首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Understanding why metazoan Hox/HOM-C genes are expressed in spatiotemporal sequences showing colinearity with their genomic sequence is a central challenge in developmental biology. Here, we studied the consequences of ectopically expressing Hox genes to investigate whether Hox-Hox interactions might help to order gene expression during very early vertebrate embryogenesis. Our study revealed conserved autoregulatory loops for the Hox4 and Hox7 paralogue groups, detected following ectopic expression Hoxb-4 or HOXD4, and Hoxa-7, respectively. We also detected specific induction of 5' posterior Hox genes; Hoxb-5 to Hoxb-9, following ectopic expression of Hoxb-4/HOXD4; Hoxb-8 and Hoxb-9 following ectopic expression of Hoxa-7. Additionally, we observed specific repression of 3' anterior genes, following ectopic expression of Hox4 and Hox7 paralogues. We found that induction of Hoxb-4 and Hoxb-5 by Hoxb-4 can be direct, whereas induction of Hoxb-7 is indirect, suggesting the possibility of an activating cascade. Finally, we found that activation of Hoxb-4 itself and of posterior Hox genes by Hoxb-4 can be both non-cell-autonomous, as well as direct. We believe that our findings could be important for understanding how a highly ordered Hox expression sequence is set up in the early vertebrate embryo.  相似文献   

5.
6.
7.
Hox collinearity is a spectacular phenomenon that has excited life scientists since its discovery in 1978. Two mechanisms have been proposed to explain the spatially sequential pattern of Hox gene expression in animal embryonic development: interactions among Hox genes, or the progressive opening of chromatin in the Hox clusters, from 3' to 5'. A review of the evidence across different species and developmental stages points to the universal involvement of trans-acting factors and cell-cell interactions. The evidence focuses attention on interactions between Hox genes and on the vertebrate somitogenesis clock. These novel conclusions open new perspectives for the field.  相似文献   

8.
9.
Early sequential expression of mouse Hox genes is essential for their later function. Analysis of the relationship between early Hox gene expression and the laying down of anterior to posterior structures during and after gastrulation is therefore crucial for understanding the ontogenesis of Hox-mediated axial patterning. Using explants from gastrulation stage embryos, we show that the ability to express 3' and 5' Hox genes develops sequentially in the primitive streak region, from posterior to anterior as the streak extends, about 12 hours earlier than overt Hox expression. The ability to express autonomously the earliest Hox gene, Hoxb1, is present in the posterior streak region at the onset of gastrulation, but not in the anterior region at this stage. However, the posterior region can induce Hoxb1 expression in these anterior region cells. We conclude that tissues are primed to express Hox genes early in gastrulation, concomitant with primitive streak formation and extension, and that Hox gene inducibility is transferred by cell to cell signalling. Axial structures that will later express Hox genes are generated in the node region in the period that Hox expression domains arrive there and continue to spread rostrally. However, lineage analysis showed that definitive Hox codes are not fixed at the node, but must be acquired later and anterior to the node in the neurectoderm, and independently in the mesoderm. We conclude that the rostral progression of Hox gene expression must be modulated by gene regulatory influences from early on in the posterior streak, until the time cells have acquired their stable positions along the axis well anterior to the node.  相似文献   

10.
Initiation of Hox genes requires interactions between numerous factors and signaling pathways in order to establish their precise domain boundaries in the developing nervous system. There are distinct differences in the expression and regulation of members of Hox genes within a complex suggesting that multiple competing mechanisms are used to initiate their expression domains in early embryogenesis. In this study, by analyzing the response of HoxB genes to both RA and FGF signaling in neural tissue during early chick embryogenesis (HH stages 7-15), we have defined two distinct groups of Hox genes based on their reciprocal sensitivity to RA or FGF during this developmental period. We found that the expression domain of 5' members from the HoxB complex (Hoxb6-Hoxb9) can be expanded anteriorly in the chick neural tube up to the level of the otic vesicle following FGF treatment and that these same genes are refractory to RA treatment at these stages. Furthermore, we showed that the chick caudal-related genes, cdxA and cdxB, are also responsive to FGF signaling in neural tissue and that their anterior expansion is also limited to the level of the otic vesicle. Using a dominant negative form of a Xenopus Cdx gene (XcadEnR) we found that the effect of FGF treatment on 5' HoxB genes is mediated in part through the activation and function of CDX activity. Conversely, the 3' HoxB genes (Hoxb1 and Hoxb3-Hoxb5) are sensitive to RA but not FGF treatments at these stages. We demonstrated by in ovo electroporation of a dominant negative retinoid receptor construct (dnRAR) that retinoid signaling is required to initiate expression. Elevating CDX activity by ectopic expression of an activated form of a Xenopus Cdx gene (XcadVP16) in the hindbrain ectopically activates and anteriorly expands Hoxb4 expression. In a similar manner, when ectopic expression of XcadVP16 is combined with FGF treatment, we found that Hoxb9 expression expands anteriorly into the hindbrain region. Our findings suggest a model whereby, over the window of early development we examined, all HoxB genes are actually competent to interpret an FGF signal via a CDX-dependent pathway. However, mechanisms that axially restrict the Cdx domains of expression, serve to prevent 3' genes from responding to FGF signaling in the hindbrain. FGF may have a dual role in both modulating the accessibility of the HoxB complex along the axis and in activating the expression of Cdx genes. The position of the shift in RA or FGF responsiveness of Hox genes may be time dependent. Hence, the specific Hox genes in each of these complementary groups may vary in later stages of development or other tissues. These results highlight the key role of Cdx genes in integrating the input of multiple signaling pathways, such as FGFs and RA, in controlling initiation of Hox expression during development and the importance of understanding regulatory events/mechanisms that modulate Cdx expression.  相似文献   

11.
12.
The single amphioxus Hox cluster contains 15 genes and may well resemble the ancestral chordate Hox cluster. We have sequenced the Hox genomic complement of the European amphioxus Branchiostoma lanceolatum and compared it to the American species, Branchiostoma floridae, by phylogenetic footprinting to gain insights into the evolution of Hox gene regulation in chordates. We found that Hox intergenic regions are largely conserved between the two amphioxus species, especially in the case of genes located at the 3' of the cluster, a trend previously observed in vertebrates. We further compared the amphioxus Hox cluster with the human HoxA, HoxB, HoxC, and HoxD clusters, finding several conserved noncoding regions, both in intergenic and intronic regions. This suggests that the regulation of Hox genes is highly conserved across chordates, consistent with the similar Hox expression patterns in vertebrates and amphioxus.  相似文献   

13.
While the highly consistent gene order and axial colinear patterns of expression seem to be a feature of vertebrate hox gene clusters, this pattern may be less well conserved across the rest of the bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is 5'-Hox1, 2, 3, 11/13c, 11/13b, 11/13a, 9/10, 8, 7, 6, 5-3'.) The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.  相似文献   

14.
15.
16.
The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14   总被引:7,自引:0,他引:7  
SUMMARY The amphioxus ( Branchiostoma floridae ) Hox cluster is a model for the ancestral vertebrate cluster, prior to the hypothesized genome-wide duplications that may have facilitated the evolution of the vertebrate body plan. Here we describe the posterior (5') genes of the amphioxus cluster, and report the isolation of four new homeobox genes. Vertebrates possess 13 types of Hox gene (paralogy groups), but we show that amphioxus possesses more than 13 Hox genes. Amphioxus is now the first animal in which a Hox14 gene has been found. Our mapping and phylogenetic analysis of amphioxus "Posterior Class" Hox genes reveals that these genes are evolving at a faster rate in deuterostomes than in protostomes, a phenomenon we term Posterior Flexibility.  相似文献   

17.
Multiple members of the A, B, and C clusters of Hox genes are expressed in hematopoietic cells. Several of these Hox genes have been found to display distinctive expression patterns, with genes located at the 3' side of the clusters being expressed at their highest levels in the most primitive subpopulation of human CD34+ bone marrow cells and genes located at the 5' end having a broader range of expression, with downregulation at later stages of hematopoietic differentiation. To explore if these patterns reflect different functional activities, we have retrovirally engineered the overexpression of a 5'-located gene, HOXA10, in murine bone marrow cells and demonstrate effects strikingly different from those induced by overexpression of a 3'-located gene, HOXB4. In contrast to HOXB4, which causes selective expansion of primitive hematopoietic cells without altering their differentiation, overexpression of HOXA10 profoundly perturbed myeloid and B-lymphoid differentiation. The bone marrow of mice reconstituted with HOXA10-transduced bone marrow cells contained in high frequency a unique progenitor cell with megakaryocytic colony-forming ability and was virtually devoid of unilineage macrophage and pre-B-lymphoid progenitor cells derived from the transduced cells. Moreover, and again in contrast to HOXB4, a significant proportion of HOXA10 mice developed a transplantable acute myeloid leukemia with a latency of 19 to 50 weeks. These results thus add to recognition of Hox genes as important regulators of hematopoiesis and provide important new evidence of Hox gene-specific functions that may correlate with their normal expression pattern.  相似文献   

18.
Murine homeobox genes play a fundamental role in directing embryogenesis by controlling gene expression during development. The homeobox encodes a DNA binding domain (the homeodomain) which presumably mediates interactions of homeodomain proteins with specific DNA sites in the control regions of target genes. However, the bases for these selective DNA-protein interactions are not well defined. In this report, we have characterized the DNA binding specificities of three murine homeodomain proteins, Hox 7.1, Hox 1.5, and En-1. We have identified optimal DNA binding sites for each of these proteins by using a random oligonucleotide selection strategy. Comparison of the sequences of the selected binding sites predicted a common consensus site that contained the motif (C/G)TAATTG. The TAAT core was essential for DNA binding activity, and the nucleotides flanking this core directed binding specificity. Whereas variations in the nucleotides flanking the 5' side of the TAAT core produced modest alterations in binding activity for all three proteins, perturbations of the nucleotides directly 3' of the core distinguished the binding specificity of Hox 1.5 from those of Hox 7.1 and En-1. These differences in binding activity reflected differences in the dissociation rates rather than the equilibrium constants of the protein-DNA complexes. Differences in DNA binding specificities observed in vitro may contribute to selective interactions of homeodomain proteins with potential binding sites in the control regions of target genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号