首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benham B 《Bioethics》2008,22(3):147-156
Does the fact that deception is widely practised – even though there is a general prohibition against deception – provide insight into the ethics of deceptive methods in research, especially for social‐behavioral research? I answer in the affirmative. The ubiquity of deception argument, as I will call it, points to the need for a concrete and nuanced understanding of the variety of deceptive practices, and thus promises an alternative route of analysis for why some deception may be permissible in social‐behavioral research. As an alternative argument it also promises to break the stalemate that emerges in debates on the ethics of deceptive methods in social‐behavioral research. In the current paper I (1) motivate and articulate the ubiquity argument in order to clarify the significance of ubiquity and discharge some initial objections. Then, on the recommendations of the ubiquity argument, I (2) highlight the importance of interpersonal relationships for understanding the ethics of deception. Following this insight I (3) provide an analysis of several features of the researcher‐participant relationship relevant to the understanding of the ethics of deception in research. I then (4) conclude the argument with some recommendations for the ethical use of deceptive methods in social‐behavioral research.  相似文献   

2.
欺骗行为会导致欺骗结果的产生,欺骗结果又会直接影响欺骗行为的发生及其内在机制.虽然有研究表明,欺骗结果会对相应的欺骗过程产生调控作用,但对这一调控作用的机制并不清楚.本研究采用功能核磁共振技术,对两组被试分别使用有、无反馈(欺骗结果)的GKT范式并记录两组被试在进行诚实反应和欺骗反应时的大脑激活模式.结果发现,有反馈组与无反馈组相比,有反馈组的诚实反应和欺骗反应都导致了左侧顶叶皮层、左背部前扣带皮层、左侧脑岛、双侧视皮层和右侧小脑的更大激活;对两组而言,欺骗反应和诚实反应都导致了右腹外侧前额区域、双侧缘上回、左侧脑岛、右后内侧额叶、右侧颞中回和右侧纹状体的更大激活;此外,与无反馈组相比,有反馈组的欺骗反应与诚实反应在双侧纹状体和左侧脑岛上的激活差异更加明显.这些结果表明,有无欺骗结果对欺骗过程的神经机制具有调控作用,当需要面临欺骗结果时,欺骗过程将更大程度地涉及到奖赏预期和风险厌恶过程的参与.  相似文献   

3.
兰科植物欺骗性传粉   总被引:7,自引:0,他引:7  
植物与传粉动物的互利关系在生态系统中非常普遍。然而,有许多植物不为传粉者提供任何报酬,而是利用各种欺骗方式诱骗昆虫拜访,从而实现传粉,即欺骗性传粉。兰科是被子植物大科之一,其高度特化的繁殖器官和适应于昆虫传粉的精巧结构令人称奇。进化论创始人达尔文描述了许多兰花与昆虫精巧的传粉系统,但他忽视了欺骗性传粉的存在。事实上,近1/3的兰科植物都依赖于欺骗性传粉。欺骗性传粉可能是导致兰科植物多样性的重要原因之一。兰花利用或操作昆虫觅食、交配、产卵和栖息等行为,演化出各种各样的欺骗性传粉机制,常见的类型包括泛化的食源性欺骗、Batesian拟态、性欺骗、产卵地拟态和栖息地拟态。花的颜色、形态和气味在欺骗性传粉的成功实现中起到了重要作用。欺骗性兰花与传粉昆虫之间的演化可能是不同步的,兰花追踪昆虫的行为信号而发生分化,然而欺骗性传粉可能对昆虫造成一定的伤害,从而对昆虫也施加选择压力。由于昆虫的学习行为,欺骗性的兰花一般具有低的昆虫拜访率和结实率,其繁殖成功率受各种因素的影响。欺骗性加剧了兰花对传粉昆虫的依赖,使其具有更高的灭绝风险,传粉生物学的研究能为兰科植物的有效保护提供指导。在欺骗性传粉系统中,有报酬的伴生植物、拟态模型和其他拟态信号提供者对传粉成功有重要影响。因此,研究欺骗性传粉兰花、传粉昆虫和相关的生物和生态因子的网状进化关系具有重要理论和实践意义。  相似文献   

4.
The act frequency approach (Buss 1988) was used to develop a taxonomy of deceptive mating acts and tactics and to investigate hypothesized sex differences in the use of these acts and tactics. The results indicate that males show differences in the types of deceptive acts and tactics used in intersexual versus intrasexual contexts. Intrasexually, males more frequently engage in deceptive acts and tactics related to the exaggeration of superiority and exaggeration of sexual promiscuity, intensity, and popularity. More frequent deceptive intersexual acts and tactics for males include feigned commitment, feigned sincerity, and feigned resource acquisition ability. Females more frequently engage in deceptive acts and tactics related to appearance alteration in both intersexual and intrasexual contexts. It was also found that males use deceptive intrasexual acts and tactics more frequently than females. These findings suggest that the dimensions of deception characteristic of male reproductive strategies are congruent with female mate selection criteria and the dimensions of deception characteristic of female reproductive strategies are congruent with male mate selection criteria. Results are interpreted in terms of current evolutionary psychological approaches to the understanding of sex differences in human mating strategies and the role of deception in intepersonal interaction.  相似文献   

5.
Mechanisms and evolution of deceptive pollination in orchids   总被引:1,自引:0,他引:1  
The orchid family is renowned for its enormous diversity of pollination mechanisms and unusually high occurrence of non-rewarding flowers compared to other plant families. The mechanisms of deception in orchids include generalized food deception, food-deceptive floral mimicry, brood-site imitation, shelter imitation, pseudoantagonism, rendezvous attraction and sexual deception. Generalized food deception is the most common mechanism (reported in 38 genera) followed by sexual deception (18 genera). Floral deception in orchids has been intensively studied since Darwin, but the evolution of non-rewarding flowers still presents a major puzzle for evolutionary biology. The two principal hypotheses as to how deception could increase fitness in plants are (i) reallocation of resources associated with reward production to flowering and seed production, and (ii) higher levels of cross-pollination due to pollinators visiting fewer flowers on non-rewarding plants, resulting in more outcrossed progeny and more efficient pollen export. Biologists have also tried to explain why deception is overrepresented in the orchid family. These explanations include: (i) efficient removal and deposition of pollinaria from orchid flowers in a single pollinator visit, thus obviating the need for rewards to entice multiple visits from pollinators; (ii) efficient transport of orchid pollen, thus requiring less reward-induced pollinator constancy; (iii) low-density populations in many orchids, thus limiting the learning of associations of floral phenotypes and rewards by pollinators; (iv) packaging of pollen in pollinaria with limited carry-over from flower to flower, thus increasing the risks of geitonogamous self-pollination when pollinators visit many flowers on rewarding plants. All of these general and orchid-specific hypotheses are difficult to reconcile with the well-established pattern for rewardlessness to result in low pollinator visitation rates and consequently low levels of fruit production. Arguments that deception evolves because rewards are costly are particularly problematic in that small amounts of nectar are unlikely to have a significant effect on the energy budget of orchids, and because reproduction in orchids is often severely pollen-, rather than resource-limited. Several recent experimental studies have shown that deception promotes cross-pollination, but it remains unknown whether actual outcrossing rates are generally higher in deceptive orchids. Our review of the literature shows that there is currently no evidence that deceptive orchids carry higher levels of genetic load (an indirect measure of outcrossing rate) than their rewarding counterparts. Cross-pollination does, however, result in dramatic increases in seed quality in almost all orchids and has the potential to increase pollen export (by reducing pollen discounting). We suggest that floral deception is particularly beneficial, because of its promotion of outcrossing, when pollinators are abundant, but that when pollinators are consistently rare, selection may favour a nectar reward or a shift to autopollination. Given that nectar-rewardlessness is likely to have been the ancestral condition in orchids and yet is evolutionarily labile, more attention will need to be given to explanations as to why deception constitutes an 'evolutionarily stable strategy'.  相似文献   

6.
Pollination systems differ in pollen transfer efficiency, a variable that may influence the evolution of flower number. Here we apply a comparative approach to examine the link between pollen transfer efficiency and the evolution of inflorescence size in food and sexually deceptive orchids. We examined pollination performance in nine food‐deceptive, and eight sexually deceptive orchids by recording pollen removal and deposition in the field. We calculated correlations between reproductive success and flower number (as a proxy for resources allocated during reproductive process), and directional selection differentials were estimated on flower number for four species. Results indicate that sexually deceptive species experience decreased pollen loss compared to food‐deceptive species. Despite producing fewer flowers, sexually deceptive species attained levels of overall pollination success (through male and female function) similar to food‐deceptive species. Furthermore, a positive correlation between flower number and pollination success was observed in food‐deceptive species, but this correlation was not detected in sexually deceptive species. Directional selection differentials for flower number were significantly higher in food compared to sexually deceptive species. We suggest that pollination systems with more efficient pollen transfer and no correlation between pollination success and number of flowers produced, such as sexual deception, may allow the production of inflorescences with fewer flowers that permit the plant to allocate fewer resources to floral displays and, at the same time, limit transpiration. This strategy can be particularly important for ecological success in Mediterranean water‐deprived habitats, and might explain the high frequency of sexually deceptive species in these specialised ecosystems.  相似文献   

7.
Mimicry and deception are two important issues in studies about animal communication. The reliability of animal signs and the problem of the benefits of deceiving in sign exchanges are interesting topics in the evolution of communication. In this paper, we intend to contribute to an understanding of deception by studying the case of aggressive signal mimicry in fireflies, investigated by James Lloyd. Firefly femmes fatales are specialized in mimicking the mating signals of other species of fireflies with the purpose of attracting responding males to become their prey. These aggressive mimics are a major factor in the survival and reproduction of both prey and predator. It is a case of deception through active falsification of information that leads to efficient predation by femmes fatales fireflies and triggered evolutionary processes in their preys’ communicative behaviors. There are even nested coevolutionary interactions between these fireflies, leading to a remarkable system of deceptive and counterdeceptive signaling behaviors. We develop here a semiotic model of firefly deception and also consider ideas advanced by Lloyd about the evolution of communication, acknowledging that deception can be part of the explanation of why communication evolves towards increasing complexity. Increasingly complex sign exchanges between fireflies evolve in an extremely slow pace. Even if deceptive maneuvers are played out time and time again between particular firefly individuals, the evolution of the next level of complexity—and thus the next utterance in the dialogue between species—is likely to take an immense amount of generations.  相似文献   

8.
We adapted and applied the Wells and Olson’s (2002) Information Gain Analyses to examine the relative usefulness of a common psycho-physiological deception detection (PDD) technique, the Comparison Question Test, in forensic and screening settings as compared to unassisted lay and professional persons. We found that in forensic settings PDD provided substantial improvements in information gain over unassisted laypersons across nearly the complete range of the base rate of guilt. This was true for accuracy estimates based on laboratory and field data. At p(guilt) = 0.9, a benchmark set by critics of PDD, PDD provided 27 times the information gain of credibility decisions made by unassisted lay persons. Analyses of a screening PDD indicated that only deceptive outcomes provide useful information gain at relevant low base rates of guilt. These results strongly support the use of PDD in forensic settings and have implications for how screening PDD results are used.  相似文献   

9.
Theoretical models predict that deception should occur even in stable signalling systems. Assessment of the prevalence of deception and its importance has, however, been hampered by the lack of a rigorous definition of what constitutes deception and by the anecdotal nature of much of the literature. For an interaction to qualify as deception, the receiver of the "deceptive" signal must incur a cost. While this cost is often clear in interspecific interactions, it is more difficult to evaluate in interactions between members of the same species. A systematic approach to the study of deception, including the use of experimental techniques to elicit deceptive behaviour, is now required. Such an approach may enable us to address a crucial question in social evolution - whether animals are capable of manipulating the minds of others, or merely their behaviour.  相似文献   

10.
The term "theory of mind" (ToM) describes an evolved psychological mechanism that is necessary to represent intentions and expectations in social interaction. It is thus involved in determining the proclivity of others to cooperate or defect. While in cooperative settings between two parties the intentions and expectations of the protagonists match, they diverge in deceptive scenarios, in which one protagonist is intentionally manipulated to hold a false belief about the intention of the other. In a functional magnetic resonance imaging paradigm using cartoons showing social interactions (including the outcome of the interaction) between two or three story characters, respectively, we sought to determine those brain areas of the ToM network involved in reasoning about cooperative versus deceptive interactions. Healthy volunteers were asked to reflect upon the protagonists' intentions and expectations in cartoons depicting cooperation, deception or a combination of both, where two characters cooperated to deceive a third. Reasoning about the mental states of the story characters yielded substantial differences in activation patterns: both deception and cooperation activated bilateral temporoparietal junction, parietal and cingulate regions, while deception alone additionally recruited orbitofrontal and medial prefrontal regions. These results indicate an important role for prefrontal cortex in processing a mismatch between a character's intention and another's expectations as required in complex social interactions.  相似文献   

11.
An organism may use misinformation, knowingly (through deception) or unknowingly (as in the case of camouflage), to gain advantage in a competitive environment. From an evolutionary perspective, greater tactical deception occurs among primates closer to humans, with larger neocortices. In humans, the onset of deceptive behaviours in childhood exhibits a developmental trajectory, which may be regarded as 'normal' in the majority and deficient among a minority with certain neurodevelopmental disorders (e.g. autism). In the human adult, deception and lying exhibit features consistent with their use of 'higher' or 'executive' brain systems. Accurate detection of deception in humans may be of particular importance in forensic practice, while an understanding of its cognitive neurobiology may have implications for models of 'theory of mind' and social cognition, and societal notions of responsibility, guilt and mitigation. In recent years, functional neuroimaging techniques (especially functional magnetic resonance imaging) have been used to study deception. Though few in number, and using very different experimental protocols, studies published in the peer-reviewed literature exhibit certain consistencies. Attempted deception is associated with activation of executive brain regions (particularly prefrontal and anterior cingulate cortices), while truthful responding has not been shown to be associated with any areas of increased activation (relative to deception). Hence, truthful responding may comprise a relative 'baseline' in human cognition and communication. The subject who lies may necessarily engage 'higher' brain centres, consistent with a purpose or intention (to deceive). While the principle of executive control during deception remains plausible, its precise anatomy awaits elucidation.  相似文献   

12.
Ayasse M  Stökl J  Francke W 《Phytochemistry》2011,72(13):1667-1677
Sexually deceptive orchids mimic females of their pollinator species to attract male insects for pollination. Pollination by sexual deception has independently evolved in European, Australian, South African, and South American orchid taxa. Reproductive isolation is mainly based on pre-mating isolation barriers, the specific attraction of males of a single pollinator species, mostly bees, by mimicking the female species-specific sex-pheromone. However, in rare cases post-mating barriers have been found. Sexually deceptive orchids are ideal candidates for studies of sympatric speciation, because key adaptive traits such as the pollinator-attracting scent are associated with their reproductive success and with pre-mating isolation.During the last two decades several investigations studied processes of ecological speciation in sexually deceptive orchids of Europe and Australia. Using various methods like behavioural experiments, chemical, electrophysiological, and population-genetic analyses it was shown that minor changes in floral odour bouquets might be the driving force for pollinator shifts and speciation events. New pollinators act as an isolation barrier towards other sympatrically occurring species. Hybridization occurs because of similar odour bouquets of species and the overlap of flowering periods. Hybrid speciation can also lead to the displacement of species by the hybrid population, if its reproductive success is higher than that in the parental species.  相似文献   

13.
An outstanding feature of the orchid family is that approximately 30–40% of the species have non-rewarding flowers and deploy various modes of deception to attract pollinators, whereas the remaining species engage in pollination mutualisms based on provision of floral rewards. Here, we explore the direction, frequency and reversibility of transitions between deceptive and rewarding pollination systems in the radiation of the large African genus Disa, and test whether these transitions had consequences for diversification. By optimizing nectar production data for 111 species on a well-resolved phylogeny, we confirmed that floral deception was the ancestral condition and that nectar production evolved at least nine times and was lost at least once. Transitions to nectar production first occurred ca 17 million years ago but did not significantly affect either speciation or extinction rates. Nectar evolved independently of a spur, which was lost and gained multiple times. These results show that nectar production can be a highly labile trait and highlight the need for further studies of the genetic architecture of nectar production and the selective factors underlying transitions between deception and mutualism.  相似文献   

14.
Evolutionary communication theory posits that signalers and receivers are in a coevolutionary arms race. Receivers attempt to predict the behavior of signalers, and signalers attempt to manipulate the behavior of receivers (often through the use of dishonest signals of intent). This has led to the perception that deceitful signalers prefer perfectly deceptive signals. However, it is often easy for receivers to determine that a signal of intent was dishonest after relying on it to their detriment. Even the best deceivers may then acquire a reputation for being dishonest. For instance, in Prisoner's Dilemma (PD)-like social situations, predictable defectors make better social partners than unpredictable defectors. When opportunities to engage in social interaction depend on one's reputation for predictability, those who are better at concealing their defecting intentions may suffer the most from the reputations they acquire. Deceivers then face a tradeoff between the short-term benefits of successful deception and the long-term costs to their reputations. A mathematical model is developed and it is shown that the tradeoff often favors signalers who produce imperfectly deceptive signals over perfectly honest or perfectly deceptive ones. Implications for understanding human facial expressions and sociopathy are drawn.  相似文献   

15.
Deception remains a hotly debated topic in evolutionary and behavioural research. Our understanding of what impedes or facilitates the use and detection of deceptive signals in humans is still largely limited to studies of verbal deception under laboratory conditions. Recent theoretical models of non-human behaviour have suggested that the potential outcome for deceivers and the ability of receivers to discriminate signals can effectively maintain their honesty. In this paper, we empirically test these predictions in a real-world case of human deception, simulation in soccer. In support of theoretical predictions in signalling theory, we show that cost-free deceit by soccer players decreases as the potential outcome for the signaller becomes more costly. We further show that the ability of receivers (referees) to detect deceptive signals may limit the prevalence of deception by soccer players. Our study provides empirical support to recent theoretical models in signalling theory, and identifies conditions that may facilitate human deception and hinder its detection.  相似文献   

16.
The extraordinary taxonomic and morphological diversity of orchids is accompanied by a remarkable range of pollinators and pollination systems. Sexually deceptive orchids are adapted to attract specific male insects that are fooled into attempting to mate with orchid flowers and inadvertently acting as pollinators. This review summarises current knowledge, explores new hypotheses in the literature, and introduces some new approaches to understanding sexual deception from the perspective of the duped pollinator. Four main topics are addressed: (1) global patterns in sexual deception, (2) pollinator identities, mating systems and behaviours, (3) pollinator perception of orchid deceptive signals, and (4) the evolutionary implications of pollinator responses to orchid deception, including potential costs imposed on pollinators by orchids. A global list of known and putative sexually deceptive orchids and their pollinators is provided and methods for incorporating pollinator perspectives into sexual deception research are provided and reviewed. At present, almost all known sexually deceptive orchid taxa are from Australia or Europe. A few sexually deceptive species and genera are reported for New Zealand and South Africa. In Central and Southern America, Asia, and the Pacific many more species are likely to be identified in the future. Despite the great diversity of sexually deceptive orchid genera in Australia, pollination rates reported in the literature are similar between Australian and European species. The typical pollinator of a sexually deceptive orchid is a male insect of a species that is polygynous, monandrous, haplodiploid, and solitary rather than social. Insect behaviours involved in the pollination of sexually deceptive orchids include pre‐copulatory gripping of flowers, brief entrapment, mating, and very rarely, ejaculation. Pollinator behaviour varies within and among pollinator species. Deception involving orchid mimicry of insect scent signals is becoming well understood for some species, but visual and tactile signals such as colour, shape, and texture remain neglected. Experimental manipulations that test for function, multi‐signal interactions, and pollinator perception of these signals are required. Furthermore, other forms of deception such as exploitation of pollinator sensory biases or mating preferences merit more comprehensive investigation. Application of molecular techniques adapted from model plants and animals is likely to deliver new insights into orchid signalling, and pollinator perception and behaviour. There is little current evidence that sexual deception drives any species‐level selection on pollinators. Pollinators do learn to avoid deceptive orchids and their locations, but this is not necessarily a response specific to orchids. Even in systems where evidence suggests that orchids do interfere with pollinator mating opportunities, considerable further research is required to determine whether this is sufficient to impose selection on pollinators or generate antagonistic coevolution or an arms race between orchids and their pollinators. Botanists, taxonomists and chemical ecologists have made remarkable progress in the study of deceptive orchid pollination. Further complementary investigations from entomology and behavioural ecology perspectives should prove fascinating and engender a more complete understanding of the evolution and maintenance of such enigmatic plant‐animal interactions.  相似文献   

17.
This article discusses the interrelatedness of two sorts of speculation undertaken by Malagasy sapphire miners and traders involved in the northern Malagasy sapphire trade: first, the speculating that these people do in sapphires, and, second, the speculating that they do about the uses to which sapphires are put by foreigners. Although Malagasy people involved in the local trade know a great deal about how sapphires might be profitably traded, most of them do not know why foreigners are so interested in these stones. Dubious of foreign traders' assurances that sapphires are used in the production of jewelry, they speculate a variety of alternate, secret uses for them. In this article, it is argued that these speculations emerge out of a variety of locally developed assumptions about how the sapphire trade works, and specifically, the significant roles that deception and knowledge differentials play in its operation.  相似文献   

18.
Pollination via sexual deception is hypothesised to be associated with more frequent outcrossing and greater pollen dispersal distances than strategies involving food‐foraging behaviour. In this study, we investigated the behaviour and movement distances of Lissopimpla excelsa (Hymenoptera: Ichneumonidae), and their implications for the pollination of the sexually deceptive Cryptostylis ovata (Orchidaceae). Pollinator observations revealed that while L. excelsa will alight on multiple flowers within a single visit to a patch of orchids, the frequency of attempted copulation decreases with successive visits, suggesting that pollinator learning may inhibit within‐patch pollen transfer. Mark‐recapture demonstrated that 25% of wasps revisited inflorescences within a day and 50% revisited within a week. Despite the apparent site fidelity of some individuals, L. excelsa often move over large distances (maximum = 625 m), and are capable of dispersing pollen between patches. To resolve the consequences of pollination by sexual deception of ichneumonids, we compared our results with those from studies of other sexually deceptive systems. While pollination rates were comparable with other sexually deceptive orchids, L. excelsa showed high rates of column contact and moved over large distances relative to other sexually deceived pollinators. Among sexually deceptive orchids in general, the frequency of column contact was not correlated either with the frequency of pseudocopulation or with pollination rate. These results suggest that the consequences of pollination by sexual deception may vary extensively between plant taxa due to variation in floral traits, and behavioural differences between pollinator groups.  相似文献   

19.
Natural fruit set is constrained by pollen limitation and fruiting failure, and pollen limitation is expected to be especially severe in deceptive orchids. We performed hand cross‐pollinations in ten populations of a food‐deceptive orchid, Calypso bulbosa, under sparse and dense canopies in three non‐consecutive years. We explored the relationships between natural fruit set, pollen limitation and fruiting failure. Mean natural fruit set over the years was 60%, which is exceptionally high for a deceptive orchid. On average, hand cross‐pollination increased fruit set by 23%. Among open‐pollinated plants that did not set a fruit, 55.5% were estimated to be pollen limited and 44.5% to be limited by fruiting failure, i.e. inability to set a fruit after pollination. In species with high natural fruit set, hand cross‐pollination experiments may not always detect statistically significant pollen limitation. In our case, pollen limitation tended to become significant when the natural fruit set dropped below 60%. Canopy cover had a significant effect on fruiting failure, which was more severe under a dense canopy. Although our results demonstrate pollen limitation in many cases, they also highlight the fact that food deception can be a very effective pollination strategy. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013 , 171 , 744–750.  相似文献   

20.
Signalers that misinform sufficiently open may become devalued as sources of information; however, “skepticism” and any comparison involved in testing reliability entail a cost that involves delays and energy expenditure. Skepticism may be less costly though, if, as a rule, animals are not equally skeptical of the signals of all conspecifics. Animals with the ability to recognize individual conspecifics and to recall past encounters with them may have the capacity to restrict skepticism to subsets of animals that are most likely to benefit from deception. We played tape-recorded alarm calls of high- and low-ranking rhesus monkeys(Macaca mulatta) to their groups in a feeding context once daily over 8 consecutive days at the Yerkes Primate Center Field Station. Over the sequence of playbacks, response was greater to the calls of high-ranking monkeys, adult response patterns were different from those of juveniles, and for adults especially, decline in responsiveness was punctuated by partial resurgences of response. These differences may be the consequence of the adults’ more extensive histories of interaction with group members that, though generally reliable, vary with respect to the potential benefits of deceptive signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号