首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The binding of the anti-tumor antibiotic anthramycin to a defined linear DNA fragment was investigated using both exonuclease III and lambda exonuclease. We show that most of the guanine residues are reactive toward anthramycin; however, several guanine residues showed preferential reactivity for the drug. Using purified UVRA, UVRB and UVRC proteins we present evidence that these three proteins in concert are able to recognize and produce specific strand cleavage flanking anthramycin-DNA adducts. The cleavage of anthramycin adducts by UVRABC nuclease is specific and results in strand breaks at five or six bases 5' and three or four bases 3'-flanking an adduct. At some guanine residues single incisions were observed only on one side of the adduct. The 5' strand breaks observed often occurred as doublet bands on sequencing gels, indicating plasticity in the site of 5' cleavage whereas the 3' cleavage did not show this effect. When DNA fragments modified with elevated levels of anthramycin were used as substrates the activity of the UVRABC nuclease toward the anthramycin adducts decreased. Possible mechanisms for the recognition and specific cleavage of the helix-stabilizing anthramycin DNA adduct and other helix destabilizing lesions by the UVRABC nuclease are discussed.  相似文献   

3.
The effect of chromatin structure on the binding of a chemical carcinogen to the genomic DNA was studied. The binding in vivo of the ultimate carcinogen, benzo-pyrene 7,8,-diol,-9,10-epoxide, to various regions of the SV40 chromosome was revealed by an immunological method. Particular attention was given to restriction fragments which include the origin of replication which is "non-nucleosomal" in a significant fraction of the chromosomes. The distribution of (+/-) trans-7,8-dihydrobenzo[alpha]pyrene-7,8-diol-9,10-epoxide (BPDE) adducts was studied in 1) SV40 DNA modified in vitro to a level of 20 adducts/molecule, 2) DNA from SV40 chromosomes modified in vivo to a level of less than 1 adduct, and 3) DNA from only those chromosomes with an open origin of replication. In other experiments, the binding of BPDE to the origin region was compared to the binding to nucleosome core particle DNA from the viral chromosome. The origin region bound 1.7-fold more BPDE than core DNA, while linker DNA is 3-fold more modified than core DNA. However, the origin region was only about 20% more modified than any other region of the chromosome. We conclude that while the conformation of the DNA in chromatin has a slight effect on its accessibility to the carcinogen, the SV40 chromosome does not contain a particular "hot spot" which is preferentially modified by BPDE.  相似文献   

4.
Changes in chromatin structure regulate gene expression and genome maintenance. Molecules that bind to the nucleosome, the complex of DNA and histone proteins, are key modulators of chromatin structure. Previous work indicated that cholesterol, a ubiquitous cellular lipid, may bind to chromatin in vivo, suggesting a potential function for lipids in modulating chromatin architecture. However, the molecular mechanisms of cholesterol's action on chromatin structure have remained unclear. Here, we explored the biophysical impact of cholesterol on nucleosome and chromatin fibers reconstituted in vitro and characterized in silico the cholesterol binding to the nucleosome. Our findings support that cholesterol assists 10 and 30 nm chromatin formation and induces folding of long chromatin fibers as a result of direct interaction of the cholesterol to six nucleosomal binding sites.  相似文献   

5.
6.
D E Graves  M P Stone  T R Krugh 《Biochemistry》1985,24(26):7573-7581
One- and two-dimensional 400-MHz proton NMR experiments are used to examine the solution structure of the covalent adduct formed by the interaction of anthramycin methyl ether with the self-complementary deoxyoligonucleotide d(ATGCAT)2. The concentration dependence of chemical shifts and nuclear Overhauser enhancement (NOE) experiments are utilized to assign the adenine H2 protons within the minor groove for both free d(ATGCAT)2 and the adduct. These studies demonstrate that one of the four adenine H2 protons is in close proximity to the bound anthramycin and this results in its upfield shift of 0.3 ppm compared to the adenine H2 protons of the free duplex. Effects of the covalent attachment of anthramycin to the d(ATGCAT)2 duplex result in an increased shielding of selected deoxyribose protons located within the minor groove of the adduct, as demonstrated by two-dimensional autocorrelated (COSY) NMR techniques. Interactions between the protons of the covalently attached anthramycin and the d(ATGCAT)2 duplex are determined by utilizing two-dimensional NOE (NOESY) techniques. Analysis of these data reveals NOE cross-peaks between the anthramycin methyl, H6, and H7 protons with specific deoxyoligonucleotide protons within the minor groove, thus allowing the orientation of the drug within the minor groove to be determined. Nonselective inversion recovery (T1) relaxation experiments are used to probe the structural and dynamic properties of the anthramycin-d(ATGCAT)2 adduct. These data suggest that the binding of anthramycin alters the correlation time of the d(ATGCAT)2 duplex and stabilizes both of the internal A X T base pairs with respect to solvent exchange.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A theoretical study is presented concerning DNA-anthramycin adducts. By explicit energy minimisations using a semi-empirical energy formula and an advanced algorithm the structural properties and the energetics of this system are analysed. The results obtained demonstrate that the formation of a covalently bound adduct in which anthramycin is attached to the N2 site of a guanine within a DNA fragment is accompanied by a considerable change in the nucleic acid conformation as confirmed by recent experimental evidence. With the use of the "SIR" methodology for treating DNA flexibility the general features of this change are characterised. The sequence specificity of anthramycin binding is investigated and the important role of sequence dependent nucleic acid flexibility brought to light. This theoretical treatment thus provides new elements for the interpretation of the origins of ligand binding specificities.  相似文献   

8.
Purified duck reticulocyte DNA was incubated in vitro with a 7,8-dihydrodiol-9,10-oxide derivative of benzo(a)pyrene (BPDE). The carcinogen-modified DNA was somewhat more susceptible to partial digestion by the single strand specific endonuclease S1 than unmodified DNA, suggesting slight denaturation of the helix at sites of modification. Chromatin was reconstituted in vitro utilizing this carcinogen-modified DNA and unmodified-chromatin associated proteins. This reconstituted chromatin showed the same kinetics and extent of digestion by Staphylococcal nuclease, and similar nucleosome profiles on sucrose density gradient centrifugation, as those obtained with native chromatin or chromatin reconstituted with unmodified DNA. Moreover, polyacrylamide gel electrophoresis of DNA fragments obtained from nuclease digests gel electrophoresis of DNA fragments obtained from nuclease digests of the reconstituted chromatins suggested that the chromatin containing carcinogen-modified DNA had the same subnucleosome structure as that reconstituted with unmodified DNA. In a separate set of studies intact duck reticulocyte chromatin was reacted directly with BPDE. Nuclease digestion studies indicated that 65% of the carcinogen was bound to the ‘open’ regions of chromatin, and 35% to ‘closed’ regions.These results indicate that although covalent binding of a benzo(a)pyrene (BP) derivative to DNA produces local distortions in conformation of the helix, this modification does not appear to interfere with the ability of the DNA to associate with histones to form nucleosome structures. In addition, although DNA in the open regions of chromatin is more susceptible to reaction with the BP derivative, there is appreciable reaction with the DNA associated with histones.  相似文献   

9.
10.
Cohesin, an SMC (structural maintenance of chromosomes) protein-containing complex, governs several important aspects of chromatin dynamics, including the essential chromosomal process of sister chromatid cohesion. The exact mechanism by which cohesin achieves the bridging of sister chromatids is not known. To elucidate this mechanism, we reconstituted a recombinant cohesin complex and investigated its binding to DNA fragments corresponding to natural chromosomal sites with high and low cohesin occupancy in vivo. Cohesin displayed uniform but nonspecific binding activity with all DNA fragments tested. Interestingly, DNA fragments with high occupancy by cohesin in vivo showed strong nucleosome positioning in vitro. We therefore utilized a defined model chromatin fragment (purified reconstituted dinucleosome) as a substrate to analyze cohesin interaction with chromatin. The four-subunit cohesin holocomplex showed a distinct chromatin binding activity in vitro, whereas the Smc1p-Smc3p dimer was unable to bind chromatin. Histone tails and ATP are dispensable for cohesin binding to chromatin in this reaction. A model for cohesin association with chromatin is proposed.  相似文献   

11.
MENT is a developmentally regulated heterochromatin-associated protein that condenses chromatin in terminally differentiated avian blood cells. Its homology to the serpin protein family suggests that the conserved serpin reactive center loop (RCL) and the unique M-loop are important for its function. To examine the role of these domains, we studied the interaction of wild-type and mutant MENT with naked DNA and biochemically defined nucleosome arrays reconstituted from 12-mer repeats containing nucleosome positioning sequences. Wild-type MENT folded the naked DNA duplexes into closely juxtaposed parallel structures ("tramlines"). Deletion of the M-loop, but not inactivation of the RCL, prevented tramline formation and the cooperative interaction of MENT with DNA. Reconstitution of wild-type MENT with nucleosome arrays caused their tight folding and self-association. M-loop deletion inhibited nucleosome array folding, whereas the inactive RCL mutant was competent to fold the nucleosome arrays, but had a significantly impaired ability to cause their self-association. Bifunctional chemical cross-linking of MENT revealed oligomerization of wild-type MENT in the presence of chromatin and DNA. This oligomerization was severely reduced in the RCL mutant. We propose that the mechanism of MENT-induced heterochromatin formation involves two independent events: bringing together nucleosome linkers within a chromatin fiber and formation of protein bridges between chromatin fibers. Ordered binding of MENT to linker DNA via its unique M-loop domain promotes the folding of chromatin, whereas bridging of chromatin fibers is facilitated by MENT oligomerization mediated by the RCL.  相似文献   

12.
The repair of anthramycin-DNA adducts by the UVR proteins in Escherichia coli follows two pathways: the adducts may be incised by the combined actions of UVRA, UVRB, and UVRC, or alternatively, the anthramycin may be removed by UVRA and UVRB in the absence of UVRC and with no DNA strand incision. To assess the competition between these two competing pathways, the rate of UVRABC-mediated excision repair of anthramycin-N2-guanine DNA adducts and the rate of UVRAB-mediated removal of the adduct were measured with single end-labeled DNAs under identical reaction conditions. UVR protein concentrations of 15 nM UVRA, 100 nM UVRB, and 10 nM UVRC protein were chosen to mimic in vivo concentrations. With these UVR protein concentrations and anthramycin-DNA concentrations of 1-2 nM the incision reaction and the release reactions are described by first-order kinetics. The rate of the UVRABC reaction, measured as the increase in incised fragments, was six to seven times faster than the rate of the UVRAB reaction, measured as the decrease in incised fragments. The UVRABC incision rate on anthramycin-modified linear DNA was four to five times the incision rate measured on the same DNA irradiated with ultraviolet light. We also investigated the role of the ATPase function of UVRB in UVRAB-mediated anthramycin removal. We found that a UVRB analogue with alanine at arginine 51, which retains near wild type ATPase activity, supported removal of anthramycin in the presence of UVRA, whereas a UVRB analogue with alanine at lysine 45, which abolishes the ATPase activity, did not. UVRB*, a specific proteolytic cleavage product of UVRB which retains the ATPase activity, did support removal of anthramycin in the presence of UVRA.  相似文献   

13.
Nucleosome positioning is an important mechanism for the regulation of eukaryotic gene expression. Folding of the chromatin fiber can influence nucleosome positioning, whereas similar electrostatic mechanisms govern the nucleosome repeat length and chromatin fiber folding in vitro. The position of the nucleosomes is directed either by the DNA sequence or by the boundaries created due to the binding of certain trans-acting factors to their target sites in the DNA. Increasing ionic strength results in an increase in nucleosome spacing on the chromatin assembled by the S-190 extract of Drosophila embryos. In this study, a mutant lac repressor protein R3 was used to find the mechanisms of nucleosome positioning on a plasmid with three R3-binding sites. With increasing ionic strength in the presence of R3, the number of positioned nucleosomes in the chromatin decreased, whereas the internucleosomal spacings of the positioned nucleosomes in a single register did not change. The number of the positioned nucleosomes in the chromatin assembled in vitro over different plasmid DNAs with 1-3 lac operators changed with the relative position and number of the R3-binding sites. We found that in the presence of R3, nucleosomes were positioned in the salt gradient method of the chromatin assembly, even in the absence of a nucleosome-positioning sequence. Our results show that nucleosome-positioning mechanisms are dominant, as the nucleosomes can be positioned even in the absence of regular spacing mechanisms. The protein-generated boundaries are more effective when more than one binding site is present with a minimum distance of approximately 165 bp, greater than the nucleosome core DNA length, between them.  相似文献   

14.
15.
为探索组蛋白浓度对核小体体外装配的影响,本研究表达纯化了4种组蛋白,通过控制实验反应体系中组蛋白的浓度,利用盐透析法在体外装配了核小体,检测分析了组蛋白浓度与核小体组装效率的关系。以此实验数据为基础,提出了核小体组装过程组蛋白浓度依赖性的动力学模型。实验结果发现,反应体系中组蛋白浓度与核小体生成量呈典型的线性关系。依据动力学理论模型,进行线性回归拟合,回归系数达到0.963;经计算601 DNA序列组装核小体的反应速率常数k为1.49×10^-5mL·h·μg^-1。CS1序列验证动力学模型的线性回归相关系数为0.989,反应速率常数为1.52×10^-5mL·h·μg^-1。该实验方法及动力学模型中反应速率常数k可用于评价相同长度的DNA序列组装核小体的能力、组蛋白与其突变体以及组蛋白变体之间形成核小体结构能力的差异。该动力学模型的建立为理解核小体装配、核小体定位、染色质结构等相关问题提供了理论指导。  相似文献   

16.
Wang D  Hara R  Singh G  Sancar A  Lippard SJ 《Biochemistry》2003,42(22):6747-6753
Nucleotide excision repair is a major cellular defense mechanism against the toxic effects of the anticancer drug cisplatin and other platinum-based chemotherapeutic agents. In this study, mononucleosomes were prepared containing either a site-specific cis-diammineplatinum(II)-DNA intrastrand d(GpG) or a d(GpTpG) cross-link. The ability of the histone core to modulate the excision of these defined platinum adducts was investigated as a model for exploring the cellular response to platinum-DNA adducts in chromatin. Comparison of the extent of repair by mammalian cell extracts of free and nucleosomal DNA containing the same platinum-DNA adduct reveals that the nucleosome significantly inhibits nucleotide excision repair. With the GTG-Pt DNA substrate, the nucleosome inhibits excision to about 10% of the level observed with free DNA, whereas with the less efficient GG-Pt DNA substrate the nucleosome inhibited excision to about 30% of the level observed with free DNA. The effects of post-translational modification of histones on excision of platinum damage from nucleosomes were investigated by comparing native and recombinant nucleosomes containing the same intrastrand d(GpTpG) cross-link. Excision from native nucleosomal DNA is approximately 2-fold higher than the level observed with recombinant material. This result reveals that post-translational modification of histones can modulate nucleotide excision repair from damaged chromatin. The in vitro system established in this study will facilitate the investigation of platinum-DNA damage by DNA repair processes and help elucidate the role of specific post-translational modification in NER of platinum-DNA adducts at the physiologically relevant nucleosome level.  相似文献   

17.
We have investigated the sequences of the mouse and human H19 imprinting control regions (ICRs) to see whether they contain nucleosome positioning information pertinent to their function as a methylation-regulated chromatin boundary. Positioning signals were identified by an in vitro approach that employs reconstituted chromatin to comprehensively describe the contribution of the DNA to the most basic, underlying level of chromatin structure. Signals in the DNA sequence of both ICRs directed nucleosomes to flank and encompass the short conserved sequences that constitute the binding sites for the zinc finger protein CTCF, an essential mediator of insulator activity. The repeat structure of the human ICR presented a conserved array of strong positioning signals that would preferentially flank these CTCF binding sites with positioned nucleosomes, a chromatin structure that would tend to maintain their accessibility. Conversely, all four CTCF binding sites in the mouse sequence were located close to the centre of positioning signals that were stronger than those in their flanks; these binding sites might therefore be expected to be more readily incorporated into positioned nucleosomes. We found that CpG methylation did not effect widespread repositioning of nucleosomes on either ICR, indicating that allelic methylation patterns were unlikely to establish allele-specific chromatin structures for H19 by operating directly upon the underlying DNA-histone interactions; instead, epigenetic modulation of ICR chromatin structure is likely to be mediated principally at higher levels of control. DNA methylation did, however, both promote and inhibit nucleosome positioning at several sites in both ICRs and substantially negated one of the strongest nucleosome positioning signals in the human sequence, observations that underline the fact that this epigenetic modification can, nevertheless, directly and decisively modulate core histone-DNA interactions within the nucleosome.  相似文献   

18.
The roles of histone tails as substrates for reversible chemical modifications and dynamic cognate surfaces for the binding of regulatory proteins are well established. Despite these crucial roles, experimentally derived knowledge of the structure and possible binding sites of histone tails in chromatin is limited. In this study, we utilized molecular dynamics of isolated histone H3 N-terminal peptides to investigate its structure as a function of post-translational modifications that are known to be associated with defined chromatin states. We observed a structural preference for α-helices in isoforms associated with an inactive chromatin state, while isoforms associated with active chromatin states lacked α-helical content. The physicochemical effect of the post-translational modifications was highlighted by the interaction of arginine side-chains with the phosphorylated serine residues in the inactive isoform. We also showed that the isoforms exhibit different tail lengths, and, using molecular docking of the first 15 N-terminal residues of an H3 isoform, identified potential binding sites between the superhelical gyres on the octamer surface, close to the site of DNA entry/exit in the nucleosome. We discuss the possible functional role of the binding of the H3 tail within the nucleosome on both nucleosome and chromatin structure and stability.  相似文献   

19.
We have confirmed the result that chicken beta-globin gene chromatin, which possesses the characteristics of active chromatin in erythroid cells, has shortened internucleosome spacings compared with bulk chromatin or that of the ovalbumin gene, which is inactive. To understand how the short (approximately 180-bp) nucleosome repeat arises specifically on beta-globin DNA, we have studied chromatin assembly of cloned chicken beta-globin DNA in a defined in vitro system. With chicken erythrocyte core histones and linker histone H5 as the only cellular components, a cloned 6.2-kb chicken beta-globin DNA fragment assembled into chromatin possessing a regular 180 +/- 5-bp repeat, very similar to what is observed in erythroid cells. A 2-kb DNA subfragment containing the beta A gene and promoter region, but lacking the downstream intergenic region between the beta A and epsilon genes, failed to generate a regular nucleosome array in vitro, suggesting that the intergenic region facilitates linker histone-induced nucleosome alignment. When the beta A gene was placed on a plasmid that contained a known chromatin-organizing signal, nucleosome alignment with a 180-bp periodicity was restored, whereas nucleosomes on flanking plasmid sequences possessed a 210-bp spacing periodicity. Our results suggest that the shortened 180-bp nucleosome spacing periodicity observed in erythroid cells is encoded in the beta-globin DNA sequence and that nucleosome alignment by linker histones is facilitated by sequences in the beta A-epsilon intergenic region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号