nucleotide-binding transducer protein (G protein) and activation of GTP/GDP exchange.  相似文献   

8.
9.
T Trosper  D Levy 《Biochemistry》1974,13(21):4284-4290
  相似文献   

10.
Calcium binding to adipocyte plasma membranes has been assessed by equilibrium dialysis and by membrane filtration techniques. Calcium binding was specific and saturable, displaying two distinct classes of binding sites. The affinity constants and maximum binding capacities in the presence of 0.1 M KCl were 4.5 X 10(4) M-1 and 1.8 nmol/mg of protein and 2.0 X 10(3) M-1 and 13.7 nmol/mg for the high and low affinity sites, respectively. Bound calcium was totally dissociated in the presence of excess calcium within 11.0 min in two distinct phases corresponding to the two classes of sites. Association and dissociation rate constants for the high affinity sites were 7.7 X 10(2) M-1S-1 and 9.2 X 10(-3S-1 respectively. Free energy changes at 24 degrees were +6.4 kcal mol-1 for the high affinity sites and +4.5 kcal mol-1 for the low affinity sites. The high affinity sites demonstrated a pH optimum of 7.0 whereas the binding to the low affinity sites progressively increased between pH 6.0 and 9.0. Low concentrations of MgCl2 (less than 300 muM) enhanced calcium binding slightly, whereas high concentrations of KCl and MgCl2 were noncompetitive inhibitors of calcium binding. Procaine and ruthenium red had no effect on calcium binding and lanthanum was a poor inhibitor of calcium binding. This represents the first report of calcium binding to adipocyte plasma membranes and the first kinetic analysis of calcium binding to biological membranes. The specificity of this calcium-binding system in adipocyte plasma membranes suggests its importance in cellular bioregulation.  相似文献   

11.
12.
We have established by peptide mapping and immunochemical analysis of purified clathrin assembly protein preparations from bovine brain, that the cluster of components of mol. wt 100-120 kd fall into four classes, which we term alpha, beta, beta' and gamma. The beta and beta' proteins are immunologically related and generate a series of common tryptic peptides. The same criteria reveal no such homologies between the alpha, beta(beta') and gamma polypeptides. The so-called HA-II assembly protein group contains equimolar amounts of alpha and beta class polypeptides, which are shown to interact with each other. In the HA-I group assembly protein complex gamma and beta' class polypeptides form a stoichiometric complex. Immunofluorescence microscopy reveals that the HA-I complex is specifically associated with clathrin-coated membranes in the Golgi region of cultured cells, whereas the HA-II complex appears to be restricted to coated pits on the plasma membrane. The data lead to the tentative conclusion that the clathrin assembly proteins are involved in the recognition of the intracellular targets by uncoated vesicles.  相似文献   

13.
An improved procedure is outlined for the isolation of an adipocyte plasma membrane fraction containing much less endoplasmic reticulum contamination than plasma membranes prepared by the procedures that are currently in commen use. It is also shown that 125I-labeled diazotized diiodosulfanilic acid can be used as a nonpermeable reagent which selectively labels two protein components in plasma membranes of intact adipocytes.  相似文献   

14.
A membrane component involved in the transport of adenosine in adipocytes has been identified utilizing the techniques of photoaffinity labeling with the adenosine derivative, 8-azidoadenosine. In the absence of light, adenosine and 8-azidoadenosine exhibited similar transport characteristics. In addition, adenosine was shown to be a competitive inhibitor of 8-azidoadenosine uptake, and the photoprobe, a competitive inhibitor of adenosine uptake. Analysis of the nucleotide metabolites indicated that the photoprobe was metabolized in a similar fashion to that observed for adenosine. Several nucleoside transport inhibitors were also equally effective in inhibiting the uptake of both nucleosides. These results suggest that 8-azidoadenosine is transported by the same membrane system as adenosine. Photolysis of 8-azido[2-3H]adenosine in the presence of adipocytes resulted in the covalent incorporation of the photoprobe into the plasma membrane fraction. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that essentially all of the radioactivity was incorporated into a glycoprotein with a molecular weight of 56,000. This labeling was inhibited by greater than 90% when the photolysis was carried out in the presence of excess adenosine or the transport inhibitors, persantin or theophylline. Fractionation of the labeled plasma membranes by dialysis against water (pH 9.5) indicated that approximately 75% of the radioactivity was associated with a glycoprotein which resisted solubilization by this procedure. These results suggest that the major labeled species is a 56,000 Mr intrinsic membrane glycoprotein which may function as a component of a transmembrane assembly involved in the transport of adenosine.  相似文献   

15.
Energetics of clathrin basket assembly   总被引:2,自引:0,他引:2  
A minimal thermodynamic model is used to study the in vitro equilibrium assembly of reconstituted clathrin baskets. The model contains parameters accounting for i) the combined bending and flexing rigidities of triskelion legs and hubs, ii) the intrinsic curvature of an isolated triskelion, and iii) the free energy changes associated with interactions between legs of neighboring triskelions. Analytical expressions for basket size distributions are derived, and published size distribution data (Zaremba S, Keen JH. J Cell Biol 1983;97: 1339–1347) are then used to provide estimates for net total basket assembly energies. Results suggest that energies involved in adding triskelions to partially formed clathrin lattices are small (of the order of kBT), in accord with the notion that lattice remodeling during basket formation occurs as a result of thermodynamic fluctuations. In addition, analysis of data showing the effects of assembly proteins (APs) on basket size indicates that the binding of APs increases the intrinsic curvature of an elemental triskelial subunit, the stabilizing energy of leg interactions, and the effective leg/hub rigidity. Values of effective triskelial rigidity determined in this investigation are similar to those estimated by previous analysis of shape fluctuations of isolated triskelia.  相似文献   

16.
1. Antisera against ovine adipocyte plasma membranes were developed in a mare. 2. These antisera showed a high degree of specificity to adipocyte plasma membranes and cross-reacted with other tissues. 3. Antisera cross-reactivity can be removed by adsorption of the antiserum with various tissue plasma membranes without significant reduction in their reactivity to adipocyte plasma membranes. 4. Antisera reacted with different affinity to adipocyte plasma membranes from different sites and from different species of animals.  相似文献   

17.
An ATP-dependent transport system which is active at concentrations of free Ca2+ in the submicromolar range has been identified in adipocyte plasma membranes. The system appears to represent the functional component of the high affinity insulin-sensitive calcium-stimulated, magnesium-dependent adenosine triphosphatase preveiously described in the same preparation (Pershadsingh, H. A., and McDonald, J. M. (1979) Nature 281, 495-497). This ATP-dependent Ca2+ transport pump was stimulated approximately 3-fold by the Ca2+-dependent regulatory protein, calmodulin. This effect was confined to the plasma membrane since a similar effect was undetectable in the fraction enriched in endoplasmic reticulum. Calmodulin stimulation was dose-dependent but saturable with half-maximal activation occurring at 0.72 microgram/ml (43 nM). Calmodulin appeared to stimulate the system primarily by decreasing the apparent half-maximal saturation constant for free Ca2+ from 0.20 +/- 0.04 microM to 0.07 +/- 0.01 microM (n = 3). The Hill coefficient increased from 1.6 +/- 0.2 to 3.2 +/- 0.6 (n = 3), thus showing an increased positive cooperativity which allows the pump to be activated by an exceedingly narrow Ca2+ threshold in the presence of calmodulin. The calmodulin stimulation of the plasma membrane Ca2+ extrusion pump in adipocytes, working in opposition to metabolic signals which increase cytoplasmic Ca2+, could constitute a self-regulating negative feedback device for maintaining a low steady state level of intracellular Ca2+. This feedback system may be of critical importance in regulation of cellular metabolism by insulin.  相似文献   

18.
Extracellular cyclic AMP is source of extracellular adenosine in brain and kidney. Whether this occurs in adipose tissue is unknown. The present study evaluated the capacity of swine adipocyte plasma membranes to metabolize cyclic AMP to AMP and adenosine, via phosphodiesterase (PDE) and 5'-nucleotidase (5'-NT), respectively. Plasma membranes (PM) and microsomal membranes (MM) were isolated from over-the-shoulder subcutaneous adipose tissue of 3 month-old male miniature swine. The purity of the membrane fractions was determined and PDE and 5'-NT activities in PM and MM fractions were corrected for cross-contamination. The maximal activity of MM-PDE was 7-fold greater than that of PM-PDE. MM-PDE was 100% inhibited by 5 microM cilostamide, while PM-PDE was unaffected by this PDE3B inhibitor. Inhibitors of PDE1, PDE2, PDE4 and PDE5 also failed to inhibit PM-PDE. However, 1 mM DPSPX inhibited PM-PDE activity by 72%. When PM were incubated with 0.8 microM cyclic AMP for 20 min, AMP accumulation was four times that of adenosine. These data demonstrate that cyclic AMP can be converted to AMP and adenosine by the PM-bound enzymes 5'-NT and PDE, and suggest that the PM-PDE responsible for extracellular cyclic AMP metabolism to AMP is distinct from the intracellular MM-PDE.  相似文献   

19.
Several components of the phosphoinositide cycle have been found to interact specifically and at physiological concentrations with the plasma membrane-associated clathrin assembly (adaptor) protein AP-2. These include phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate, which are present at the plasma membrane, as well as other polyphosphoinositols. ATP and other polyphosphate molecules complete with the polyphosphoinositols, however, they are at least 80-fold less potent. Also, the effect of ATP, unlike the polyphosphoinositols, is blocked by physiological concentrations of Mg2+. Photoaffinity labeling of AP-2 by [alpha-32P]8-azidoadenosine 5'-triphosphate and its competition by polyphosphoinositols has been used to identify the alpha subunit of the AP-2 complex as the site of specific interaction with the polyphosphoinositols and to confirm direct ultrafiltration binding experiments. Proteolytic dissection of the labeled AP-2 demonstrated that binding occurred exclusively on the N-terminal portion of the alpha subunit. Interaction of purified AP-2 with sub-microM concentrations of polyphosphoinositols has inhibitory effects on a novel AP-2 self-association described in the accompanying paper (Beck, K. A., and Keen, J. H., J. Biol. Chem. 266, 4437-4441), and at higher concentrations on the binding of AP-2 to dissociated clathrin trimers as well as AP-2-mediated clathrin coat assembly. Review of the literature shows that several physiological stimuli that are known to result in increased coat pit formation in intact cells correlate with increased phosphoinositide turnover. These in vivo correlations and the in vitro observations reported here suggest that coated membrane and phosphoinositide cycles may be interdependent within cells.  相似文献   

20.
Insulin-receptor interaction in partially purified preparations of human placental plasma membranes from normal mothers at term of pregnancy has been characterized. 125I-insulin became rapidly and reversibly bound to plasma membranes, being time and temperature dependent. The binding readily appeared at 1.0 ng/ml insulin concentration which falls within the physiological range of peripheral blood. Low levels of unlabeled insulin inhibited binding; 20 ng/ml insulin produced fifty per cent inhibition. Scatchard plots of data from competitive insulin binding proved to be curvilinear. The insulin greater ability for binding observed in this preparation can be explained by the purification degree achieved at the plasma membranes. 125I-insulin was less degraded by partially purified placental plasma membranes than by a microsomal-membrane preparation obtained without differential centrifugation in sucrose linear gradient. All these properties strongly suggest that the insulin-binding sites characterized in the plasma membrane fraction of the placenta represent biologically important receptors to hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号