首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of B cells in rheumatoid arthritis (RA) has been debated for decades. However, recent clinical trial data indicating that depletion of B cells in RA patients is of therapeutic benefit has validated the importance of this cell type in the pathogenesis of the disease. Elucidation of the molecular basis of B cell development and activation has allowed the identification of a number of possible therapeutic targets that are appealing for drug development. This review discusses briefly a number of these molecules and the rationale for targeting them for the treatment of RA.  相似文献   

2.
Thyroid cancer (TC) is one of the most common malignant tumors, with high morbidity and mortality rates worldwide. The incidence of TC, especially that of papillary thyroid carcinoma (PTC); has increased rapidly in recent decades. Autoimmune thyroid disease (AITD) is closely related to TC and has an estimated prevalence of 5%. Thus, it is becoming increasingly important to identify potential diagnostic biomarkers and therapeutic targets for TC and AITD. Circular RNAs (circRNAs) are a class of non-coding RNAs with covalently bonded circular structures that lack 5''-3'' polarity and polyadenylated tails. Several circRNAs play crucial roles in the development of various diseases, including TC and AITD, and could be important new biomarkers and/or targets for the diagnosis and therapy of such disorders. Although there are four subtypes of TC, research on circRNA has largely focused on its connection to PTC. Therefore, this review mainly summarizes the relationships between circRNAs and PTC and AITD, including the molecular mechanisms underlying these relationships. In particular, the functions of “miRNA sponges” and their interactions with proteins and RNA are discussed. The possible targeting of circRNAs for the prevention, diagnosis, and treatment of TC and AITD is also described. CircRNAs could be potential biomarkers of TC and AITD, although validation will be required before they can be implemented in clinical practice.  相似文献   

3.
Extracellular vesicles are secreted by a wide variety of cells, and their primary functions include intercellular communication, immune responses, human reproduction, and synaptic plasticity. Their molecular cargo reflects the physiological processes that their cells of origin are undergoing. Thus, many studies have suggested that extracellular vesicles could be a promising biomarker tool for many diseases, mainly due to their biological relevance and easy accessibility to a broad range of body fluids. Moreover, since their biological composition leads them to cross the blood-brain barrier bidirectionally, growing evidence points to extracellular vesicles as emerging mirrors of brain diseases processes. In this regard, this review explores the biogenesis and biological functions of extracellular vesicles, their role in different physiological and pathological processes, their potential in clinical practice, and the recent outstanding studies about the role of exosomes in major human brain diseases, such as Alzheimer''s disease (AD), Parkinson''s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or brain tumors.  相似文献   

4.
Fibroblast growth factor (FGF) 21 is one of the FGF members with special endocrine properties. In the last twenty years, it has attracted intense research and development for its physiological functions that respond to dietary manipulation, pharmacological benefits of improving the macronutrient metabolism, and clinical values as a biomarker of various human diseases. Generally, FGF21 can be produced by major metabolic organs, but only the subgroup from the liver shows canonical endocrine properties, which emphasizes the special value of delineating the unique secretory and functional characteristics of hepatic FGF21. There has been a growth in literature to address the extra-hepatic activities of FGF21, and many striking findings have therefore been published. Yet, they are fragmented and scattered, and controversies are raised from divergent findings. For this reason, there is a need for a systematic and critical evaluation of current research in this aspect. In this review, we focus on the current knowledge about the molecular biology of endocrine FGF21, especially present details on the regulation of circulating levels of FGF21. We also emphasize its emerging roles in inter-organ crosstalk and cancer development.  相似文献   

5.
miR-21: a small multi-faceted RNA   总被引:1,自引:0,他引:1  
More than 1000 microRNAs (miRNAs) are expressed in human cells, some tissue or cell type specific, others considered as house-keeping molecules. Functions and direct mRNA targets for some miRNAs have been relatively well studied over the last years. Every miRNA potentially regulates the expression of numerous protein-coding genes (tens to hundreds), but it has become increasingly clear that not all miRNAs are equally important; diverse high-throughput screenings of various systems have identified a limited number of key functional miRNAs over and over again. Particular miRNAs emerge as principal regulators that control major cell functions in various physiological and pathophysiological settings. Since its identification 3 years ago as the miRNA most commonly and strongly up-regulated in human brain tumour glioblastoma [ 1 ], miR-21 has attracted the attention of researchers in various fields, such as development, oncology, stem cell biology and aging, becoming one of the most studied miRNAs, along with let-7, miR-17–92 cluster ('oncomir-1'), miR-155 and a few others. However, an miR-21 knockout mouse has not yet been generated, and the data about miR-21 functions in normal cells are still very limited. In this review, we summarise the current knowledge of miR-21 functions in human disease, with an emphasis on its regulation, oncogenic role, targets in human cancers, potential as a disease biomarker and novel therapeutic target in oncology.  相似文献   

6.
动脉粥样硬化是冠心病、脑梗死、外周血管病的主要诱因,近年来发病率越来越高,严重威胁着人类生命健康。脂质代谢障碍是动脉粥样硬化的病理基础。成纤维细胞生长因子21(FGF21)是FGF家族的一种内分泌因子,它能够增加葡萄糖的摄取,调节脂质代谢,并使代谢活跃的器官(如肝脏和脂肪组织)中胰岛素反应敏感。FGF21水平与动脉粥样硬化的发生率和严重程度密切相关。然而,FGF21原型在血浆的半衰期短、体外易聚集,严重限制了其临床应用。近年来,对FGF21类似物的研究取得了突破性进展。综述了FGF21的生理作用,并讨论了基于FGF21类似物治疗动脉粥样硬化的主要突破和局限性,为FGF21蛋白类新药的开发提供了理论依据。  相似文献   

7.
Colorectal cancer (CRC) is one of the leading causes of cancer-related death. Despite advances in treatment, drug resistance remains a critical impediment. Post-translational modifications (PTMs) regulate protein stability, localization, and activity, impacting vital cellular processes. Recent research has highlighted the essential role of PTMs in the development of CRC resistance. This review summarizes recent advancements in understanding PTMs' roles in CRC resistance, focusing on the latest discoveries. We discuss the functional impact of PTMs on signaling pathways and molecules involved in CRC resistance, progress in drug development, and potential therapeutic targets. We also summarize the primary enrichment methods for PTMs. Finally, we discuss current challenges and future directions, including the need for more comprehensive PTM analysis methods and PTM-targeted therapies. This review identifies potential therapeutic interventions for addressing medication resistance in CRC, proposes prospective therapeutic options, and gives an overview of the function of PTMs in CRC resistance.  相似文献   

8.
T-cell therapy represents an emerging and promising modality for the treatment of disease. Data from recent clinical trials of genetically modified T cells, most notably chimeric antigen receptor (CAR) T cells, have yielded dramatic clinical results and highlighted the potential for this approach to mediate anti-tumor activity. Continued progress in the development of such T-cell therapies will require the identification of the relevant biomarker strategies to support and guide clinical development of the candidate products. In this review, we review and discuss (i) principles for development and use of biomarkers in clinical research, (ii) the rationale and a strategy for the integration of biomarker data at all stages of the product development process, from preclinical studies through product manufacture and during the clinical trial and (iii) the different classes of biomarkers that are relevant to T-cell therapy trials. Throughout this review, we discuss how biomarkers can play a central role in the development of novel T-cell therapeutic agents and highlight how appropriately designed biomarker studies can provide critical insights to this process. Finally, we discuss future directions and challenges for the appropriate development of biomarkers to evaluate product bioactivity and treatment efficacy.  相似文献   

9.
Recently, fibroblast growth factors are identified to play a vital role in the development and progression of human pancreatic cancer. FGF pathway is critical involved in numerous cellular processes through regulation of its downstream targets, including proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. In this review article, we describe recent advances of FGFR signalling pathway in pancreatic carcinogenesis and progression. Moreover, we highlight the available chemical inhibitors of FGFR pathway for potential treatment of pancreatic cancer. Furthermore, we discuss whether targeting FGFR pathway is a novel therapeutic strategy for pancreatic cancer clinical management.  相似文献   

10.
11.
Diabetic nephropathy (DN), an important cause of end-stage renal diseases, brings about great social and economic burden. Due to the variable pathological changes and clinical course, the prognosis of DN is very difficult to predict. DN is also usually associated with enhanced genomic damage and cellular injury. Fibroblast growth factor 21 (FGF21), a nutritionally regulated hormone secreted mainly by the liver, plays a critical role in metabolism. Administration of FGF21 decreases blood glucose, triglyceride, and cholesterol levels, and improves insulin sensitivity, which is closely associated with the development and progression of glomerular diseases. In addition, FGF21 level was associated with renal function. However, the precise role of FGF21 in DN remains unclear. This review will give a comprehensive understanding of the underlying role of FGF21 and its possible interaction with other molecules in DN.  相似文献   

12.
The review highlights the role of amyloids in various diseases and the challenges associated with targeting human amyloids in therapeutic development. However, due to the better understanding of microbial amyloids' role as virulence factors, there is a growing interest in repurposing and designing anti-amyloid compounds for antivirulence therapy. The identification of amyloid inhibitors has not only significant clinical implications but also provides valuable insights into the structure and function of amyloids. The review showcases small molecules and peptides that specifically target amyloids in both humans and microbes, reducing cytotoxicity and biofilm formation, respectively. The review emphasizes the importance of further research on amyloid structures, mechanisms, and interactions across all life forms to yield new drug targets and improve the design of selective treatments. Overall, the review highlights the potential for amyloid inhibitors in therapeutic development for both human diseases and microbial infections.  相似文献   

13.
MicroRNAs (miRNAs) are 22 nucleotides short, non-coding and tissue-specific single-stranded RNA which modulates target gene expression. Presently, shreds of evidence confirmed that miRNAs play a key role in kidney pathophysiology. The objectives of the present review are to summarize new research data towards the latest developments in the potential use of miRNAs as a diagnostic biomarker for kidney diseases. This holistic information will update the existing knowledge of kidney disease biomarkers. “miRNA profile for Diabetic Kidney disease, Acute kidney injury, Renal fibrosis, hemodialysis, transplants, FSGS, IgAN, etc.” are the search keywords which have been used in this review. The search outcome gave an exciting insightful perception of miRNAs competence as a biomarker. Also it is observed that various samples as plasma, urine and biopsies were used for profiling the miRNA expression. The miRNAs were not only used for diagnostic biomarkers but also for therapeutic targets. Each kidney disease showed different miRNAs expression profile and few miRNAs quite common with some kidney diseases. miRNAs are simple and efficient diagnostic biomarkers for kidney diseases.  相似文献   

14.
The extracellular ligand, Wnt, and its receptors are involved in sign al transduction and play an important role in axis formation and neural development. In neurodegenerative disorders such as Alzheimer’s disease (AD), a decrease of the intracellular Wnt effector, β-catenin, has been linked to amyloid-β-peptide-induced neurotoxicity. Despite this knowledge, targeting Wnt inhibitors as potential biomarkers has not been explored, and harnessing Wnt activators as therapeutic candidates remains largely not investigated. A wide acting family of Wnt mediators, secreted frizzled-related proteins (sFRPs), has not been probed so far as molecular indicators of disease occurrence and progression of Alzheimer’s. Unlike the effect of the Dickkopf (DKK) family of Wnt antagonists on AD, the sFRP molecules have a more pleiotropic impact on the Wnt signaling cascade and probably have a far-reaching involvement in neurodegeneration. The role of sFRPs has been poorly described in AD, and in this review, we analyze the present status of the role of sFRPs on neurodegeneration, their likely involvement, and potential implications in treatment modalities of AD. This information would provide valuable clues for the development of potential therapeutic targets for aberrant neurodegenerative disorders.  相似文献   

15.
In an attempt to combat the pain and damage generated by rheumatoid arthritis (ra), new drugs are being developed to target molecular aspects of the disease process. Recently, a major development has been the use of biologicals (antibodies and soluble receptors) that neutralise the activity of tumour necrosis factor alpha (TNF-alpha) and interleukin 1 (IL-1), both of which are involved in disease progression. An increase in our understanding of cell and molecular biology has resulted in the identification and investigation of potential new targets, and also the refinement and improvement of current therapeutic modalities. This review describes therapies that are approved, in clinical trials or under pre-clinical investigation at the laboratory level, particularly focusing on cytokines, although other therapeutic targets of interest are mentioned.  相似文献   

16.
Gene therapy for peripheral arterial disease   总被引:3,自引:0,他引:3  
Our understanding of the molecular biology of vascular disease is rapidly expanding, and this scientific growth has brought with it new opportunities for therapeutic intervention at the molecular and genetic levels. Although our tools for genetic manipulation in vivo and our knowledge of potential molecular targets are still crude and incomplete, the early application of these concepts to clinical problems is already underway, both in the pre-clinical and clinical arenas. The treatment of peripheral vascular disease, although greatly improved over recent decades by surgical and minimally-invasive techniques, remains limited by vascular proliferative lesions and by our inability to modulate the progression of native disease. This review explores some of the evolving concepts of therapeutic gene manipulation and their initial application in the peripheral circulation.  相似文献   

17.
Spinal cord injury (SCI) possesses a significant health and economic burden worldwide. Traumatic SCI is a devastating condition that evolves through two successive stages. Throughout each of these stages, disturbances in ionic homeostasis, local oedema, ischaemia, focal haemorrhage, free radicals stress and inflammatory response were observed. Although there are no fully restorative cures available for SCI patients, various molecular, cellular and rehabilitative therapies, such as limiting local inflammation, preventing secondary cell death and enhancing the plasticity of local circuits in the spinal cord, were described. Current preclinical studies have showed that fibroblast growth factors (FGFs) alone or combination therapies utilizing cell transplantation and biomaterial scaffolds are proven effective for treating SCI in animal models. More importantly, some studies further demonstrated a paucity of clinical transfer usage to promote functional recovery of numerous patients with SCI. In this review, we focus on the therapeutic capacity and pitfalls of the FGF family and its clinical application for treating SCI, including the signalling component of the FGF pathway and the role in the central nervous system, the pathophysiology of SCI and the targets for FGF treatment. We also discuss the challenges and potential for the clinical translation of FGF‐based approaches into treatments for SCI.  相似文献   

18.
Diabetes mellitus, especially type 2 diabetes, remains the dominant metabolic disease worldwide, with an expected increase in prevalence of over 50% in the next 20 years. Our knowledge about the pathophysiology of type 2 diabetes continues to be incomplete, with unmet medical need for new therapies. The characterization of the fibroblast growth factor (FGF) family and the discovery of endocrine FGFs provided new information on the mechanisms of regulation and homeostasis of carbohydrate metabolism. More specifically, FGF19 and FGF21 signaling pathways have been linked to different glucose metabolic processes, including hepatic glucose synthesis, glycogen synthesis, glucose uptake, and insulin sensitivity, among others, and these molecules have been further related to the pathophysiology of diabetes mellitus. In-depth comprehension of these growth factors may bring to light new potential therapeutic targets for the treatment of diabetes mellitus.  相似文献   

19.
Hu  Qin  Hao  Panpan  Liu  Qiji  Dong  Mei  Gong  Yaoqin  Zhang  Cheng  Zhang  Yun 《中国科学:生命科学英文版》2019,62(6):758-770
Epidemiological research has revealed a galaxy of biomarkers, such as genes, molecules or traits, which are associated with increased risk of atherosclerotic cardiovascular diseases(ASCVD). However, the etiological basis remains poorly characterized.Mendelian randomization(MR) involves the use of observational genetic data to ascertain the roles of disease-associated risk factors and, in particular, differentiate those reflecting the presence or severity of a disease from those contributing causally to a disease. Over the past decade, MR has evolved into a fruitful approach to clarifying the causal relation of a biomarker with ASCVD and to verifying potential therapeutic targets for ASCVD. In this review, we selected high-quality MR studies on ASCVD, examined the causal relationship of a series of biomarkers with ASCVD, and elucidated the role of MR in validating biomarkers as a therapeutic target by comparing the results from MR studies and randomized clinical trials(RCTs) for the treatment of ASCVD. The good agreement between the results derived by MR and RCTs suggests that MR could be performed as a screening process before novel drug development. However, when designing and interpreting a MR study, the assumptions and limitations inherent in this approach should be taken into account. Novel methodological developments, such as sensitivity analysis, will help to strengthen the validity of MR studies.  相似文献   

20.
Chronic kidney disease (CKD) is the gradual decrease in renal function. Currently available biomarkers are effective only in detecting late stage CKD. Biomarkers of early stage CKD and prognostic biomarkers are required. We review the major findings in urinary proteomics in CKD during the last five years. Significant progress has been made and today urinary proteomics is applied in large randomized trials, and in patient management. Many of the biomarkers indicate altered protease activity. We therefore also review the literature on proteases associated with renal function loss. We anticipate in silico prediction tools of protease activity and additional system biology studies may contribute to biomarker discovery and elucidate the role of proteases in CKD development and progression. These approaches will enable the deciphering of the molecular pathophysiology of CKD, and hence definition of the most appropriate therapeutic targets in the future. Together with stable biomarker panels available today, this will significantly improve patient management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号