共查询到20条相似文献,搜索用时 0 毫秒
1.
Hinescu ME Popescu LM Gherghiceanu M Faussone-Pellegrini MS 《Journal of cellular and molecular medicine》2008,12(1):260-270
Interstitial Cajal-like Cells (ICLC) were recently recognized in a plethora of non-digestive organs. Here, we describe a cell type of rat mesentery sharing ultrastructural and immunohistochemical features with ICLC. Mesenteric ICLC were demonstrated by transmission electron microscopy (TEM) and further tested by light microscope immunohistochemistry. The cell described here fulfils the TEM diagnostic criteria accepted for ICLC: location in the connective interstitium; close vicinity to nerves, capillaries and other interstitial cells; characteristic long, moniliform cell processes; specialized cell-to-cell junctions; caveolae; mitochondria at 5-10% of cytoplasmic volume; rough endoplasmic reticulum at about 1-2%; intermediate and thin filaments, microtubules; undetectable thick filaments. The processes of this mesenteric ICLC were particularly long, with a mean length of 24.91 microm (10.27-50.83 micorm), and a convolution index of 2.32 (1.37-3.63) was calculated in order to measure their potential length. Mean distances versus main target cells of ICLC-nerve bundles, vessels, adipocytes and macrophages-were 110.69, 115.80, 205.07 and 34.65 nm, respectively. We also tested the expression of CD117/c-kit, CD34, vimentin, alpha-smooth muscle actin, nestin, NK-1, tryptase and chymase and the antigenic profile of the mesenteric ICLC was comparable if not identical with that recently observed in ICLC from other extra-digestive tissues. Due to the peculiar aspect of the mesenteric ICLC processes it can be hypothesized that these cells form a three-dimensional network within the mesentery that is at the same time resistant and deformable following stretches consequent to intestine movements, mainly avoiding blood vessels closure or controlling blood vessels rheology. It remains, however, to be established if and how such cells are connected with the archetypal enteric ICC. 相似文献
2.
3.
Hinescu ME Gherghiceanu M Mandache E Ciontea SM Popescu LM 《Journal of cellular and molecular medicine》2006,10(1):243-257
We have previously reported (Hinescu & Popescu, 2005) the existence of interstitial Cajal-like cells (ICLC), by transmission electron microscopy, in human atrial myocardium. In the present study, ICLC were identified with non-conventional light microscopy (NCLM) on semi-thin sections stained with toluidine blue and immunohistochemistry (IHC) for CD117/c-kit, CD34, vimentin and other additional antigens for differential diagnosis. Quantitatively, on semi-thin sections, ICLC represent about 1-1.5% of the atrial myocardial volume (vs. approximately 45% working myocytes, approximately 2% endothelial cells, 3-4% for other interstitial cells, and the remaining percentage: extracellular matrix). Roughly, there is one ICLC for 8-10 working atrial myocytes in the intercellular space, beneath the epicardium, with a characteristic (pyriform, spindle or triangular) shape. These ICLC usually have 2-3 definitory processes, emerging from cell body, which usually embrace atrial myocytes (260 nm average distance plasmalemma/sarcolemma) or establish close contact with nerve fibers or capillaries (approximately 420 nm average distance to endothelial cells). Cell prolongations are characteristic: very thin (mean thickness = 0.15+/-0.1 microm), very long for a non-nervous cell (several tens of microm) and moniliform (uneven caliber). Stromal synapses between ICLC and other interstitial cells (macrophages) were found (e.g. in a multicontact type synapse, the average synaptic cleft was approximately 65 nm). Naturally, the usual cell organelles (mitochondria, smooth and rough endoplasmic reticulum, intermediate filaments) are relatively well developed. Caveolae were also visible on cell prolongations. No thick filaments were detected. IHC showed that ICLC were slightly and inconsistently positive for CD117/c-kit, variously co-expressed CD34 and EGF receptor, but appeared strongly positive for vimentin, along their prolongations. Some ICLC seemed positive for a-smooth muscle actin and tau protein, but were negative for nestin, desmin, CD13 and S-100. In conclusion, we provide further evidence of the existence of ICLC in human atrial myocardium, supporting the possible ICLC role in pacemaking, secretion (juxta- and/or paracrine), intercellular signaling (neurons and myocytes). For pathology, ICLC might as well be 'players' in arrhythmogenesis and atrial remodeling. 相似文献
4.
Interstitial cells of Cajal in pancreas 总被引:4,自引:0,他引:4
Popescu LM Hinescu ME Ionescu N Ciontea SM Cretoiu D Ardelean C 《Journal of cellular and molecular medicine》2005,9(1):169-190
We show here (presumably for the first time) a special type of cell in the human and rat exocrine pancreas. These cells have phenotypic characteristics of the enteric interstitial cells of Cajal (ICC). To identify pancreatic interstitial cells of Cajal (pICC) we used routine light microscopy, non-conventional light microscopy (less than 1 mum semi-thin sections of Epon-embedded specimens cut by ultramicrotomy and stained with Toluidine blue), transmission electron microscopy (TEM), and immunocytochemistry. The results showed that pICC can be recognized easily by light microscopy, particularly on semi-thin sections, as well as by TEM. Two-dimensional reconstructions from serial photos suggest a network-like spatial distribution of pICC. pICC represent 3.3+/-0.5% of all pancreatic cells, and seem to establish close spatial relationships with: capillaries (43%), acini (40%), stellate cells (14%), nerve fibres (3%). Most of pICC (88%) have 2 or 3 long processes (tens of mum) emerging from the cell body. TEM data show that pICC meet the criteria for positive diagnosis as ICC (e.g. numerous mitochondria, 8.7+/-0.8% of cytoplasm). Immunocytochemistry revealed that pICC are CD117/c-kit and CD34 positive. We found pICC positive (40-50%) for smooth muscle alpha-actin or S-100, and, occasionally, for CD68, NK1 neurokinin receptor and vimentin. The reactions for desmin and chromogranin A were negative in pICC. At present, only hypotheses and speculations can be formulated on the possible role of the pICC (e.g., juxtacrine and/or paracrine roles). In conclusion, the quite-established dogma: "ICC only in cavitary organs" is overpassed. 相似文献
5.
Traditional interstitial cells of Cajal (ICC) are present in the digestive tube and are supposed to act as pacemakers and neuromodulators. However, interstitial Cajal-like cells (ICLCs) were found outside the gastrointestinal tract, in various organs (e.g. ureter, bladder, fallopian tube, uterus, pancreas, mammary gland, myocardium etc.) and looking for such ICLC is a priority in our laboratories.We report here unequivocal visual evidence that ICLCs are present in the mesenchymal tissue of the villi from human term placenta.The following methods were used: a. vital staining with methylene blue (cryosections); b. silver impregnation (paraffin sections); c. Epon-embedded sections (approximately 1 microm) of glutaraldehyde/osmium fixed tissue, stained with toluidine blue; d. primary cell cultures (or second-passage cells) to reveal the characteristic, very long, moniliform cell processes and mitochondrial localization at dilations (molecular fluorescence probe: Mito Tracker Green); e. immunofluorescence for c-kit/CD117 marker or other characteristic proteins; f. transmission electron microscopy to establish the identity of ICLC. 相似文献
6.
Popescu LM Ciontea SM Cretoiu D Hinescu ME Radu E Ionescu N Ceausu M Gherghiceanu M Braga RI Vasilescu F Zagrean L Ardeleanu C 《Journal of cellular and molecular medicine》2005,9(2):479-523
We describe here--presumably for the first time--a Cajal-like type of tubal interstitial cells (t-ICC), resembling the archetypal enteric ICC. t-ICC were demonstrated in situ and in vitro on fresh preparations (tissue cryosections and primary cell cultures) using methylene-blue, crystal-violet, Janus-Green B or MitoTracker-Green FM Probe vital stainings. Also, t-ICC were identified in fixed specimens by light microscopy (methylene-blue, Giemsa, trichrome stainings, Gomori silver-impregnation) or transmission electron microscopy (TEM). The positive diagnosis of t-ICC was strengthened by immunohistochemistry (IHC; CD117/c-kit+ and other 14 antigens) and immunofluorescence (IF; CD117/c-kit+ and other 7 antigens). The spatial density of t-ICC (ampullar-segment cryosections) was 100-150 cells/mm2. Non-conventional light microscopy (NCLM) of Epon semithin-sections revealed a network-like distribution of t-ICC in lamina propria and smooth muscle meshwork. t-ICC appeared located beneath of epithelium, in a 10-15 microm thick 'belt', where 18+/-2% of cells were t-ICC. In the whole lamina propria, t-ICC were about 9%, and in muscularis approximately 7%. In toto, t-ICC represent ~8% of subepithelial cells, as counted by NCLM. In vitro, t-ICC were 9.9+/-0.9% of total cell population. TEM showed that the diagnostic 'gold standard' (Huizinga et al., 1997) is fulfilled by 'our' t-ICC. However, we suggest a 'platinum standard', adding a new defining criterion- characteristic cytoplasmic processes (number: 1-5; length: tens of microm; thickness: < or =0.5 microm; aspect: moniliform; branching: dichotomous; organization: network, labyrinthic-system). Quantitatively, the ultrastructural architecture of t-ICC is: nucleus, 23.6+/-3.2% of cell volume, with heterochromatin 49.1+/-3.8%; mitochondria, 4.8+/-1.7%; rough and smooth endoplasmic-reticulum (1.1+/-0.6%, 1.0+/-0.2%, respectively); caveolae, 3.4+/-0.5%. We found more caveolae on the surface of cell processes versus cell body, as confirmed by IF for caveolins. Occasionally, the so-called 'Ca2+-release units' (subplasmalemmal close associations of caveolae+endoplasmic reticulum+mitochondria) were detected in the dilations of cell processes. Electrophysiological single unit recordings of t-ICC in primary cultures indicated sustained spontaneous electrical activity (amplitude of membrane potentials: 57.26+/-6.56 mV). Besides the CD117/c-kit marker, t-ICC expressed variously CD34, caveolins 1&2, alpha-SMA, S-100, vimentin, nestin, desmin, NK-1. t-ICC were negative for: CD68, CD1a, CD62P, NSE, GFAP, chromogranin-A, PGP9.5, but IHC showed the possible existence of (neuro)endocrine cells in tubal interstitium. We call them 'JF cells'. In conclusion, the identification of t-ICC might open the door for understanding some tubal functions, e.g. pace-making/peristaltism, secretion (auto-, juxta- and/or paracrine), regulation of neurotransmission (nitrergic/purinergic) and intercellular signaling, via the very long processes. Furthermore, t-ICC might even be uncommitted bipotential progenitor cells. 相似文献
7.
Zheng Y Li H Manole CG Sun A Ge J Wang X 《Journal of cellular and molecular medicine》2011,15(10):2262-2268
We show the existence of a novel type of interstitial cell-telocytes (TC) in mouse trachea and lungs. We used cell cultures, vital stainings, as well as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and immunohistochemistry (IHC). Phase contrast microscopy on cultured cells showed cells with unequivocally characteristic morphology of typical TC (cells with telopodes-Tp). SEM revealed typical TC with two to three Tp-very long and branched cell prolongations. Tp consist of an alternation of thin segments (podomers) and thick segments (podoms). The latter accommodate mitochondria (as shown by Janus Green and MitoTracker), rough endoplasmic reticulum and caveolae. TEM showed characteristic podomers and podoms as well as close relationships with nerve endings and blood capillaries. IHC revealed positive expression of TC for c-kit, vimentin and CD34. In conclusion, this study shows the presence in trachea and lungs of a peculiar type of cells, which fulfils the criteria for TC. 相似文献
8.
Interstitial Cajal-like cells in human gallbladder 总被引:6,自引:0,他引:6
We describe here an interstitial Cajal-like cell type (ICLC) in human gallbladder, resembling the archetypal enteric interstitial
cells of Cajal. Gallbladder ICLC were demonstrated in fresh preparations (tissue cryosections) using methylene-blue, and fixed specimens in Epon semi-thin sections stained with toluidine blue or transmission electron microscopy (TEM). The positive diagnosis of gallbladder ICLC was further verified by immunohistochemistry: CD117/c-kit, CD34, and another 16 antigens: vimentin, desmin, nestin, α-smooth muscle actin, NK-1, S-100, PGP-9.5, tau protein,
chromogranin A, NSE, GFAP, CD1a, CD62-P, CD68, estrogen and progesterone receptors. Double immunostaining was performed for
CD117, CD34 and CD117 and nestin, respectively. In fresh specimens, the spatial density of gallbladder ICLC was 100–110 cells/mm2. ICLC mainly appeared beneath the epithelium and in muscularis (about 7%, and ∼5%, respectively). In toto, ICLC represent
in gallbladder ∼5.5% of subepithelial cells. TEM showed that diagnostic criteria were fulfilled by ICLC. Moreover, TEM indicated
that the main ultrastructural distinctive feature for ICLC, the cell processes, develop into the characteristic shape at a
relatively early stage of development. It remains to be established if, in humans, ICLC are involved in gallbladder (dis)functions
(e.g. pace-making, secretion (auto-, juxta- and/or paracrine), intercellular signaling, or stone formation).
M. E. Hinescu and C. Ardeleanu contributed equally to this study. 相似文献
9.
Cretoiu D Ciontea SM Popescu LM Ceafalan L Ardeleanu C 《Journal of cellular and molecular medicine》2006,10(3):789-795
Expression of estrogen (ER) and progesterone (PR) receptors was investigated in cultured human normal myometrial cells (non-pregnant uterus, fertile period). The ER and PR expression was studied by immunohistochemistry and immunofluorescence on either myocytes or interstitial Cajal-like cells (ICLC). Only those cells double immunostained for c-kit and steroid receptors were considered as ICLC. ER and/or PR immunoreactivity was localized in ICLC, primarily concentrated at the nucleus level, but it was also observed in the cell body (cytoplasm) and processes. Stronger immunopositive reaction in the ICLC nucleus for PR than for ER was noted. Under our experimental conditions, a clear positive repeatable reaction for steroid receptors could not be detected in myocytes. In conclusion, these data suggest that ICLC could be true hormonal 'sensors', possibly participating in the regulation of human myometrial contractions (via gap junctions with myocytes and/or by paracrine signaling). 相似文献
10.
Ming Xu C. G. Manole Xiangdong Wang Tongyu Zhu 《Journal of cellular and molecular medicine》2012,16(12):3116-3122
Renal interstitial cells play an important role in the physiology and pathology of the kidneys. As a novel type of interstitial cell, telocytes (TCs) have been described in various tissues and organs, including the heart, lung, skeletal muscle, urinary tract, etc. ( www.telocytes.com ). However, it is not known if TCs are present in the kidney interstitium. We demonstrated the presence of TCs in human kidney cortex interstitium using primary cell culture, transmission electron microscopy (TEM) and in situ immunohistochemistry (IHC). Renal TCs were positive for CD34, CD117 and vimentin. They were localized in the kidney cortex interstitial compartment, partially covering the tubules and vascular walls. Morphologically, renal TCs resemble TCs described in other organs, with very long telopodes (Tps) composed of thin segments (podomers) and dilated segments (podoms). However, their possible roles (beyond intercellular signalling) as well as their specific phenotype in the kidney remain to be established. 相似文献
11.
Snapshots of mammary gland interstitial cells: methylene-blue vital staining and c-kit immunopositivity 总被引:3,自引:0,他引:3
We show here that methylene-blue supravital staining of specimens from normal human mammary gland reveals (selectively) interstitial (stromal) cells, with 2-3 long (20-80 microm), thin, moniliform processes. Such cells appear c-kit/CD117 positive, either by immunohistochemistry (IHC) or immunofluorescence (IF). Since these features (affinity for methylene blue, c-kit positivity, and characteristic processes) define archetypal interstitial cells of Cajal (ICC) in light microscopy, our results suggest the existence of Cajal-like cells in the interstitium of human normal mammary gland. 相似文献
12.
Radu E Regalia T Ceafalan L Andrei F Cretoiu D Popescu LM 《Journal of cellular and molecular medicine》2005,9(3):748-752
We report here the in vitro isolation of Cajal-like interstitial cells from human inactive mammary-gland stroma. Primary cell cultures examined in phase-contrast microscopy or after vital methylene-blue staining revealed a cell population with characteristic morphological phenotype: fusiform, triangular or polygonal cell body and the corresponding (very) long, slender, moniliform cytoplasmic processes. Giemsa staining pointed out the typical knobbed aspect of cell prolongations. Immunofluorescence (IF) showed, like in situ immunohistochemistry, that Cajal-type cells in vitro (primary cultures), expressed c-kit/CD117 and vimentin. In conclusion, the images presented here reinforce our previous hypothesis that human mammary glands have a distinct population of Cajal-like cells in non-epithelial tissue compartments. 相似文献
13.
目的:检测DCP逼尿肌中SCF表达水平,探讨SCF基因表达与DCP关系及其发病机制。方法:按1:2病例对照研究,采用链脲佐菌素(STZ)及尿动力学检测成功建立DCP豚鼠20只为实验组,并以同质豚鼠40为对照组,应用RT-PCR和Western-blotting方法分别检测各组膀胱逼尿肌中SCF mRNA、SCF蛋白的表达。结果:DCP豚鼠组织中SCF mRNA表达与正常对照组比较无明显显著差异(P〉0.05),DCP豚鼠组织中SCF蛋白表达明显低于正常对照组(P〈0.01)。结论:DCP组织中SCF蛋白表达减少与SCF基因翻译水平异常有关,因此高血糖环境下SCF基因表达异常可能是DCP的发病机制之一。 相似文献
14.
人类CD34^+造血干/祖细胞的分子生物学特性 总被引:1,自引:0,他引:1
造血干/祖细胞(HSC/HPC)以有序的不同年龄等级结构状态存在于体内,它们的增殖、分化、成熟及程序死亡是一个连续的动态过程。CD34抗原是目前所能认识表达在HSC/HPC表面上的最早抗原分子,对其分子结构的研究使人们更加认识到CD34^+HSC/HPC的不同功能亚群、表达范围及其它生物学特征,诸如细胞周期状态、光散射性、造血生长因子受体(HGFsR)P糖蛋白(Pgp)或多药耐药基因(MDR)的表 相似文献
15.
The existence of a novel type of interstitial cells in the heart, interstitial Cajal-like cells (ICLCs), had been described for the first time in 2005. Their identification was mainly based on ultrastructural criteria: very long (tens up to hundreds of micrometres) and moniliform prolongations, which are extremely thin (less than 0.2 μm), below the resolving power of light microscopy. Myocardial ICLCs were also identified by methylene-blue vital staining, silver impregnation, and immunoreactivity for CD 34, vimentin, CD117/c-kit, etc. Although a series of studies provided evidence for the existence of ICLCs in human atria and rat ventricles, further investigations in other laboratories, using additional techniques, are required to substantiate the consistency of these findings. Here we provide further evidence for the existence of ICLCs in human and mammalian hearts (by transmission and scanning electron microscopy, as well as confocal laser scanning microscopy). Noteworthy, we confirm that ICLCs communicate with neighbouring cells via shedding (micro)vesicles. Although these so-called ICLCs represent a distinct type of cells, different from classical interstitial cells of Cajal, or fibroblasts, their role(s) in myocardium remain(s) to be established. Several hypotheses are proposed: ( i ) adult stromal (mesenchymal) stem cells, which might participate in cardiac repair/remodelling; ( ii ) intercellular signalling (e.g. via shedding microvesicles); ( iii ) chemo-mechanical transducers and ( iv ) players in pacemaking and/or arrhytmogenesis, and so on. 相似文献
16.
Bojin FM Gavriliuc OI Cristea MI Tanasie G Tatu CS Panaitescu C Paunescu V 《Journal of cellular and molecular medicine》2011,15(10):2269-2272
Human skeletal muscle tissue displays specific cellular architecture easily damaged during individual existence, requiring multiple resources for regeneration. Congruent with local prerequisites, heterogeneous muscle stem cells (MuSCs) are present in the muscle interstitium. In this study, we aimed to characterize the properties of human muscle interstitial cells that had the characteristic morphology of telocytes (TCs). Immunocytochemistry and immunofluorescence showed that cells with TC morphology stained positive for c-kit/CD117 and VEGF. C-kit positive TCs were separated with magnetic-activated cell sorting, cultured in vitro and expanded for study. These cells exhibited high proliferation capacity (60% expressed endoglin/CD105 and 80% expressed nuclear Ki67). They also exhibited pluripotent capacity limited to Oct4 nuclear staining. In addition, 90% of c-kit positive TCs expressed VEGF. C-kit negative cells in the MuSCs population exhibited fibroblast-like morphology, low trilineage differential potential and negative VEGF staining. These results suggested that c-kit/CD117 positive TCs represented a unique cell type within the MuSC niche. 相似文献
17.
目的 :探索肝素在脐带血CD34+ 细胞定向扩增巨核祖细胞中的作用。方法采用免疫磁珠法 (MACS)分选CD34+ 细胞 ,在TPO ,IL 1 1的扩增体系中加入肝素 ,巨核祖细胞集落分析 (CFU MK)测定巨核祖细胞扩增倍数 ,流式细胞仪检测巨核祖细胞分化过程中的特异性标记 (CD34+ ,CD41a+ ,CD61+ ,CD34+ CD41a+ ,CD41a+ CD61 + ) ,巨核细胞特异性抗体 (CD41a)免疫组化染色和透射电镜观察鉴定巨核细胞形态及超微结构 ,血小板体外活化实验及NOD/SCID小鼠异种体内移植实验评价扩增的巨核祖细胞的功能。结果 :TPO( 5 0ng/ml)与IL-1 1 ( 5 0ng/ml)双因子联合应用 ,7天巨核祖细胞克隆扩增倍数为 83 1 7± 39 41倍 ,1 0天为 2 0 5 0 6± 74 2 6倍 ,流式细胞仪分析显示 7天CD34+ CD41a+ 细胞扩增 1 0 5 1± 4 79倍 ,0天加入肝素后 ,7天巨核祖细胞克隆扩增倍数为 1 0 8 2 5± 32 67倍 ,1 0天为 333 0 6± 2 7 5 4倍 ,7天CD34+ CD41a+ 细胞扩增到 2 9 93± 6 39倍 ,为无肝素组的 2.85倍 ,与双因子组相比有统计学差异 (P <0.0 1 ) ,肝素在第 5天及第 7天加入没有增加巨核祖细胞扩增效果。经全身照射预处理的NOD/SCID小鼠静脉输注扩增第 7天的巨核细胞 (TPO、IL-11、肝素联合 ) ,可明显加速其血小板及白细胞计数的恢复并提高生存率 ;同时 ,体外血小板活化实验证实扩增的巨核细胞在体外可产生血小板 ,有正常巨核细胞功能。结论 :TPO、IL-11组合的扩增体系中加入肝素可进一步改善脐带血巨核祖细胞的扩增效果 ,优化体外扩增体系。 相似文献
18.
L. M. Popescu C. G. Manole M. Gherghiceanu A. Ardelean M. I. Nicolescu M. E. Hinescu S. Kostin 《Journal of cellular and molecular medicine》2010,14(8):2085-2093
The existence of the epicardial telocytes was previously documented by immunohistochemistry (IHC) or immunofluorescence. We have also demonstrated recently that telocytes are present in mice epicardium, within the cardiac stem‐cell niches, and, possibly, they are acting as nurse cells for the cardiomyocyte progenitors. The rationale of this study was to show that telocytes do exist in human (sub)epicardium, too. Human autopsy hearts from 10 adults and 15 foetuses were used for conventional IHC for c‐kit/CD117, CD34, vimentin, S‐100, τ, Neurokinin 1, as well as using laser confocal microscopy. Tissue samples obtained by surgical biopsies from 10 adults were studied by digital transmission electron microscopy (TEM). Double immunolabelling for c‐kit/CD34 and, for c‐kit/vimentin suggests that in human beings, epicardial telocytes share similar immunophenotype features with myocardial telocytes. The presence of the telocytes in human epicardium is shown by TEM. Epicardial telocytes, like any of the telocytes are defined by telopodes, their cell prolongations, which are very long (several tens of μm), very thin (0.1–0.2 μm, below the resolving power of light microscopy) and with moniliform configuration. The interconnected epicardial telocytes create a 3D cellular network, connected with the 3D network of myocardial telocytes. TEM documented that telocytes release shed microvesicles or exocytotic multivesicular bodies in the intercellular space. The human epicardial telocytes have similar phenotype (TEM and IHC) with telocytes located among human working cardiomyocyte. It remains to be established the role(s) of telocytes in cardiac renewing/repair/regeneration processes, and also the pathological aspects induced by their ‘functional inhibition’, or by their variation in number. We consider telocytes as a real candidate for future developments of autologous cell‐based therapy in heart diseases. 相似文献
19.
Endothelial progenitor cells: identity defined? 总被引:1,自引:0,他引:1
Frank Timmermans Jean Plum Mervin C. Yöder David A. Ingram Bart Vandekerckhove Jamie Case 《Journal of cellular and molecular medicine》2009,13(1):87-102
In the past decade, researchers have gained important insights on the role of bone marrow (BM)-derived cells in adult neovascularization. A subset of BM-derived cells, called endothelial progenitor cells (EPCs), has been of particular interest, as these cells were suggested to home to sites of neovascularization and neoendothelialization and differentiate into endothelial cells (ECs) in situ , a process referred to as postnatal vasculogenesis. Therefore, EPCs were proposed as a potential regenerative tool for treating human vascular disease and a possible target to restrict vessel growth in tumour pathology. However, conflicting results have been reported in the field, and the identification, characterization, and exact role of EPCs in vascular biology is still a subject of much discussion. The focus of this review is on the controversial issues in the field of EPCs which are related to the lack of a unique EPC marker, identification challenges related to the paucity of EPCs in the circulation, and the important phenotypical and functional overlap between EPCs, haematopoietic cells and mature ECs. We also discuss our recent findings on the origin of endothelial outgrowth cells (EOCs), showing that this in vitro defined EC population does not originate from circulating CD133+ cells or CD45+ haematopoietic cells. 相似文献
20.
Helle Rasmussen Jüri J. Rumessen Alastair Hansen Frank Smedts Thomas Horn 《Cell and tissue research》2009,335(3):517-527
The aim of this ultrastructural study was to examine the human detrusor for interstitial cells of Cajal (ICC)-like cells (ICC-L)
by conventional transmission electron microscopy (TEM) and immuno-transmission electron microscopy (I-TEM) with antibodies
directed towards CD117 and CD34. Two main types of interstitial cells were identified by TEM: ICC-L and fibroblast-like cells
(FLC). ICC-L were bipolar with slender (0.04 μm) flattened dendritic-like processes, frequently forming a branching labyrinth
network. Caveolae and short membrane-associated dense bands were present. Mitochondria, rough endoplasmic reticulum and Golgi
apparatus were observed in the cell somata and cytoplasmic processes. Intermediate filaments were abundant but no thick filaments
were found. ICC-L were interconnected by close appositions, gap junctions and peg-and-socket junctions (PSJ) but no specialised
contacts to smooth muscle or nerves were apparent. FLC were characterised by abundant rough endoplasmic reticulum but no caveolae
or membrane-associated dense bands were observed; gap junctions and PSJ were absent and intermediate filaments were rare.
By I-TEM, CD34 gold immunolabelling was present in long cytoplasmic processes corresponding to ICC-L between muscle fascicles
but CD117 gold immunolabelling was negative. Thus, ICC-like cells are present in the human detrusor. They are CD34-immunoreactive
and have a myoid ultrastructure clearly distinguishable from fibroblast-like cells. ICC-L may be analogous to interstitial
cells of Cajal in the gut. 相似文献