首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The CKI1-encoded choline kinase (ATP:choline phosphotransferase, EC 2.7.1.32) from Saccharomyces cerevisiae was phosphorylated in vivo on multiple serine residues. Activation of protein kinase A activity in vivo resulted in a transient increase in the phosphorylation of choline kinase. This phosphorylation was accompanied by a stimulation in choline kinase activity. In vitro, protein kinase A phosphorylated choline kinase on a serine residue with a stoichiometry (0.44 mol of phosphate/mol of choline kinase) consistent with one phosphorylation site/choline kinase subunit. The major phosphopeptide derived from the enzyme phosphorylated in vitro by protein kinase A was common to one of the major phosphopeptides derived from the enzyme phosphorylated in vivo. Protein kinase A activity was dose- and time-dependent and dependent on the concentrations of ATP (Km 2.1 microM) and choline kinase (Km 0.12 microM). Phosphorylation of choline kinase with protein kinase A resulted in a stimulation (1.9-fold) in choline kinase activity whereas alkaline phosphatase treatment of choline kinase resulted in a 60% decrease in choline kinase activity. The mechanism of the protein kinase A-mediated stimulation in choline kinase activity involved an increase in the apparent Vmax values with respect to ATP (2.6-fold) and choline (2.7-fold). Overall, the results reported here were consistent with the conclusion that choline kinase was regulated by protein kinase A phosphorylation.  相似文献   

2.
Choline acetyltransferase synthesizes acetylcholine in cholinergic neurons. In the brain, these neurons are especially vulnerable to effects of beta-amyloid (A beta) peptides. Choline acetyltransferase is a substrate for several protein kinases. In the present study, we demonstrate that short term exposure of IMR32 neuroblastoma cells expressing human choline acetyltransferase to A beta-(1-42) changes phosphorylation of the enzyme, resulting in increased activity and alterations in its interaction with other cellular proteins. Using mass spectrometry, we identified threonine 456 as a new phosphorylation site in choline acetyltransferase from A beta-(1-42)-treated cells and in purified recombinant ChAT phosphorylated in vitro by calcium/calmodulin-dependent protein kinase II (CaM kinase II). Whereas phosphorylation of choline acetyltransferase by protein kinase C alone caused a 2-fold increase in enzyme activity, phosphorylation by CaM kinase II alone did not alter enzyme activity. A 3-fold increase in choline acetyltransferase activity was found with coordinate phosphorylation of threonine 456 by CaM kinase II and phosphorylation of serine 440 by protein kinase C. This phosphorylation combination was observed in choline acetyltransferase from A beta-(1-42)-treated cells. Treatment of cells with A beta-(1-42) resulted in two phases of activation of choline acetyltransferase, the first within 30 min and associated with phosphorylation by protein kinase C and the second by 10 h and associated with phosphorylation by both CaM kinase II and protein kinase C. We also show that choline acetyltransferase from A beta-(1-42)-treated cells co-immunoprecipitates with valosin-containing protein, and mutation of threonine 456 to alanine abolished the A beta-(1-42)-induced effects. These studies demonstrate that A beta-(1-42) can acutely regulate the function of choline acetyltransferase, thus potentially altering cholinergic neurotransmission.  相似文献   

3.
New evidence is provided that rat liver choline kinase exists in several distinct forms (choline kinases I, II and III) which differ in isoelectric point, molecular size and antigenicity against anti-rat kidney choline kinase IgG. Remarkable and selective induction of the choline kinase II and choline kinase III forms of choline kinase was caused similarly by the administration of polycyclic aromatic hydrocarbon carcinogen, 3-methylcholanthrene or hepatotoxic carbon tetrachloride (CCl4). The immunochemical approach further indicated that the elevation in the activity of choline kinase in the 3-methylcholanthrene- or CCl4-treated rat liver was not accompanied by a parallel increase in the amount of choline kinase II enzyme protein, compatible with the induction of either a small amount of new enzyme protein(s) with very high specific activity or another enzyme which might catalyze post-translational modification of choline kinase.  相似文献   

4.
We investigated the mechanism by which estrogen stimulates pulmonary surfactant production in the fetal rabbit. Maternal administration of 17β-estradiol (5–75 μg) on day 25 of gestation resulted in a greater than twofold increase in the rate of choline incoporation into phosphatidylcholine in fetal lung slices on day 26 (full term = 31 days). Estrogen administration increased the activity of fetal lung cholinephosphate cytidylyltransferase by 62%. It had no effect on the liver enzyme. When assayed in the presence of phosphatidylglycerol fetal lung cholinephosphate cytidylyltransferase activity was increased 4.6-fold but it was not influenced by estrogen under these conditions. These findings suggest that estrogen stimulates cholinephosphate cytidyltransferase by increasing the activity of existing enzyme (possibly by increasing the amount of phosphatidylglycerol or other acidic phospholipid in the tissue) rather than by increasing the amount of enzyme-protein. Stimulation of fetal lung cholinephosphate cytidylyltransferase by estrogen as well as by glucocorticoids (Rooney, S.A., Gobran, L.I., Marino, P.A., Maniscalco, W.M., and Gross, I. (1979) Biochim. Biophys, Acta 572, 64–76) suggest that this enzyme may be rate-regulatory in the de novo biosynthesis of phosphatidylcholine.Estrogen administration also resulted in a 26% increase in the activity of pulmonary lysolecithin acyltransferase, an enzyme involved in the synthesis of disaturated, surface-active phosphatidylcholine. Lung choline kinase was slightly decreased following estrogen treatment bu ethanolaminephosphate cytidylyltransferase, cholinephosphotransferase, phosphatidate phosphatase and lysolecithin : lysolecithin acyltransferase were unaffected.  相似文献   

5.
Choline kinase in Cuscuta reflexa   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Choline kinase is a mitochondrial enzyme in Cuscuta reflexa. It can be solubilized from the particles by treatment with 350mm-sodium chloride, or by freezing and thawing. 2. Choline kinase of C. reflexa was purified by starting from the crude mitochondrial fraction. A 33-52% recovery of the enzyme, on the basis of the activity in the original homogenate, in 1200-2250-fold enrichment, was effected. 3. The purified preparation of choline kinase had a sigmoid saturation curve with respect to choline, with a Hill number of 2.3, and was inhibited by ADP (competitive in nature and allosteric in binding, with a Hill number of 2.7) and by phosphorylcholine (non-competitive and non-allosteric). The kinetic characteristics of the enzyme were consistent with the K type allosteric model of Monod et al. (1965). 4. The enzyme was desensitized, with respect to choline regulation, by prolonged storage in the cold, was activated significantly on warming before assay and was inactivated by high concentrations of sodium chloride. 5. The significance of allostery in choline kinase in relation to the intracellular regulation of phospholipid synthesis is discussed.  相似文献   

6.
CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this study, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Delta ura8Delta double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr(455) was a substrate for protein kinase A. A Thr(455) to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Delta ura8Delta mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine.  相似文献   

7.
Choline kinase (ATP:choline phosphotransferase, EC 2.7.1.32) has been isolated and purified 1000-fold from adult African Green monkey lung with a yield of 10%. The purified enzyme also phosphorylated ethanolamine (ratio of ethanolamine kinase to choline kinase = 0.30). This ratio remained constant throughout the purification procedure. The Km for choline (3.0 - 10(-5) M) was lower than that of ethanolamine (1.2 - 10(-3) M.) Choline was also found to inhibit ethanolamine kinase activity by 50% at a concentration of 0.005 mM, while ethanolamine inhibited choline only at very high concentrations (100--150 mM). When the enzyme was subjected to inactivation by heat, hemicholinium-3, trypsin digestion, and p-hydroxymercuribenzoate, both ethanolamine kinase and choline kinase activities were destroyed at the same rate. Freezing and thawing in the absence of glycerol also destroyed both activities at the same rate. Based on these findings, we conclude that in adult African Green monkey lung tissue, there is only one enzyme for the phosphorylation of ethanolamine and choline, and that choline phosphorylation predominates.  相似文献   

8.
Phosphorylation of human CTP synthetase 1 by mammalian protein kinase C was examined. Using purified Escherichia coli-expressed CTP synthetase 1 as a substrate, protein kinase C activity was time- and dose-dependent and dependent on the concentrations of ATP and CTP synthetase 1. The protein kinase C phosphorylation of the recombinant enzyme was accompanied by a 95-fold increase in CTP synthetase 1 activity. Phosphopeptide mapping and phosphoamino acid analyses showed that CTP synthetase 1 was phosphorylated on multiple serine and threonine residues. The induction of PKC1(R398A)-encoded protein kinase C resulted in a 50% increase for human CTP synthetase 1 phosphorylation in the Saccharomyces cerevisiae ura7Delta ura8Delta mutant lacking yeast CTP synthetase activity. Synthetic peptides that contain the protein kinase C motif for Ser(462) and Thr(455) were substrates for mammalian protein kinase C, and S462A and T455A mutations resulted in decreases in the extent of CTP synthetase 1 phosphorylation that occurred in vivo. Phosphopeptide mapping analysis of S. cerevisiae-expressed CTP synthetase 1 mutant enzymes phosphorylated with mammalian protein kinase C confirmed that Ser(462) and Thr(455) were phosphorylation sites. The S. cerevisiae-expressed and purified S462A mutant enzyme exhibited a 2-fold reduction in CTP synthetase 1 activity, whereas the purified T455A mutant enzyme exhibited a 2-fold elevation in CTP synthetase 1 activity (Choi, M.-G., and Carman, G.M. (2006) J. Biol. Chem. 282, 5367-5377). These data indicated that protein kinase C phosphorylation at Ser(462) stimulates human CTP synthetase 1 activity, whereas phosphorylation at Thr(455) inhibits activity.  相似文献   

9.
The cellular mechanism by which glucocorticoids stimulate phosphatidylcholine biosynthesis has been studied in the fetal rat lung in vivo and in cultured fetal rat lung cells of varying levels of complexity. Administration of dexamethasone to pregnant rats at 18 days gestation resulted in a significant increase in saturated phosphatidylcholine content in fetal lung 24 h after injection. Dexamethasone administration increased the activity of fetal lung choline-phosphate cytidylyltransferase by 34%. It had no effect on the activities of fetal lung choline kinase and choline phosphotransferase. Exposure of fetal lung type II cells in organotypic cultures (which contain both type II cells and fibroblasts) to cortisol resulted in a 1.6-fold increase in the incorporation of [Me-3H]choline into saturated phosphatidylcholine. The activities of the enzymes in the choline pathway for the de novo biosynthesis of phosphatidylcholine were not significantly altered except for a 105% increase in choline-phosphate cytidylyltransferase activity. Treatment of monolayer cultures of fetal type II cells with cortisol-conditioned medium from fetal lung fibroblasts resulted in a 1.5-fold increase in saturated phosphatidylcholine production. This effect correlated with a doubling of choline-phosphate cytidylyltransferase activity. Additional evidence that this stimulatory action is mediated by fibroblast-pneumonocyte factor, produced by fetal lung fibroblasts in response to cortisol, was obtained. The factor was partially purified from cortisol-conditioned medium of fetal lung fibroblasts by gel filtration and affinity chromatography. Based on biological activity, a 3000-fold purification was obtained. Stimulation of saturated phosphatidylcholine synthesis in type II cells by fibroblast-pneumonocyte factor was maximal within 60 min of incubation. Pulse-chase experiments indicated that the stimulatory effect was correlated with an increased conversion of choline phosphate into CDP choline. Moreover, the enhanced phosphatidylcholine formation by fetal type II cells in response to fibroblast-pneumonocyte factor was accompanied by decreased levels of cellular choline phosphate. These findings further support the concept that glucocorticoid action on surfactant-associated phosphatidylcholine synthesis occurs ultimately at the level of the alveolar type II cell and involves fibroblast-pneumonocyte factor which stimulates the activity of choline-phosphate cytidylyltransferase.  相似文献   

10.
Regulation of erythrocyte Ca2+ pump activity by protein kinase C   总被引:8,自引:0,他引:8  
Using either inside-out vesicles (IOV) prepared from human erythrocytes or purified Ca2+-ATPase from the same source, the effects of protein kinase C (Ca2+/phospholipid-dependent enzyme) on Ca2+ transport and Ca2+-ATPase activity were measured. Incubation of IOV with protein kinase C in the presence, but not absence, of either 12-O-tetradecanoylphorbol-13-acetate or diolein led to a Ca2+-dependent stimulation of ATP-dependent calcium uptake. The effect was a 5-7-fold increase of Vmax without a significant change in the apparent Km for Ca2+. By comparison, the effect of calmodulin was a 14-fold stimulation of Vmax and a 4-fold reduction in apparent Km. The effect of protein kinase C and calmodulin on Ca2+ uptake were nearly additive. Stimulation of IOV Ca2+ transport by protein kinase C was entirely reversible by treatment of activated IOV with alkaline phosphatase. Incubation of purified Ca2+-ATPase with protein kinase C in the presence of 12-O-tetradecanoylphorbol-13-acetate or diolein led to a stimulation of Ca2+-dependent ATPase activity. These results indicate that protein kinase C stimulates the activity of the plasma membrane Ca2+ pump by a direct effect on the pump protein.  相似文献   

11.
A new model system for the study of phosphatidylcholine biosynthesis is presented. Young rats were fed a diet that contained 5% cholesterol and 2% cholate. After 6 days there was a 2-fold increase in the concentration of plasma phospholipid (243 mg/dl compared to 132 mg/dl for control animals) and a 3-fold increase in the concentration of plasma phosphatidylcholine. The rate of phosphatidylcholine biosynthesis was measured after injection of [Me-3H]choline into the portal veins. The incorporation of tritium into choline, phosphocholine and betaine by liver was similar for experimental and control animals, whereas there was a 3-fold increased incorporation into phosphatidylcholine of the cholesterol/cholate-fed rats. The activities of the enzymes of phosphatidylcholine biosynthesis in cytosol and microsomes were assayed. The only change detected was in the cytosolic and microsomal activities of CTP: phosphocholine cytidylyltransferase which were increased more than 2-fold in specific activity. When total cytidylyltransferase activity per liver was determined, a dramatic translocation of the enzyme to microsomes was observed. The control livers had 24% of the cytidylyltransferase activity associated with microsomes, whereas this value was 61% in the livers from cholesterol/cholate-fed rats. When the cytosolic cytidylyltransferase was assayed in the presence of phospholipid, the enzyme was stimulated several-fold and the difference in specific activity between control and cholesterol/cholate-fed rats was abolished. The increased activity in cytosol appears to be the result of a 2-fold increase in the amount of phospholipid in the cytosol from cholesterol/cholate-fed rats. The data strongly support the hypothesis that the special diet stimulates phosphatidylcholine biosynthesis by causing a translocation of the cytidylyltransferase from cytosol to microsomes where it is activated.  相似文献   

12.
1. Injection of triiodothyronine to rats stimulates protein kinase activity in liver chromatin nonhistone proteins. A significant increase was found after two daily injections. A 4-fold increase was observed with the purified enzyme after eight daily injections of the hormone. No variations were observed in cytosol protein kinase activity. Electrophoretic pattern, effect of heat denaturation, effect of p-hydroxymercuribenzoate seem to indicate that the enzyme present in treated rats is not identical to the enzyme in control animals, which suggests that thyroid hormone has induced nuclear protein kinase. Diiodothyronine, 3, 3', 5'-triiodothyronine have no effect on protein kinase. 2. Chromatin non-histone proteins isolated from rats injected with triiodothyronine incorporated more 32P when incubated with [gamma-32P]ATP than the chromatin proteins from untreated rats. Thyroidectomy reduced the in vitro 32P incorporation. It is suggested that some of the biological activity of thyroid hormone could be mediated through its effect on chromatin non-histone proteins.  相似文献   

13.
The effect of c-Ha-ras transfection on phosphatidylcholine biosynthesis of the keratinocyte cell line HaCaT was investigated. It was shown that ras-transfection caused a 3-fold increase of choline incorporation into phosphatidylcholine. By investigating the mechanisms underlying this phenomenon, two targets were obtained. First, the choline uptake was elevated by 2-fold in ras-transfected HaCaT cells as compared with untransfected HaCaT cells, and second, the activity of the rate-limiting enzyme of phosphatidylcholine biosynthesis, CTP:phosphocholine cytidylyltransferase, was increased by 43%. Stimulation of HaCaT cells and ras-transfected HaCaT cells with oleate revealed that the increased activity of cytidylyltransferase might be due to a higher level of enzyme. In these experiments, a 75% increase of the specific activity of fully stimulated, membrane-bound cytidylyltransferase was found in ras-transfected HaCaT cells. Choline kinase which has been previously descrived as a target of ras-transfection in fibroblasts was unaffected.  相似文献   

14.
Choline kinase in rat liver has been shown to be induced up to 2-fold by the administration of polycyclic aromatic hydrocarbon carcinogens such as 3-methylcholanthrene and 3,4-benzo[a]pyrene (Ishidate, K., Tsuruoka, M. and Nakazawa, Y., (1980) Biochem. Biophys. Res. Commun. 96, 946-952). In order to characterize the nature of choline kinase induction by these carcinogens, the 3-methylcholanthrene-induced form as well as the normal form of choline kinase were partially purified from rat liver cytosol through acid treatment, (NH4)2SO4 precipitation and DEAE-cellulose column chromatography with linear KCl-gradient elution, and the catalytic properties were compared between the two preparations. Both enzyme activities were purified about 17-fold with a yield of 50% through the purification steps and there appeared no detectable difference in the elution pattern from either DEAE-cellulose column or Sephadex G-200 gel filtration. On the other hand, some differences were observed in catalytic properties between the two enzyme preparations; (1) the induced form showed a higher apparent Km value for choline (0.19 mM) when compared to the normal form (0.11 mM) and (2) the addition of polyamines caused a considerable increase in the maximum reaction velocity for the normal form whereas no remarkable change for the induced form, when the activities were plotted as a function of choline concentration. The overall results suggest that the 3-methylcholanthrene-induced form of choline kinase in rat liver could be different from the normal form, or that there exist several isoenzymes of choline kinase in rat liver, and one or some of them are inducible by the administration of polycyclic aromatic hydrocarbons.  相似文献   

15.
A Fe2+ stimulatory protein kinase in human plasma is demonstrated. This enzyme was partial purified from the 100,000 X g supernatant of human plasma by using (NH4)2SO4 fractionation. The activity of this protein kinase existed in 30-50% fraction. The effect of various compounds on the activity of this partial purified protein kinase was studied. The Fe2+ stimulates 5 to 10-fold of the protein kinase activity. The maximum concentration of Fe2+ to stimulate the activity of this plasma protein kinase was 2 mM. Double reciprocal plot for the stimulation showed that Fe2+ increased the Vm but not the Km for ATP. Other divalent compounds such as MgCl2, Mg(Oac)2, MnCl2 and BaCl2 were less effective.  相似文献   

16.
Ethanolamine kinase has been purified to homogeneity from germinating soya bean (Glycine max L.) seeds. The purified enzyme had a molecular weight of 17--19 000 as estimated by gel filtration and sodium dodecyl suphate-polyacrylamide gel electrophoresis. It would not phosphorylate choline, had a Km for ethanolamine of 8 microM and utilised Mg-ATP. The kinase could be purified in a 37 000 molecular weight form (dimer) which would easily dissociate on storage. In contrast to ethanolamine kinase whose activity was unaffected by the presence of choline in the assay system, soya bean choline kinase, although not phosphorylating ethanolamine, was competitively inhibited by the latter. The purification of specific choline and ethanolamine kinases from germinating soya bean confirmed in vivo observations which had indicated separate enzymes.  相似文献   

17.
Illumination of maize leaves increases the phosphorylation state of phosphoenolpyruvate carboxylase and reduces the sensitivity of the enzyme to feedback inhibition by malate. Red, white and blue light were each found to be equally potent, and the effect of light was blocked by 3(3,4-dichlorophenyl)-1,1-dimethylurea. A phosphoenolpyruvate carboxylase kinase was partially purified from illuminated maize leaves by a three-step procedure. Phosphorylation of phosphoenolpyruvate carboxylase by this protein kinase reached 0.7-0.8 molecules/subunit and correlated with a 3- to 4-fold increase in Ki for malate. The protein kinase was inhibited by L-malate, but was insensitive to a number of other potential regulators. Freshly prepared and desalted extracts of darkened maize leaves contained very little kinase activity, but the activity appeared when leaves were illuminated for 30-60 min before extraction. The catalytic subunit of protein phosphatase 2A from rabbit skeletal muscle, but not that of protein phosphatase 1, could dephosphorylate phosphoenolpyruvate carboxylase. The protein phosphatases 1 and 2A activities of maize leaves were not affected by illumination. It is suggested that the major means by which light stimulates the phosphorylation of phosphoenolpyruvate carboxylase is by an increase in the activity of the protein kinase.  相似文献   

18.
Choline kinase and ethanolamine kinase were completely co-purified from rat kidney cytosol through acid treatment, ammonium sulfate fractionation, DEAE-cellulose column chromatography, Sephadex G-150 gel filtration followed by choline-Sepharose affinity chromatography. The final preparation appeared to be highly homogeneous with respect to both native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Ishidate, K., Nakagomi, K. and Nakazawa, Y. (1984) J. Biol. Chem. 259, 14706-14710). Throughout the purification steps, the ratio of ethanolamine kinase activity to choline kinase activity was almost constant in a range of 0.3-0.4, which strongly indicated that, in rat kidney, both activities could reside on a single enzyme protein. The rabbit polyclonal antibody raised against highly purified rat kidney choline (ethanolamine) kinase protein inhibited both choline and ethanolamine kinase activities in a parallel manner in crude enzyme preparations not only from rat kidney, but also from rat liver, lung and intestinal cytosols. The results, together with our previous findings, suggested strongly that, in rat tissues, at least large portions of both kinase activities are present on the same enzyme protein(s). The kinetic properties of both kinase reactions with the highly purified kidney enzyme were compared in some detail and the overall result suggested that choline kinase and ethanolamine kinase activities may not have a common active site on a single enzyme protein.  相似文献   

19.
The regulation of choline kinase (EC 2.7.1.32), the initial enzyme in the CDP-choline pathway, was examined in Saccharomyces cerevisiae. The addition of myo-inositol to a culture of wild-type cells resulted in a significant decrease in choline kinase activity. Additional supplementation of choline caused a further reduction in the activity. The coding frame of the choline kinase gene, CK1, was joined to the carboxyl terminus of lacZ and expressed in Escherichia coli as a fusion protein, which was then used to prepare an anti-choline kinase antibody. Upon Western (immuno-) and Northern (RNA) blot analyses using the antibody and a CK1 probe, respectively, the decrease in the enzyme activity was found to be correlated with decreases in the enzyme amount and mRNA abundance. The molecular mass of the enzyme was estimated to be 66 kilodaltons, in agreement with the value predicted previously from the nucleotide sequence of the gene. The coding region of CK1 was replaced with that of lacZ, and CK1 expression was measured by assaying beta-galactosidase. The expression of beta-galactosidase from this fusion was repressed by myo-inositol and choline and derepressed in a time-dependent manner upon their removal. The present findings indicate that yeast choline kinase is regulated by myo-inositol and choline at the level of mRNA abundance.  相似文献   

20.
Rat liver tyrosine aminotransferase was purified 200-fold and an antiserum raised against it in rabbits. 2. Hepatic tyrosine aminotransferase activity was increased fourfold by tyrosine, twofold by tetracycline, 2.5-fold by cortisone 21-acetate and ninefold by a combination of tyrosine and cortisol administered intraperitoneally to rats. 3. Radioimmunoassay with 14C-labelled tyrosine aminotransferase, in conjunction with rabbit antiserum against the enzyme, revealed that cortisol stimulates the synthesis of the enzyme de novo, but that tetracycline has no such effect. 4. Incubation of rat liver homogenates with purified tyrosine aminotransferase in vitro leads to a rapid inactivation of the enzyme, which tetracycline partially inhibits. 5. The inactivation is brought about by intact lysosomes, and the addition of 10mM-cysteine increases the rate of enzyme inactivation, which is further markedly increased by 10mM-Mg2+ and 10mM-ATP. Here again tetracycline partially inhibits the decay rate, leading to the inference that the increase of tyrosine aminotransferase activity in vivo by tetracycline is brought about by the latter inhibiting the lysosomal catheptic action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号