首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • 1.1. Parotid plasma membrane nonpump low-affinity Ca2+-ATPase, which possesses high-affinity (Ca2+ + Mg2+ )-ATPase activity, was characterized.
  • 2.2. Purified Ca2+-ATPase hydrolyzed the nucleoside triphosphates, GTP, ITP, CTP, UTP, TTP (67–93% of ATP) and nucleoside diphosphates, ADP. GDP, IDP, CDP, TDP (12–40% of ATP) but not AMP and p-NPP.
  • 3.3. The maximum activities of Ca2+- and (Ca2+ +Mg2+ )-ATPases were obtained in the presence of 1 mM and 0.13 μ M Ca2+, respectively.
  • 4.4. The Km values for Ca2+ in Ca2+- and (Ca2++ Mg2+ )-ATPases were 0.2 mM and 22 nM. respectively.
  • 5.5. The activities of both Ca2+- and (Ca2+ + Mg2+ )-ATPases were found in the right-side-out-vesicles obtained from the plasma membrane-rich fraction.
  • 6.6. These features suggest that Ca2+-ATPase is an ecto-Ca2+-dependent nucleoside triphosphatase.
  相似文献   

2.
  • 1.1. Homogenates of gills from the freshwater shrimp M. amazonicum exhibit the following ATPase activities: (i) a basal, Mg2+-dependent ATPase; (ii) an ouabain-sensitive, Na+ + K+-stimulated ATPase; (iii) an ouabain-insensitive, Na+-stimulated ATPase; and (iv) an ouabain-insensitive, K+-stimulated ATPase.
  • 2.2. K+ suppresses the Na+-stimulated ATPase activity in a mixed-type kind of inhibition, whereas Na+ does not exert any noticeable effect on the K+-stimulated ATPase activity.
  • 3.3. The Na+- and the K+-stimulated ATPase activities are totally inhibited by 5 mM ethacrynic acid in the incubation medium.
  • 4.4. The Na+- and the K+-stimulated ATPase activities are not expressions of the activation of a Ca-ATPase.
  • 5.5. The possible localization and roles of the described ATPases within the gill epithelium are briefly discussed and evaluated.
  相似文献   

3.
  • 1.1. Evidence was obtained that activities of both low-affinity Ca2+-ATPase and high-affinity (Ca2+ + Mg2+)-ATPase in the plasma membrane-rich fraction from bovine parotid gland reside on the same enzyme.
  • 2.2. Two solubilized ATPases were purified by four steps of HPLC; and both activities eluted at the same fractions from each column, and the specific activity ratio of the two enzymes at each step was constant.
  • 3.3. By non-denaturing PAGE, the final preparation gave a single band for both protein staining and activity staining for the two ATPases; and the Ca2+-ATPase activity comigrated with that of (Ca2+ + Mg2+)-ATPase.
  • 4.4. In SDS-PAGE, each activity staining for the ATPases also gave a single band, and both activities comigrated.
  • 5.5. These findings suggest that Ca2+-ATPase and (Ca2+ + Mg2+)-ATPase are a single enzyme.
  相似文献   

4.
  • 1.1. The objective of the present study was to determine the effect of age and taurine on chick B cell calcium uptake and membrane (Ca2+ + Mg2+)-ATPase activity in 1–4-week-old chicks.
  • 2.2. The calcium uptake rate decreased with age (P < 0.05) and was further decreased by taurine (P < 0.05).
  • 3.3. (Ca2+ + Mg2+)-ATPase activity increased with age (P < 0.05) and was stimulated by taurine (P < 0.05).
  • 4.4. The data demonstrate that the flux of calcium across the B-cell membrane changes during early post-hatch development, and that taurine regulates both the influx and efflux of calcium in chick B-cells.
  相似文献   

5.
  • 1.1. The inhibition kinetics of sheep brain butyrylcholinesterase (BChE) (acylcholine acylhydrolase, EC 3.1.1.8) by Cd2+ and Zn2+ has been studied.
  • 2.2. Ks has been determined as 0.14mM. Cd2+ and Zn2+ were the hyperbolic mixed-type inhibitors of BChE. Ca2+ and Mg2+ had no effect on the enzyme activity in the experimental conditions.
  • 3.3. But when the enzyme was inhibited by 0.1 mM Cd2+ or Zn2+, Ca2+ and Mg2+ reactivated the inhibited form of BChE.
  相似文献   

6.
  • 1.1. Smooth myosin B and myosin A were prepared from dog colon and their enzymatic properties were studied.
  • 2.2. Colonic myosin B with two light chain corresponding to L2 and L3 in skeletal myosin showed much lower ATPase activities than rabbit skeletal myosin B.
  • 3.3. The Mg2+-ATPase of myosin B was activated at high magnesium concentrations with the maximum activation between 10−3 and 10−2M and showed only a slight dependence on KCl concentration. On the other hand, Mg2+-ATPase activity of myosin A decreased with decreasing KCI concentration, suggesting the activation by actin of colonic myosin ATPase as much as skeletal myosin ATPase.
  • 4.4. The pH dependence of Ca2+-ATPase showed a U-shaped curve although above pH 8.5 the activity was suppressed rapidly. The activity-ionic strength curve indicated that Ca2+- and ethylenediamine-tetraacetic acid (EDTA)-ATPase activities increased with increasing KCI concentration.
  • 5.5. Mg2+-ATPase was fairly stable to urea treatment, whereas EDTA- and Ca2+-ATPase were activated by a low concentration of urea, followed by an inhibition.
  • 6.6. These results were discussed as compared with those of skeletal myosin B.
  相似文献   

7.
  • 1.1. In the plasma membrane of mussel gill cells an ouabain insensitive, Ca2+-activated ATPase activity is present. The ATPase has high Ca2+ affinity (Kma = 0.3 μM).
  • 2.2. The optimum assay conditions to evaluate the enzymatic activity of the Ca2+-stimulated ATPase at 19°C are: 120–300 mM KCl ionic strength, pH 7.0 and 2 mM ATP. As for mammalian enzymes, the Ca2+ ATPase activity is stimulated by DTT (0.5–1 mM) and it is inhibited by low concentrations of vanadate (10–50 μM) and -SH inhibitors such as PCMB and PCMBS (10 μM); the enzyme appears to be calmodulin insensitive.
  • 3.3. Electrophoretic analyses of plasma membrane proteins demonstrate that: (a) Ca2+ at n-μM concentrations is necessary to activate ATP hydrolysis with consequent formation of the enzyme-phosphate complex; (b) the steady state concentration of the phosphorylated intermediate is increased in the presence of La3+; (c) the mol. wt of Ca2+ ATPase is about 140 kDa.
  • 4.4. Low Ca2+ concentrations (n-μM) are sufficient to stimulate the ATP-dependent Ca2+ uptake by plasma membrane inside-out vesicles.
  • 5.5. The results indicate that the Ca2+ pump present in the gill plasma membranes could be responsible for Ca2+ extrusion and therefore involved in maintaining the cytosolic Ca2+ concentration within physiological levels.
  相似文献   

8.
  • 1.1. Heparin stimulates the activity of nonactivated and activated skeletal muscle phosphorylase kinase in a Ca2+-dependent manner.
  • 2.2. The stimulatory effect of heparin on the activity of nonactivated phosphorylase kinase is also expressed in the presence of calmodulin and glycogen. Heparin acted in synergism with glycogen.
  • 3.3. Heparin increases the affinity of phosphorylase kinase to Ca2+ 5–12 fold depending upon the activation conditions.
  • 4.4. Ca2+ influences the stimulation of liver phosphorylase kinase by heparin in a similar way.
  相似文献   

9.
  • 1.1. A subcellular fractionation procedure for bovine adrenal glands was designed with the aim to study the biochemical properties of Ca2+ stores in chromaffin cells.
  • 2.2. The thapsigargin-sensitive compartment of Ca2+ stores was found to be highly enriched in a light microsomal fraction (LMF) on a 15–30% linear sucrose gradient, and was found to be essentially devoid of contamination by plasma, mitochondrial or secretory granule membranes.
  • 3.3. A Ca2+-pumping ATPase was identified in this LMF as a 97 kDa protein forming an acid-stable, Ca2+-dependent, thapsigargin-sensitive phosphorylated intermediate upon incubation with [γ-32P]ATP, suggesting this protein to represent a SERCA-3 isoform of Ca2+ ATPases.
  • 4.4. A major 162 kDa protein, previously demonstrated in the isolated chromaffin cells, was enriched in the LMF, distributing on sucrose gradients in parallel with the thapsigargin-sensitive Ca2+ uptake.
  • 5.5. LMF appears to represent a part of the thapsigargin-sensitive Ca2+ store of chromaffin cells, and should be useful for further studies of the store properties at the subcellular and molecular level.
  相似文献   

10.
  • 1.1. As reported previously (Hopper and Robinson, 1990; Int. J. Biochem. 22, 1165–1170) the sea urchin extraembryonic coat protein hyalin undergoes a Ca2+-induced self-association into an insoluble gel (gelation) in the presence of Mg2+ and/or NaCl.
  • 2.2. A 275 kDa peptide fragment, generated by limited tryptic digestion of hyalin, binds Ca2++ but does not undergo gelation in the presence of Ca2+, Mg2+ and NaCl.
  • 3.3. Comparisons between the capacities of hyalin and the 275 kDa peptide fragment to bind Ca2+ indicate that the latter binds 88% less Ca2+ than hyalin.
  • 4.4. However, the presence of Ca2+ alone, at a concentration of 5 mM, protects the 275 kDa peptide fragment from further digestion by trypsin mimicking the effect of this cation in protecting hyalin.
  • 5.5. Gel exclusion Chromatographie analyses of the 275 kDa peptide fragment, both in the presence and absence of 5 mM Ca2+, indicate that this cation does induce self-association of the fragment.
  • 6.6. These results provide information on the organization of the functional domains on hyalin which are required for gel formation.
  相似文献   

11.
  • 1.1. Two components of Ca2+-Mg2+-ATPase are observed in kidneys of G. mirabilis. The high-affinity component has a K0.5Ca of 0.23μM; the low-affinity activity K0.5Ca is 90–110μM. The high-affinity activity requires Mg2+, displays Michaelis-Menten kinetics, has peak activity at 1.2 μM Ca2+, and is insensitive to ouabain and Na+ azide.
  • 2.2. In subcellular fractions, the high-affinity component segregates with Na+-K+-ATPase and is localized predominantly in BLM. The low-affinity component is broadly distributed among membranous organelles, including brush border, and may be equivalent to alkaline phosphatase.
  • 3.3. Specific activity of the high-affinity Ca2+-Mg2+-ATPase is modestly increased following adaptation of fish to FW, but total renal high-affinity activity is greatest in the hypertrophied kidneys of FW-adapted fish and is least in kidneys of fish adapted to 200% SW.
  • 4.4. High-affinity Ca2+-Mg2+-ATPase may be associated with active Ca2+ transport or with regulation of intracellular Ca2+ concentration of tubular cells.
  相似文献   

12.
  • 1.1. Ca2+ uptake, Ca2+-dependent ATPase activity and halothane-induced Ca2+ release from the heavy sarcoplasmic reticulum fraction of muscle from malignant hyperthermia susceptible individuals are similar to those of normal human muscle.
  • 2.2. Ca2+-induced Ca2+ release from the diseased muscle was increased by 13%.
  相似文献   

13.
  • 1.1. Vesicles from the sarcoplasmic reticulum of lobster muscle accumulate Ca2+ if supplied with ATP as an energy source. A search was undertaken for inhibitors of Ca2+ transport.
  • 2.2. p-Hydroxymercuribenzoate can completely inhibit Ca2+ transport and ATP hydrolysis. 2–4 Dinitrophenol inhibits uptake but not hydrolysis.
  • 3.3. Sr2+, Ba2+ and Zn2+ inhibit uptake, perhaps by competing with Ca2+ for a carrier.
  • 4.4. The vesicles contain acetylcholinesterase. Anticholinesterases can reduce —but not abolish—Ca2+ uptake. Acetylcholine has no effect on the activity of the vesicles.
  • 5.5. Ca2+ uptake is not affected by Mn2+, glutamate, pilocarpine, carnosine, caffeine, strophanthidin or tetraethylammonium.
  • 6.6. K+ is needed for maximal activity of the uptake system but not for ATP hydrolysis. Apparently K+ enhances the coupling between the energy supply and the carrier mechanism.
  相似文献   

14.
  • 1.1. Ion dependence and vanadium-induced inhibition on branchial sac ATPase in five species of ascidian Phlebobranchiata (vanadium-accumulating) and Stolidobranchiata (iron-accumulating) were studied.
  • 2.2. The ATPase was obtained from the microsomal fraction, which was prepared from each ascidian branchial sac.
  • 3.3. The ATPase was dependent on Mg2+ and activated by exogenous Na+ + K+.
  • 4.4. Ouabain inhibited the ATPase activity in vitro, 10 μM to 100 μM vanadate, in vitro, suppressed the (Na+, K+)-ATPase.
  相似文献   

15.
  • 1.1. The activation energy of the membrane bound H+-pyrophosphatase is 44.9 k J·mol−1, for the detergent solubilized enzyme is 55.9 kJ·mol−1.
  • 2.2. The Arrhenius plots obtained for pyrophosphatases of Rhodospirillum rubrum show no breaks.
  • 3.3. At 70°C, the membrane-bound pyrophosphatase is more stable in the presence of either Mg2+ or Zn2+ than in their absence.
  • 4.4. At 65°C, an activator effect of Mg2+ or Zn2+ was observed. Nevertheless, at 70°C no activation was obtained.
  • 5.5. The activator effects of Mg2+ or Zn2+ were depended of their concentration.
  相似文献   

16.
  • 1.1. As reported previously (Robinson, 1988) the Ca2+-induced self-association reaction of the protein hyalin, purified from the sea urchin extraembryonic hyaline layer, was modulated by both Mg2+ and NaCl.
  • 2.2. In the presence of 400 mM NaCl the apparent dissociation constant (Ca2+) decreased five-fold from 4.8 ± 1.1 mM in the absence to 0.9 ± 0.5 mM in the presence of 20 mM Mg2+.
  • 3.3. The potentiating effect of Mg2+ occurred with an apparent dissociation constant (Mg2+) of 4.6 ± 0.5mM.
  • 4.4. In the absence of Ca2+ or NaCl hyalin dissociated from isolated hyaline layers indicating that the behavior of hyalin within the layer is predictable from results obtained with the purified protein.
  相似文献   

17.
  • 1.1. Release of creatine kinase (CK) in the Ca2+ paradox of the Langendorff-perfused rat heart is dependent on the conditions of Ca2+ depletion and Ca2+ repletion.
  • 2.2. CK release is reduced by raising [Ca2+]o during Ca2+ depletion and progressively increased by extending the Ca2+ free period from 2 to 5 min.
  • 3.3. CK release is reduced by decreasing the electrochemical gradient for Ca2+ during Ca2+ repletion.
  • 4.4. The findings are discussed in the light of current hypotheses for the biochemical mechanisms that underlie the Ca2+ paradox.
  相似文献   

18.
  • 1.1. The purpose of this study was to determine whether biochemical changes of skeletal muscle that occur as a result of exercise in young rats persist into adulthood.
  • 2.2. Littermates (10 days old) were assigned to a 3, 6 and 12 week control or training group. In addition, a rest-exercise group (R-E) and exercise-rest (E-R) group were included.
  • 3.3. The rest-exercise and exercise-rest rats were maintained for the 12 weeks with the first 6 weeks being either rest or exercise and the condition reversed during the last 6 weeks of the experiment.
  • 4.4. Myofibril ATPase activity of rat plantaris increased from the 10d to 12 week animals (P < 0.05). As anticipated, training resulted in a lowered activity at 6 and 12 weeks compared to controls.
  • 5.5. The Ca2+ uptake and Ca2+-ATPase activity of the sarcoplasmic reticulum followed a similar pattern.
  • 6.6. With regard to the exercise-rest rats, the myofibril and SR ATPase activities at 12 weeks were comparable to the 12 weeks control rats.
  • 7.7. The rest-exercise group approximated the 12 week training group with regard to myofibril and SR ATPase activities (P > 0.05).
  • 8.8. The results suggest that the training adaptations that occur during development of skeletal muscle return to normal, when training ceases in the adult rat.
  • 9.9. Furthermore, animals that started to train prior to puberty do not have a greater capacity to adapt than animals which initiated training during adulthood.
  相似文献   

19.
  • 1.1. Crude extract of the whole digestive tract from the brown shrimp (P. californiensis) was investigated for digestive amylase activity.
  • 2.2. Considerable amylase activity was found at pH 6.5–8.0, with optimum pH at around 7.5.
  • 3.3. Optimum temperature was found between 30–40°C, similar to amylases from other crustaceans.
  • 4.4. Amylase activity was highly halotolerant, having 50% maximum activity at 3 M NaCl.
  • 5.5. Maximum amylase activity was found at 0.01 M NaCl.
  • 6.6. Amylase activity was partially inhibited by the divalent ions Hg2+, Zn2+, Cu2+ and Cr2+.
  • 7.7. Mg2+ and Ca2+ ions seemed to enhance amylase activity.
  相似文献   

20.
  • 1.1. Goldfish were kept in deionized water (DW), DW + Na+ (0.35 mM), DW + K+ (0.05 mM), DW + Ca2+ (2mM) and DW + Mg2+ (0.2 mM). In Ca-free environments, prolactin cells appear unaffected. Stimulated calcium-sensitive cells (pars intermedia) may elaborate a hypercalcemic factor.
  • 2.2. Fecal excretion, reduced in all groups, remains noticeable in DW + Ca2+
  • 3.3. Ionic losses, very low in all groups, are minimal in DW. Supplementation with K+ increases Na+ loss.
  • 4.4. Plasma Na+ Ca2+, and osmolarity decrease in DW, and still more in DW + K+. Ca2+' and Mg2+ partly suppress hyponatremia.
  • 5.5. In goldfish kept in DW and subsequently in DW + Ca2+, calcemia increases.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号