共查询到20条相似文献,搜索用时 0 毫秒
1.
Griffin TJ Xie H Bandhakavi S Popko J Mohan A Carlis JV Higgins L 《Journal of proteome research》2007,6(11):4200-4209
For proteomic analysis using tandem mass spectrometry, linear ion trap instruments provide unsurpassed sensitivity but unreliably detect low mass peptide fragments, precluding their use with iTRAQ reagent-labeled samples. Although the popular LTQ linear ion trap supports analyzing iTRAQ reagent-labeled peptides via pulsed Q dissociation, PQD, its effectiveness remains questionable. Using a standard mixture, we found careful tuning of relative collision energy necessary for fragmenting iTRAQ reagent-labeled peptides, and increasing microscan acquisition and repeat count improves quantification but identifies somewhat fewer peptides. We developed software to calculate abundance ratios via summing reporter ion intensities across spectra matching to each protein, thereby providing maximized accuracy. Testing found that results closely corresponded between analysis using optimized LTQ-PQD settings plus our software and using a Qstar instrument. Thus, we demonstrate the effectiveness of LTQ-PQD analyzing iTRAQ reagent-labeled peptides, and provide guidelines for successful quantitative proteomic studies. 相似文献
2.
3.
Black TM Andrews CL Kilili G Ivan M Tsichlis PN Vouros P 《Journal of proteome research》2007,6(6):2269-2276
Advances in analytical techniques, specifically in mass spectrometry, have allowed for both facile protein identification and routine sequencing of proteins at increased sensitivity levels. Protein modifications present additional challenges because they occur at low stoichiometries and often change the analytical behavior of the molecule. For example, characterization of protein phosphorylation provides crucial information to signaling processes that are often associated with disease. Research into protein phosphorylation requires inter-disciplinary co-operation involving multiple investigators with expertise in diverse scientific fields. As such, techniques must be simple, effective, and incorporate multiple checkpoints that confirm the sample contains a phosphorylated protein in order to ensure resources are conserved. In this study, tumor progression locus 2 (Tpl2), which has been implicated in cell cycle regulation and has been shown to play a significant role in critical signal transduction pathways, was transfected into 293T cells, overexpressed and isolated from the cell lysate. Isolated proteins were separated via 1D gel electrophoresis, and their phosphorylation was confirmed using phosphospecific staining. The bands were excised and subjected to tryptic digestion and immobilized metal affinity chromatography (IMAC) prior to analysis by capillary-LC-MS/MS. Three phosphorylation sites were detected on Tpl2. One site had previously been reported in the literature but had not been characterized by mass spectrometric methods until this time; two additional novel sites of phosphorylation were detected. 相似文献
4.
Yuri M Hiramoto M Naito M Matsumoto M Matsumoto S Morita S Mori K Yokota H Teramura T 《Journal of proteome research》2011,10(5):2658-2663
SREB2 (GPR85) is an orphan G-protein coupled receptor (GPCR) whose function is unknown. We previously prepared a SREB2-overexpressing transgenic mouse for functional analysis but were unable to confirm SREB2 protein expression level by immunochemical or biochemical methods. In this article, we report mass spectrometric identification and relative quantitative analysis of SREB2 in the forebrains of transgenic and wild type mice using nanoliquid chromatography coupled with a linear ion-trap mass spectrometer. By analyzing Chinese hamster ovary (CHO) cells overexpressing the SREB2 gene, we identified a proteotypic SREB2 peptide, GPTPPTLLGIR. Using a stable isotope-labeled analog as an authentic peptide for protein identification and as an internal control for relative quantitation, SREB2 was directly identified from the membrane fraction of forebrains from wild type and SREB2 transgenic mice. SREB2 protein expression level in the transgenic mouse was estimated to be 3-fold higher than that in the wild type littermate. 相似文献
5.
We describe a method for simultaneous identification and quantitation of proteins within complex mixtures. The method consists of 18O-labeling, a simple stable isotope-coding that requires merely enzymatic digestion in 18O-water, in combination with a capillary-liquid chromatography electrospray ion-trap mass spectrometer. In a separate experiment using the same sample and a spike test, we demonstrate that the difference ration was calculated accurately using the 18O-labeling method even if the protein was part of a complex mixture. Our data also suggest that the accuracy of the quantitation can be improved by averaging the difference ratios of several peptides. In comparing our method with the isotope-coded affinity tag (ICAT) method, we show that the 18O-labeling method has the advantages of better recovery and fewer isotope effects. Therefore, the 18O-labeling method is a powerful tool for large-scale proteomics applications. 相似文献
6.
Unique scanning capabilities of a new hybrid linear ion trap mass spectrometer (Q TRAP) used for high sensitivity proteomics applications 总被引:1,自引:0,他引:1
The unique scanning capabilities of a hybrid linear ion trap (Q TRAP) mass spectrometer are described with an emphasis on proteomics applications. The combination of the very selective triple quadrupole based tandem mass spectrometry (MS/MS) scans with the very sensitive ion trap product ion scans allows rapid identification of peptides at low concentrations derived from post-translationally modified proteins on chromatographic time scales. The Q TRAP instrument also offers the opportunity to conduct a variety of ion processing steps prior to performing a mass scan. For example, the enhancement of the multiple-charge ion contents of the ion trap can be performed resulting in a survey mass spectrum dominated by double- and triple-charge peptides. This facilitates the identification of relevant biological species in both separated and unseparated peptide mixtures for further MS/MS experiments. 相似文献
7.
Almeida R Mosoarca C Chirita M Udrescu V Dinca N Vukelić Z Allen M Zamfir AD 《Analytical biochemistry》2008,378(1):43-52
NanoMate robot was coupled to a high-capacity ion trap (HCT) mass spectrometer to create a system merging automatic chip-based electrospray ionization (ESI) infusion, ultrafast ion detection, and multistage sequencing at superior sensitivity. The interface between the NanoMate and HCT mass spectrometer consists of an in-laboratory constructed mounting device that allows adjustment of the robot position with respect to the mass spectrometer inlet. The coupling was optimized for ganglioside (GG) high-throughput analysis in the negative ion mode and was implemented in clinical glycolipidomics for identification and structural characterization of anencephaly-associated species. By NanoMate HCT mass spectrometry (MS), data corroborating significant differences in GG expression in anencephalic versus age-matched normal brain tissue were collected. The feasibility of chip-based nanoESI HCT multistage collision-induced dissociation (CID MSn) for polysialylated GG fragmentation and isomer discrimination was tested on a GT1 (d18:1/18:0) anencephaly-associated structure. MS2-MS4 obtained by accumulating scans at variable fragmentation amplitudes gave rise to the first fragmentation patterns from which the presence of GT1b structural isomer could be determined unequivocally without the need for supplementary investigation by any other analytical or biochemical methods. 相似文献
8.
Complete phosphorylation mapping of protein kinases was successfully undertaken using an automated LC/MS/MS approach. This method uses the direct combination of triple quadrupole and ion trapping capabilities in a hybrid triple quadrupole linear ion trap to selectively identify and sequence phosphorylated peptides. In particular, the use of a precursor ion scan of m/z -79 in negative ion mode followed by an ion trap high resolution scan (an enhanced resolution scan) and a high sensitivity MS/MS scan (enhanced product ion scan) in positive mode is a very effective method for identifying phosphorylation sites in proteins at low femtomole levels. Coupling of this methodology with a stable isotope N-terminal labeling strategy using iTRAQtrade mark reagents enabled phosphorylation mapping and relative protein phosphorylation levels to be determined between the active and inactive forms of the protein kinase MAPKAPK-1 in the same LC/MS run. 相似文献
9.
Screening for EphB signaling effectors using SILAC with a linear ion trap-orbitrap mass spectrometer
Erythropoietin-producing hepatocellular carcinoma (Eph) receptors play important roles in development, neural plasticity, and cancer. We used an Orbitrap mass spectrometer and stable isotope labeling by amino acids in cell culture (SILAC) to identify and quantify 204 proteins with significantly changed abundance in antiphosphotyrosine immunoprecipitates after ephrinB1-Fc stimulation. More than half of all known effectors downstream of EphB receptors were identified in this study, as well as numerous novel candidates for EphB signaling. 相似文献
10.
A critical evaluation of the performance of a 2-D linear ion trap (IT) instrument to two 3-D quadrupole IT instruments with emphasis on identification of rat serum proteins by bottom-up LC-MS/MS is presented. The speed and sensitivity of each of the instruments were investigated, and the effects that each of these have on the bottom-up proteomics identification approach are discussed. 相似文献
11.
A proteomics grade electron transfer dissociation-enabled hybrid linear ion trap-orbitrap mass spectrometer 总被引:1,自引:0,他引:1
McAlister GC Berggren WT Griep-Raming J Horning S Makarov A Phanstiel D Stafford G Swaney DL Syka JE Zabrouskov V Coon JJ 《Journal of proteome research》2008,7(8):3127-3136
Here we detail the modification of a quadrupole linear ion trap-orbitrap hybrid (QLT-orbitrap) mass spectrometer to accommodate a negative chemical ionization (NCI) source. The NCI source is used to produce fluoranthene radical anions for imparting electron transfer dissociation (ETD). The anion beam is stable, robust, and intense so that a sufficient amount of reagents can be injected into the QLT in only 4-8 ms. Following ion/ion reaction in the QLT, ETD product ions are mass-to-charge (m/z) analyzed in either the QLT (for speed and sensitivity) or the orbitrap (for mass resolution and accuracy). Here we describe the physical layout of this device, parametric optimization of anion transport, an evaluation of relevant ETD figures of merit, and the application of this instrument to protein sequence analysis. Described proteomic applications include complex peptide mixture analysis, post-translational modification (PTM) site identification, isotope-encoded quantitation, large peptide characterization, and intact protein analysis. From these experiments, we conclude the ETD-enabled orbitrap will provide the proteomic field with several new opportunities and represents an advance in protein sequence analysis technologies. 相似文献
12.
Syka JE Marto JA Bai DL Horning S Senko MW Schwartz JC Ueberheide B Garcia B Busby S Muratore T Shabanowitz J Hunt DF 《Journal of proteome research》2004,3(3):621-626
We describe the design and performance of a prototype high performance hybrid mass spectrometer. This instrument consists of a linear quadrupole ion trap (QLT) coupled to a Fourier transform ion cyclotron resonance mass analyzer (FTMS). This configuration provides rapid and automated MS and MS/MS analyses, similar to the data dependent scanning found on standard 3-D Paul traps, but with substantially improved internal scan dynamic range, mass measurement accuracy, mass resolution, and detection limits. Sequence analysis of peptides at the zeptomole level is described. The recently released, commercial version of this instrument operates in the LC/MS mode (1 s/scan) with a mass resolution of 100 000 and is equipped with automatic gain control to provide mass measurement accuracy of 1-2 ppm without internal standard. Methodology is described that uses this instrument to compare the post-translational modifications present on histone H3 isolated from asynchronously growing cells and cells arrested in mitosis. 相似文献
13.
14.
Infrared multiphoton dissociation (IRMPD) of deprotonated and protonated oligonucleotides ranging from 5 to 40 residues has been performed in a quadrupole ion trap mass spectrometer at normal operating pressure and temperature. Only moderate exposure times and laser powers were required to achieve efficient dissociation. In general, IRMPD and collisionally activated dissociation (CAD) produce comparable sequencing information, indicating that IRMPD is a viable alternative to CAD for oligonucleotide analysis in the quadrupole ion trap. Two major characteristics distinguish CAD and IRMPD spectra for a given parent ion. First, structurally uninformative M-B ions that dominate CAD spectra are generally only low-intensity species in IRMPD spectra because nonresonant activation causes these species to dissociate to backbone cleavage products. Second, phosphate and nucleobase ions can be observed directly in IRMPD experiments because the low-mass cutoff can be set to trap small fragment ions. For this reason IRMPD can sometimes facilitate analysis of sequences containing modified bases. 相似文献
15.
Phosphorylation has been the most studied of all the posttranslational modifications of proteins. Mass spectrometry has emerged as a powerful tool for phosphomapping on proteins/peptides. Collision-induced dissociation (CID) of phosphopeptides leads to the loss of phosphoric or metaphosphoric acid as a neutral molecule, giving an intense neutral loss product ion in the mass spectrum. Dissociation of the neutral loss product ion identifies peptide sequence. This method of data-dependent constant neutral loss (DDNL) scanning analysis has been commonly used for mapping phosphopeptides. However, preferential losses of groups other than phosphate are frequently observed during CID of phosphopeptides. Ions that result from such losses are not identified during DDNL analysis due to predetermined scanning for phosphate loss. In this study, we describe an alternative approach for improved identification of phosphopeptides by sequential abundant ion fragmentation analysis (SAIFA). In this approach, there is no predetermined neutral loss molecule, thereby undergoing sequential fragmentation of abundant peak, irrespective of the moiety lost during CID. In addition to improved phosphomapping, the method increases the sequence coverage of the proteins identified, thereby increasing the confidence of protein identification. To the best of our knowledge, this is the first report to use SAIFA for phosphopeptide identification. 相似文献
16.
Scott M Peterman Craig P Dufresne Stevan Horning 《Journal of biomolecular techniques》2005,16(2):112-124
In this work we present a hybrid linear trap/Fourier transform ion cyclotron resonance (ICR) mass spectrometer to perform protein sequencing using the bottom-up approach. We demonstrate that incorporation of the linear trap greatly enhances the overall performance of the hybrid system for the study of complex peptide mixtures separated by fast high-performance liquid chromatography gradients. The ability to detect in the linear trap enables employment of automatic gain control to greatly reduce space charging in the ICR cell irregardless of ion flux. Resulting accurate mass measurements of 2 ppm or better using external calibration are achieved for the base peak as well as ions at 2% relative abundance. The linear trap is used to perform ion accumulation and activation prior to detection in the ICR cell which increases the scan rate. The increased duty cycle allows for data-dependent mass analysis of coeluting peptides to be acquired increasing protein sequence coverage without increasing the gradient length. In addition, the linear trap could be used as an ion detection device to perform simultaneous detection of tandem mass spectra with full scan mass spectral detection in the ICR cell resulting in the fastest scan cycles for performing bottom-up sequencing of protein digests. Comparisons of protein sequence coverage are presented for product ion detection in the linear trap and ICR cell. 相似文献
17.
Top-down proteomics, the analysis of intact proteins (instead of first digesting them to peptides), has the potential to become a powerful tool for mass spectrometric protein characterization. Requirements for extremely high mass resolution, accuracy, and ability to efficiently fragment large ions have often limited top-down analyses to custom built FT-ICR mass analyzers. Here we explore the hybrid linear ion trap (LTQ)-Orbitrap, a novel, high performance, and compact mass spectrometric analyzer, for top-down proteomics. Protein standards from 10 to 25 kDa were electrosprayed into the instrument using a nanoelectrospray chip. Resolving power of 60,000 was ample for isotope resolution of all protein charge states. We achieved absolute mass accuracies for intact proteins between 0.92 and 2.8 ppm using the "lock mass" mode of operation. Fifty femtomole of cytochrome c applied to the chip resulted in spectra with excellent signal-to-noise ratio and only low attomole sample consumption. Different protein charge states were dissociated in the LTQ, and the sensitivity of the orbitrap allowed routine, high resolution, and high mass accuracy fragment detection. This resulted in unambiguous charge state determination of fragment ions and identification of unmodified and modified proteins by database searching. Protein fragments were further isolated and fragmented in the LTQ followed by analysis of MS(3) fragments in the orbitrap, localizing modifications to part of the sequence and helping to identify the protein with these small peptide-like fragments. Given the ready availability and ease of operation of the LTQ-Orbitrap, it may have significant impact on top-down proteomics. 相似文献
18.
López-Ferrer D Ramos-Fernández A Martínez-Bartolomé S García-Ruiz P Vázquez J 《Proteomics》2006,6(Z1):S4-11
Quantitative proteomics using stable isotopic 16O/18O labeling has emerged as a very powerful tool, since it has a number of advantages over other methods, including the simplicity of chemistry, the constant mass tag at the C termini and its general applicability. However, due to the small mass difference between labeled and unlabeled peptide species, this approach has usually been restricted to high-resolution mass spectrometers. In this study we explored whether the high-resolution scanning mode, together with the extremely high scanning speed of the linear IT allows the 16O/18O-labeling method to be used for accurate, large-scale quantitative analysis of proteomes. A protocol, including digestion, desalting, labeling, MS and quantitative analysis was developed and tested using protein standards and whole proteome extracts. Using this method we were able to identify and quantify 140 proteins from only 10 mug of a proteome extract from mesenchymal stem cells. Relative expression changes larger than twofold can be identified with this method at the 95% confidence level. Our results demonstrate that accurate quantitative analysis using 16O/18O labeling can be performed in the practice using linear IT MS, without compromising large-scale peptide identification efficiency. 相似文献
19.
Human plasma proteome analysis by multidimensional chromatography prefractionation and linear ion trap mass spectrometry identification 总被引:8,自引:0,他引:8
A resurgence of interest in the human plasma proteome has occurred in recent years because it holds great promise of revolution in disease diagnosis and therapeutic monitoring. As one of the most powerful separation techniques, multidimensional liquid chromatography has attracted extensive attention, but most published works have focused on the fractionation of tryptic peptides. In this study, proteins from human plasma were prefractionated by online sequential strong cation exchange chromatography and reversed-phase chromatography. The resulting 30 samples were individually digested by trypsin, and analyzed by capillary reversed-phase liquid chromatography coupled with linear ion trap mass spectrometry. After meeting stringent criteria, a total of 1292 distinct proteins were successfully identified in our work, among which, some proteins known to be present in serum in <10 ng/mL were detected. Compared with other works in published literatures, this analysis offered a more full-scale list of the plasma proteome. Considering our strategy allows high throughput of protein identification in serum, the prefractionation of proteins before MS analysis is a simple and effective method to facilitate human plasma proteome research. 相似文献
20.
Succinoglycan monomers (M1, M2, and M3) are octasaccharides with acetyl, pyruvyl, and/or succinyl groups as substituents derived from Sinorhizobium meliloti 1021. The dissociation patterns of the octasaccharides caused by low-energy collision-activated dissociation (CAD) were investigated using triple quadrupole tandem mass spectrometry (MS) equipped with an electrospray ionization (ESI) source with increasing collision energy (CE) in negative ion mode. None of the succinoglycan monomers were fragmented at a CE of −25 eV. When the CE was applied to −50 or −70 eV, the loss of the terminal Gal residue and/or the succinyl group of the monomers was observed in the product ion scan mode. Interestingly, the acetyl and the pyruvyl groups in the succinoglycan monomers were not lost even when a CE of −70 eV was applied, indicating that the substituents are more stable than the succinyl group in the octasaccharides. 相似文献