首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly purified hepatic microsomal epoxide hydrase, which had been purified in the presence of proteolytic enzyme inhibitors, was subjected to carboxypeptidase Y digestion, automated Edman degradation, and carbohydrate analysis. Carboxypeptidase Y digestion resulted in the near stoichiometric release of leucine, the COOH-terminal amino acid. Automated Edman degradation permitted the identification of the first 20 amino acid residues of epoxide hydrase. Methionine was identified as the NH2-terminal residue. The NH2-terminal region of epoxide hydrase is similar in hydrophobicity to the NH2-terminal precursor segments of several secretory proteins and the NH2-terminal regions of several microsomal cytochromes P-450. Carbohydrate analyses of the enzyme revealed the presence of 0.5 to 1.0 mol of mannose/50,000 g of protein. These results provide evidence for the presence of a single polypeptide chain in our purified enzyme preparations and suggest that there may be only one enzymic form of epoxide hydrase in microsomes from phenobarbital-treated rats.  相似文献   

2.
Comparison of nuclear and microsomal epoxide hydrase from rat liver   总被引:1,自引:0,他引:1  
The specific activities of hydration of nine arene and alkene oxides by purified nuclei prepared from the livers of 3-methylcholanthrene-pretreated rats were found to fall within the range of 2.2 to 9.1% of the corresponding microsomal values. Pretreatment with phenobarbital enhanced both the nuclear and microsomal hydration of phenanthrene-9,10-oxide, benzo(a)pyrene-11,12-oxide, and octene-1,2-oxide. 3-Methylcholanthrene pretreatment enhanced the nuclear hydration of these three substrates by 30–60% but had no significant effect on microsomal hydration. An epoxide hydrase modifier, metyrapone, stimulated the hydration of octene-1,2-oxide by the two organelles to quantitatively similar extents, but affected the nuclear and microsomal hydration of benzo(a)pyrene-4,5-oxide differentially. Cyclohexene oxide also exerted differential effects on nuclear and microsomal epoxide hydrase which were dependent both on the substrate and on the organelle. The inhibition by this agent of nuclear and microsomal epoxide hydrase was quantitatively similar only for a single substrate, benzo(a)anthracene-5,6-oxide. When purified by immunoaffinity chromatography, nuclear and microsomal epoxide hydrases from 3-methylcholanthrene-pretreated rats were shown to have identical minimum molecular weights (? 49,000) on polyacrylamide gels in the presence of sodium dodecyl sulfate. These findings support the assertion that microsomal metabolism can no longer be considered an exclusive index of the cellular activation of polycyclic aromatic hydrocarbons.  相似文献   

3.
Epoxide hydrase was solubilized from liver microsomes of phenobarbital-treated rats by treatment with cholate and purified to apparent homogeneity by ammonium sulfate fractionation and column chromatography in the presence of the nonionic detergent Emulgen 911 on DEAE-cellulose and hydroxylapatite. The purified enzyme preparation had a single major band with a molecular weight of 53,000 to 54,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Other studies indicated that in the absence of sodium dodecyl sulfate, purified epoxide hydrase exists as high molecular weight aggregates. The preparation was essentially free of heme and flavin, but still contained small amounts of lipids and Emulgen 911.  相似文献   

4.
The effects of a wide variety of chemical modification reagents on the activity of purified rat liver microsomal epoxide hydrase have been investigated. Alkylating agents, such as the phenacyl bromides and benzyl bromide are potent inhibitors of epoxide hydrase. 2-Bromo-4'-nitroacetophenone (p-nitrophenacyl bromide) specifically and irreversibly inactivates epoxide hydrase. Pseudo-first order kinetics of inhibition is observed at higher inhibitor/enzyme ratios. The rate of inactivation is controlled by a group on the enzyme with an apparent pKa of 7.6. Inactivation of the enzyme with 14C-labeled 2-bromo-4'-nitroacetophenone leads to the incorporation of approximately 1 mol of radioactive inhibitor/mol of protein. Epoxide hydrase can be protected against this inactivation by the substrate phenanthrene-9,10-oxide. These results are consistent with the interpretation that 2-bromo-4'-nitroacetophenone acts as an active site-directed inhibitor. The site of alkylation by 2-bromo-4'-nitroacetophenone is a histidine residue of epoxide hydrase. The N-alkylated histidine derivative has been identified as 1-(p-nitrophenacyl)-4-histidine. A possible mechanism for the enzymatic hydration catalyzed by epoxide hydrase is discussed which involves a histidine residue of the enzyme serving as a general base catalyst for the nucleophilic addition of water.  相似文献   

5.
Human liver microsomal epoxide hydrase has been highly purified to a specific activity (570 to 620 nmol/min/mg of protein) comparable to that of the rat enzyme using styrene oxide as substrate. Like the purified rat liver microsomal epoxide hydrase, the human enzyme has a minimum molecular weight of 49,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and exhibits broad substrate specificity toward a variety of alkene and arene oxides. Despite these similarities, the human and rat enzymes are different proteins as judged by their immunochemical properties as well as their relative catalytic activities toward certain substrates.  相似文献   

6.
A method for the assay of cholesterol epoxide hydrase activity is described. The assay involves the thin-layer chromatographic separation and quantitation of radiolabeled cholestan-3β,5α,6α-epoxide and its major hydration product, cholestan-3β,5α,6β-triol. Radiochromatographic scanning is employed to quantitate the reaction. The procedure is sensitive, rapid, and nondestructive.  相似文献   

7.
8.
A rapid method for the assay of epoxide hydrase activity is described. 3-Methylcholanthrene-11,12-oxide is employed as substrate and high speed liquid chromatography is used to separate and quantitate trans-11,12-dihydro-11,12-dihydroxy-3-methylcholanthrene (product) formation. The determination of product at picomole levels can be obtained.  相似文献   

9.
Nuclear and microsomal sources of hepatic cytochrome P-448 and epoxide hydrase were compared using antibodies made against the pure antigens isolated from rat liver microsomes. Both antigens were easily detected in detergent-solubilized nuclei and microsomes from rats using the Ouchterlony double-diffusion technique. Epoxide hydrase from either whole nuclei or nuclear envelope was immunochemically identical with the enzyme isolated from microsomes. Similarly, in rats pretreated with 3-methylcholanthrene, the cytochrome P-448 of nuclear origin was immunochemically indistinguishable from the enzyme derived from microsomes. These results establish the immunochemical identity of these hepatic nuclear and microsomal enzymes and provide a firm basis for applying the knowledge gained with the microsomal system of metabolism to the nuclear system.  相似文献   

10.
Epoxide hydrase activity, measured with [3H]styrene oxide as substrate, is present in mammalian liver, kidney, lung, intestine and skin. The hepatic level of the enzyme, measured in vitro with [3H]styrene oxide, benzene oxide or naphthalene-1,2-oxide, is elevated substantially by pretreatment of rats with phenobarbital and to a lesser extent by pretreatment with 3-methylcholanthrene. Metyrapone and 1-(2-isopropylphenyl)-imidazole, two monooxygenase inhibitors, activate epoxide hydrase in vitro, but have no demonstrable effect on the enzyme in vivo. 3,3,3-Trichloropropene oxide, a potent in vitro inhibitor of epoxide hydrase, has no effect on monooxygenase activity measured in vitro with [3H]benzenesulfonanilide. Trichloropropene oxide is extremely toxic. In sub-lethal dosages, it does not significantly inhibit epoxide hydrase activity in vivo, although it and several other epoxides do react with and thereby reduce hepatic levels of glutathione. Cyclohexane oxide, another potent in vitro inhibitor of epoxide hydrase, reduces hepatic glutathione levels to 10% of control values. This relatively non-toxic substance should potentiate the hepatotoxicity of chlorobenzene by inhibiting further metabolism of the toxic chlorobenzene oxide intermediate through either hydration or conjugation with glutathione. Instead, co-administration of cyclohexene oxide and chlorobenzene significantly reduces the rate of metabolism of [14C]chlorobenzene and prevents the hepatic centrilobular necrosis caused by chlorobenzene in rats. Arene oxide-mediated hepatotoxicity apparently is dependent upon a variety of factors including both rates of formation and degradation of arene oxides in tissue. The presently known hydrase inhibitors are not sufficiently selective in their effects on liver cells to permit a quantitative assessment of the relative importance of these factors.  相似文献   

11.
12.
Methods are described for the incorporation into phospholipid vesicles of epoxide hydrase isolated from liver microsomes of phenobarbital-treated rabbits. Chromatography on a Sephadex G-50 column of epoxide hydrase and egg yolk phosphatidylcholine treated with sodium cholate yielded homogeneous vesicles with a diameter of about 25 nm and containing 80 to 85% of the protein applied. At high substrate concentrations, the vesicles catalyzed the hydration of benzo(a)pyrene-4,5-oxide and styrene-7,8-epoxide at a rate similar to that obtained with the enzyme in a soluble form. However, the kinetics of styrene glycol formation catalyzed by the vesicular or microsomal preparations were complex. Convex Lineweaver-Burk plots and concave Hill plots were obtained, whereas normal Michaelis-Menten kinetics characterized the hydration catalyzed by the enzyme in a soluble form. The results could be explained if reconstitution of the enzyme into the vesicles gives rise to low affinity high capacity sites for the substrate on the enzyme, or alternatively facilitates the interaction of the substrate with such sites already present. It is suggested that reconstituted liposomes containing both the liver microsomal hydroxylase system and epoxide hydrase may prove to be a good model system for evaluating substrate specificity and factors of importance in the formation of toxic and carcinogenic metabolites by these enzymes.  相似文献   

13.
Hepatic microsomal epoxide hydratase of the bluegill fish shows characteristics similar to those of the marine fish. The bluegill hepatic microsomal epoxide hydratase activity towards styrene oxide is higher (4n-mole/min per mg protein) and that of mixed-function oxidase towards aldrin epoxidation is lower (0.7n-mole/min per mg protein) than the corresponding enzymes of the male mouse (1.90 and 2.0n-mole/min per mg protein, respectively, for epoxide hydratase and aldrin epoxidase).  相似文献   

14.
Evidence of epoxide hydrase activity in human intestinal microflora   总被引:1,自引:0,他引:1  
Cholesterol-5 alpha, 6 alpha-epoxide has been implicated as an etiologic agent in human colon cancer. The epoxide is metabolized by human intestinal microflora to a product which was characterized by thin-layer and gas-liquid chromatography as well as combined gas-liquid chromatography-mass spectrometry. Chromatographic properties are identical with authentic cholestan-3 beta, 5 alpha, 6 beta-triol, and these results suggest that microbial epoxide hydrase activity is present in the human colon.  相似文献   

15.
In a continuation of studies on protein intake and aflatoxin B1 (AFB1) metabolism, weanling rats were fed semipurified diets containing either 20% casein or 5% casein for two weeks to determine the effect of dietary protein level on hepatic microsomal epoxide hydrase activity and AFB1 metabolism in an effort to evaluate the role of protein intake on the formation and degradation of the reactive metabolite of AFB1. Styrene oxide was used as substrate for epoxide hydrase since the hypothetical AFB1 2,3-epoxide (AFB-epox) cannot be synthesized because of its lability. Two groups of animals were fed 20% casein diets; one was fed ad libitum and the second was pair fed to the 5% casein group in order to control the effects of total feed intake. The depression of epoxide hydrase activities caused by the 5% casein diets was approximately equivalent to that previously seen with hepatic microsomal mixed function oxidase (MFO) activities with the identical protocol. Similarly, the metabolism of AFB1 to AFQ1 and AFM1 was depressed by the 5% casein diets, with an increase in the production of chromatographically more polar material. The relationship of the MFO and epoxide hydrase activities to AFB1 metabolism and formation of macromolecular adducts is discussed.  相似文献   

16.
Presence and induction of epoxide hydrase in cultured human leukocytes   总被引:1,自引:0,他引:1  
Epoxide hydrase (EH), a microsomal enzyme, is present and inducible in cultured human leukocytes. Its base levels ranged between 0.05 and 0.20 nmoles of diol among 12 individuals tested. It is inhibited by trichloropropene oxide (TCPO) and cyclohexene oxide (CHO). EH was inducible up to 1.6 times resting levels by 3-methylcholanthrene and up to 2.0 times by phenobarbital in a 24 hr period. Other hydrocarbons—dibenz(a,h)anthracene, benz(a)anthracene and benzo(a)pyrene—gave either weak or no measurable induction. The magnitudes of induction of aryl hydrocarbon hydroxylase (AHH) and EH by the same inducing agent showed a high correlation, suggesting that the mechanism for the induction of the two enzymes is the same.  相似文献   

17.
A variety of chlorinated and fluorinated epoxides and related compounds were synthesized and evaluated as inhibitors of epoxide hydrase. The compounds were tested using chicken liver microsomes and a radiometric assay based on [3H]styrene oxide, and using partially purified chicken liver microsomal epoxide hydrase and a continuous photometric assay based on p-nitrostyrene oxide, whose hydration could be monitored at 310 nm. For the 16 compounds studied both assays gave similar patterns of inhibitory activity. As expected from the relative Km values of the two substrates, all inhibitors were considerably more active against styrene oxide (Km =1.0 mM) than against p-nitrostyrene oxide (Km = 4.2 μM), and styrene oxide was a weak alternate-substrate inhibitor against p-nitrostyrene oxide. 1,1,1-Trichloropropene oxide, however, was a potent alternate-substrate inhibitor against p-nitrostyrene oxide. Addition of various substituents to the α-carbon of styrene oxide generated a series of compounds whose inhibitory potency toward p-nitrostyrene oxide increased in the order H ≈ CF3 < CH3 < CH2Cl < CHCl2 < CCl3 ≈ 1,1,1-trichloropropene oxide. In contrast, addition of a CH3 or CCl3 group to the β-carbon of styrene oxide resulted in only a modest increase in inhibitory potency. 2-Phenyl- and 3-phenyloxetane showed no pronounced inhibitory activity toward either styrene oxide or p-nitrostyrene oxide, but pentafluorophenyl ethylene oxide and 1,1, 1-trichlorobutane-3,4-oxide were moderately active inhibitors, although significantly less potent than 1,1,1-trichloroproene oxide. These results show that electronegativity, steric effects, and hydrophobic effects are each important in governing the interaction of epoxide hydrase substrates with the enzyme, although it is not yet possible to analyze separately the effects of each of these parameters on Km, V, and the catalytic mechanism.  相似文献   

18.
19.
Rabbit hepatic microsomal epoxide hydrase catalyzes the rapid hydrolysis of 1,2-epoxy-4-heptanol to 1,2,4-heptanetriol. Both diastereomers of the substrate are hydrolyzed, and both product diastereomers are formed. Similarly, both cis- and trans-3,4-epoxy-1-hexanol are hydrolyzed, albeit more slowly, to give 1,3,4-hexanetriol. The trans isomer gives exclusively one diastereomer (erythro) of the triol, while the cis isomer gives the other diastereomer (threo). The product expected if a primary cationic intermediate were to be formed and trapped intramolecularly during the hydrolysis of 1,2-epoxy-4-heptanol, 2-propyl-4-tetrahydrofuranol, was not observed. A comparison of the mutagenic activity in the Ames test of 1-heptane, 1-hepten-4-ol, 1,2-epoxyheptane, and 1,2-epoxy-4-heptanol revealed that only the latter is a detectable mutagen. A vicinal hydroxyl therefore does not interfere significantly with enzymatic epoxide hydrolysis, but it does enhance the bioalkylating potential of even an aliphatic epoxide.  相似文献   

20.
Solubilized cytochrome P-450 monooxygenase and epoxide hydrase activities from rat liver microsomes have been separated by column chromatography. The highly active epoxide hydrase fraction is still contaminated with cytochrome P-450, which has very low monooxygenase activity. The highly purified cytochrome P-450 fraction possesses high monooxygenase activity and is essentially devoid of epoxide hydrase activity. Purification factors for the epoxide hydrase through four purification steps are similar with [3H]styrene oxide, [3H]naphthalene oxide, [3H]cyclohexene oxide, and benzene oxide as substrates. Failure of benzene oxide to inhibit hydration of styrene or naphthalene oxide in the most purified preparations in indicative of the presence of at least two hydrases. These purified cytochrome monooxygenase and hydrase preparations represent valuable tools for the study of the intermediacy of arene oxides in drug metabolism. Thus, with naphthalene, only naphthol is formed with the monooxygenase, while both naphthol and the dihydrodiol are formed in the presence of monooxygenase and hydrase. A convenient radiochemical synthesis of [3H]naphthalene 1,2-oxide and assays for the measurement of the hydration of [3H]naphthalene oxide and benzene oxide, based on differential extractions and high-pressure liquid chromatography, respectively, are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号