首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
1. 1. Incubation of isolated hepatocytes with glucagon (10−6 M) or dibutyryl cyclic AMP (0.1 mM) causes a decrease in pyruvate kinase activity of 50%, measured at suboptimal substrate (phosphoenolpyruvate) concentrations and 1 mM Mgfree2+. The magnitude of the decrease in activity is not influenced by the applied extracellular concentrations of lactate (1 and 5 mM), glucose (5 and 30 mM) or fructose (10 and 25 mM). With all three substrates comparable inhibition percentages are induced by glucagon or dibutyryl cyclic AMP.
2. 2. The extent of inhibition of pyruvate kinase induced by incubation of hepatocytes with glucagon or dibutytyl cyclic AMP is not influenced by the extracellular Ca2+ concentration nor by the presence of 2 mM EGTA. The reactivation of pyruvate kinase seems to be inhibited by a high concentration of extracellular Ca2+ (2.6 mM) as compared to a low concentration of extracellular Ca2+ (0.26 mM).
3. 3. Incubation of hepatocytes in a Na+-free, high K+-concentration medium does not influence the magnitude of the pyruvate kinase inhibition induced by dibutyryl cyclic AMP. However, the reactivation reaction is stimulated under these incubation conditions.
4. 4. Incubation of hepatocytes with dibutyryl cyclic GMP (0.1 mM) leads to a 25% decrease in pyruvate kinase activity. The magnitude of the inhibition by dibutyryl cyclic (GMP) is not influenced by the presence of pyruvate (1 mM) or glucose (5 mM and 30 mM).
5. 5. The relative insensitivity of the pyruvate kinase inhibition induced by glucagon, dibutyryl cyclic AMP and dibutyryl cyclic GMP to the extracellular environment leads to the conclusion that the hormonal regulation of pyruvate kinase is not the only site of hormonal regulation of glycolysis and gluconeogenesis. It is concluded that hormonal regulation of pyruvate kinase activity is exerted by changes in the degree of (de)phosphorylation of the enzyme reflecting acute hormonal control as well as by changes in the concentration of the allosteric activator fructose 1,6-diphosphate. The latter depends at least in part on the hormonal control of the phosphofructokinase-fructose-1,6-phosphatase cycle.
Abbreviations: Bt2-cAMP, dibutyryl cyclic AMP; Bt2-cGMP, dibutyryl cyclic GMP  相似文献   

3.
Steroid profiles formed by adrenal tissue from rats of the Brattleboro strain homozygous for the recessive gene causing diabetes insipidus (DI rats) were compared with those formed by glands from heterozygotes (non-diabetic: non-DI) during incubation in vitro. The most striking observation was that glands from DI rats showed a greatly reduced capacity to produce certain steroids with mineralocorticoid activity, particularly deoxycorticosterone (DOC) and 18-hydroxy-DOC (18-OH-DOC), and to a lesser degree, aldosterone (ald). Corticosterone (B) and 18-hydroxy-B were produced in similar amounts by glands from DI and non-DI animals. The impairment of DOC and 18-OH-DOC production in adrenals from DI animals was a feature of both capsule (mostly zona glomerulosa) and inner zone incubations. In incubations of tissue from DI animals, the addition of ACTH, or a low concentration of angiotensin amide to the incubation media stimulated corticosterone alone in inner zone incubations, but was without effect on other steroids, or on capsule incubations: with non-DI tissue, ACTH (but not the low concentration of angiotensin) stimulated corticosterone production, but again there was no effect on other steroids, or on the glomerulosa. Higher concentrations of angiotensin, or the addition of LH had only marginally significant effects. Addition of a “physiological” concentration of ADH to adrenal tissue from normal Wistar rats had no effect on the steroid profile. The results suggest the existence of as yet unidentified adrenocortical stimulators or inhibitors which exert effects on production of specific steroids, especially DOC and 18-OH-DOC, and which are effective both on the zona glomerulosa and on the inner adrenocortical zones.  相似文献   

4.
The effect of adrenocorticotropic hormone and dibutyryl cyclic AMP on the uptake of45Ca2+ by the rat adrenal gland has been investigated. After injection of 45Ca2+ and adrenocorticotropic hormone into rats, the adrenal 45Ca2+ concentration was significantly enhanced 90 to 180 min following hormone administration. The rise in adrenal 45Ca2+ content was accompanied by a marked increase of the serum corticosterone levels. During incubation of rat adrenal glands in the presence of 45Ca2+, adrenocorticotropic hormone and dibutyryl cyclic AMP caused significant accumulation of adrenal 45Ca2+ and increased corticosterone synthesis. The degree of stimulation of both adrenal 45Ca2+ uptake and corticosterone synthesis by adrenocorticotropic hormone or dibutyryl cyclic AMP was dependent upon the concentration of calcium in the incubation medium and upon the amount of adrenocorticotropic hormone or dibutyryl cyclic AMP added. Theophylline mimicked the stimulatory effect of adrenocorticotropic hormone and dibutyryl cyclic AMP and increased the uptake of 45Ca2+ by rat adrenal glands in vitro. Determination of calcium by atomic absorption spectroscopy showed that the adrenocorticotropic hormone-mediated adrenal 45Ca2+ uptake was due to a net accumulation of calcium in the tissue and not only to an increased rate of exchange of extracellular 45Ca2+ with the intracellular calcium pool. Adrenocorticotropic hormone-stimulated adrenal 45Ca2+ uptake was not observed when steroidogenesis was inhibited with elipten. Both adrenocorticotropic hormone-mediated corticosterone synthesis and adrenal 45Ca2+ uptake were abolished after treatment of rats with cycloheximide but not after treatment with actinomycin D, indicating that adrenal 45Ca2+ uptake and steroidogenesis have similar requirements for de novo protein synthesis, but not RNA synthesis.  相似文献   

5.
The effect of adrenocorticotropic hormone and dibutyryl cyclic AMP on the uptake of 45Ca2+ by the rat adrenal gland has been investigated. After injection of 45Ca2+ and adrenocorticotropic hormone into rats, the adrenal 45Ca2+ concentration was significantly enhanced 90 to 180 min following hormone administration. The rise in adrenal 45Ca2+ content was accompanied by a marked increase of the serum corticosterone levels. During incubation of rat adrenal glands in the presence of 45Ca2+, adrenocorticotropic hormone and dibutyryl cyclic AMP caused significant accumulation of adrenal 45Ca2+ and increased corticosterone synthesis. The degree of stimulation of both adrenal 45Ca2+ uptake and corticosterone synthesis by adrenocorticotropic hormone or dibutyryl cyclic AMP was dependent upon the concentration of calcium in the incubation medium and upon the amount of adrenocorticotropic hormone or dibutyryl cyclic AMP added. Theophylline mimicked the stimulatory effect of adrenocorticotropic hormone and dibutyryl cyclic AMP and increased the uptake of 45Ca2+ by rat adrenal glands in vitro. Determination of calcium by atomic absorption spectroscopy showed that the adrenocorticotropic hormone-mediated adrenal 45Ca2+ uptake was due to a net accumulation of calcium in the tissue and not only to an increased rate of exchange of extracellular 45Ca2+ with the intracellular calcium pool. Adrenocorticotropic hormone-stimulated adrenal 45Ca2+ uptake was not observed when steroidogenesis was inhibited with elipten. Both adrenocorticotropic hormone-mediated corticosterone synthesis and adrenal 45Ca2+ uptake were abolished after treatment of rats with cycloheximide but not after treatment with actinomycin D, indicating that adrenal 45Ca2+ uptake and steroidogenesis have similar requirements for de novo protein synthesis, but not RNA synthesis.  相似文献   

6.
Nuclear localization of tritiated aldosterone in the CNS was studied in rats by numerical evaluation of silver grains, deposited over neuronal cell nuclei in thawmounted autoradiograms, and compared with the localization obtained after prior administration of a 100-fold excess of radioinert aldosterone, corticosterone or 18-hydroxy-11-deoxycorticosterone (18-OH-DOC). Corticosterone and 18-OH_DOC completely prevented nuclear localization in most regions examined. However, in contrast to pretreatment with aldosterone, pretreatment with corticosterone and 18-OH-DOC did not completely prevent the concentration of radio-activity in the cell nuclei of the indusium griseum. Traces of radioactivity were, furthermore, retained in areas CA1 and CA2 and the dentate gyrus in rats exposed to corticosterone, but not to 18-OH-DOC, prior to [3H]aldosterone. A similar profile of silver grain distribution to that noted with aldosterone was found for corticosterone except that with tritiated corticosterone the most intense concentration of radioactivity occurred in hippocampal areas CA1 and CA2 and not in the indusium griseum. Prior administration of excess deoxycorticosterone acetate abolished nuclear accumulation of tritiated corticosterone. Dihydrotestosterone, on the other hand, failed to compete with tritiated corticosterone at a dose 200-fold in excess of the tritiated steroid.We conclude that (1) a receptor readily shared by aldosterone, corticosterone, 18-OH-DOC and DOC, but not by dihydrotestosterone, is widely distributed throughout the CNS, (2) a receptor shared by aldosterone and 18-OH-DOC, but not by corticosterone may be present in hippocampal areas CA1 and CA2, (3) that both these as well as the receptor accepting dihydrotestosterone can be located within the same cell.Dedicated to K. A. C. Elliott on his 80th birthday.  相似文献   

7.
Synthetic ovine CRF (8 micrograms/rat) injected intravenously in nembutal anaesthetized rats increased not only plasma ACTH and corticosterone but also aldosterone and 18-hydroxycorticosterone concentrations. The maximum elevation occurred 30 min after oCRF administration. 2 h and 4 h after injection the hormone concentrations declined and after 6 h the corticosterone and 18-hydroxycorticosterone values were lower than the corresponding controls. At this time aldosterone remained slightly elevated and ACTH unchanged. 24 h after oCRF injection no difference between the control and oCRF treated animals were evident.  相似文献   

8.
Synaptosomal membrane fragments from rat brain were incubated with [-32P]ATP in the presence of cyclic AMP or Ca2+ plus calmodulin and a range of Mg2+ concentrations. Incorporation of32P into membrane polypeptides was examined by electrophoresis and radioautography. Cyclic AMP-stimulated reactions were stimulated by low concentrations and inhibited to varying degrees by high concentrations of Mg2+ in the range 1–50 mM. In general the Ca2+ plus calmodulin-stimulated reactions were maximally active in the range 30–50 mM Mg2+, but the Ca2+ plus calmodulin dependent phosphorylation of Protein I was progressively inhibited by concentrations of Mg2+ above 5 mM. These results emphasize the importance of establishing optimum Mg2+ concentrations in the study of specific membrane protein phosphorylating systems.  相似文献   

9.
This study investigates the effect of magnesium (Mg2+) on the secretory responses and the mobilization of calcium (Ca2+) and Mg2+ evoked by cholecystokinin-octapeptide (CCK-8) in the exocrine rat pancreas. In the isolated intact perfused pancreas CCK-8 (10–10 M) produced marked increases in juice flow and total protein output in zero and normal (1.1 mM) extracellular Mg2+ [Mg2+]o compared to a much reduced secretory response in elevated (5 mM and 10 mM) [Mg2+]o Similar effects of perturbation of [Mg2+]o on amylase secretion and 45Ca2+ uptake (influx) were obtained in isolated pancreatic segments. In pancreatic acinar cells loaded with the fluorescent bioprobe fura-2 acetomethylester (AM), CCK-8 evoked marked increases in cytosolic free Ca2+ concentration [Ca2+]i in zero and normal [Mg2+]o compared to a much reduced response in elevated [Mg2+]o Pretreatment of acinar cells with either dibutyryl cyclic AMP (DB2 cAMP) or forskolin had no effect on the CCK-8 induced changes in [Ca2+]i. In magfura-2-loaded acinar cells CCK-8 (10–8 M) stimulated an initial transient rise in intracellular free Mg2+ concentration [Mg2+]i followed by a more prolonged and sustained decrease. This response was abolished when sodium Na+ was replaced with N-methyl-D-glucamine (NMDG). Incubation of acinar cells with 10 mM Mg2+ resulted in an elevation in [Mg2+]i. Upon stimulation with CCK-8, [Mg2+]i. decreased only slightly compared with the response obtained in normal [Mg2+]o. CCK-8 caused a net efflux of Mg2+ in pancreatic segments; this effect was abolished when extracellular sodium [Na+]o was replaced with either NMDG or choline. The results indicate that Mg2+ can regulate CCK-8-evoked secretory responses in the exocrine pancreas possibly via Ca2+ mobilization. Moreover, the movement of Mg2+ in pancreatic acinar cells is dependent upon extracellular Na+.  相似文献   

10.
Some differences were found between Mg2+- and Ca2+-stimulated phosphatase secretion in cultured tobacco cells. The effect of Mg2+ ions was greater than that of Ca2+ ions, and Ca2+ ions at below 1 mM rather depressed the secretion. Upon the addition of Mg2+ ions plus Ca2+ ions, a synergistic stimulation of the secretion occurred. Different influences on the effects of Mg2+ and Ca2+ ions on the secretion were exerted by treating cells with metabolic inhibitors that reduced the level of cellular metabolic energy. Phosphate (Pi) and arsenate did not depress the secretion in the presence of Mg2+ ions, but did depress it in the presence of Ca2+ ions. These results strongly suggested that the secretion of phosphatase involved at least two different steps affected by divalent cations.  相似文献   

11.
The (Ca2+ + Mg2+-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2+-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2+-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2+- and Mg2+-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

12.
In the presence of 10 μM Ca2+ and 5 mM Mg2+ (or 0.25 mM Mg2+), the addition of 100 μM Zn2+, Ni2+, Co2+, Fe2+, Cu2+ or 1 mM Mn2+ resulted in varying degrees of stimulation or inhibition of 10−6 M cyclic GMP and cyclic AMP hydrolysis by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart in the absence or presence of phosphodiesterase activator. The substrate specificity of the enzyme was altered under several conditions. The addition of Zn2+ in the presence of 5 mM Mg2+ and the absence of activator resulted in the stimulation of cyclic GMP hydrolysis over a narrow substrate range while reducing the V 65% due to a shift in the kinetics from non-linear with Mg2+ alone to linear in the presence of Zn2+ and Mg2+. Zn2+ inhibited the hydrolysis of cyclic GMP and cyclic AMP in the presence of activator with Ki values of 70 and 100 μM, respectively. Zn2+ inhibition was non-competitive with substrate, activator and Ca2+ but was competitive with Mg2+. In the presence of 10 μM Ca2+ and activator, a Ki of 15 μM for Zn2+ vs. Mg2+ was noted in the hydrolysis of 10−6 M cyclic GMP. Several effects of Zn2+ are discussed which have been noted in other studies and might be due in part to changes in cyclic nucleotide levels following phosphodiesterase inhibition.  相似文献   

13.
Adrenocortical cells were obtained by fractionated trypsination of newborn rat adrenal glands and transfected with a plasmid containing the EJ/T24-Ha-ras oncogene. Isolation of adhesive cells led to a proliferative cell line with an overexpression of 21 kDa ras protein. These cells incubated with corticosterone or deoxycorticosterone as the precursor produced a high level of 18-hydroxycorticosterone and aldosterone as identified by gas chromatography- mass spectrometry. ACTH and angiotensin II increased the basal production of aldosterone nineteen-fold and six-fold respectively. Under ACTH stimulation the ratio between aldosterone and 18-hydroxycorticosterone production was 1:3. The transformation of corticosterone under angiotensin II stimulation yielded up to 41% of 18-hydroxycorticosterone (4.7 micrograms/mg of cell protein per 24h) and 4.4% of aldosterone (0.5 microgram/mg of cell protein per 24h) in a low potassium concentration medium (6 mmol/l). To our knowledge this is the first report of continuous proliferative adrenocortical cells producing aldosterone.  相似文献   

14.
The role of calmodulin in the regulation of microsomal 45Ca2+ transport in canine tracheal smooth muscle was studied. Calmodulin stimulated ATP-dependent 45Ca2+ uptake and (Ca2+Mg2+)-ATPase activities in microsomes treated with 0.5 mM EDTA and 0.5 mM EGTA. Oxalate also stimulated ATP-dependent 45Ca2+ uptake and (Ca2+Mg2+)-ATPase activities and the stimulation was additive to the effects of calmodulin. The (Ca2+Mg2+)-ATPase and ATP-dependent 45Ca2+ uptake activities are probably related as they exhibited similar [Ca2+]free- and [calmodulin]-dependencies. These results indicate that calmodulin may play a role in the control of the cytosolic [Ca2+]free in canine tracheal smooth muscle.  相似文献   

15.
1-adrenaline, ACTH and glucagon activate the adenylate cyclase of rat adipocytes by decreasing its S0.5(Mg2+) (concentration yielding 0.5 Vmax) from its basal value of 11.5 to 1.2, 0.3 and 1.8 mM and by increasing its Ki(ATP4?) from 0.03 to 0.25; 0.62 and 0.16 mM respectively. The kinetic properties of the enzyme are regulated by its state of saturation with ATP4? or Mg2+; its saturation with ATP4? and citrate3? suppressed its basal and hormone-dependent activities. The hormone-dependent decrease in Km and increase in Vmax of the enzyme occur when shifting from suboptimal low concentrations of hormone and Mg2+ to optimal conditions, i.e., high concentration of hormone and low concentration of Mg2+. The increase in the state of saturation of the enzyme with Mg2+ decreases the hormone-dependent effects on Vmax and results in identical values of Km (0.14 mM) for its basal and 1-adrenaline dependent activities. CaCl2 saturation curves at 5 mM ATP with either 5, 10 or 20 mM MgCl2 show that the substitution of 5 mM MgCl2 by 10 mM and 20 mM MgCl2 increased the Ki(Ca2+) of the enzyme from 0.19 to 0.49 and 0.94 mM but decreased its Ki(CaATP) from 0.42 to 0.19 and 0.14 mM respectively. Only when the concentration of MgCl2 exceeded that of ATP did 1-adrenaline and ACTH activate the enzyme by increasing its Ki(Ca2+), although only ACTH increased its Ki(CaATP). An increase in energy charge would decrease the intracellular concentrations of Mg2+ and Ca2+ because ATP4? has stronger binding constants for Mg2+ and Ca2+ than ADP3? and AMP2?. Hence, the reported properties of the enzyme suggests that changes in energy charge may allow for metabolic feedback control of the hormonal responsiveness of the Mg2+, Ca2+, ATP4? -sensitive adenylate cyclase.  相似文献   

16.
The level of plasma corticosterone attained in hypophysectomized rats stimulated with ACTH was significantly reduced by pretreatment with indomethacin, an inhibitor of prostaglandin synthesis. This effect was not seen in animals stimulated with dibutyryl cyclic AMP. Intraperitoneal injection of prostaglandin E2 to indomethacin treated rats restored the normal response to ACTH stimulation. However, PGE2 itself did not have any significant effect on plasma corticosterone levels. These findings suggest that prostaglandins are involved, perhaps in an allosteric fashion, in the mechanism of action of ACTH.  相似文献   

17.
Both dibutyryl cAMP and carbachol stimulated amylase are released from rat parotid cells incubated in Ca2+-free medium containing 1 mM EGTA. Cells preincubated with 10 μM carbachol in Ca2+-free, 1 mM EGTA medium for 15 min lost responsiveness to carbachol, but maintained responsiveness to dibutyryl cAMP. Dibutyryl cAMP still evoked amylase release from cells preincubated with 1 μM ionophore A23187 and 1 mM EGTA for 20 min. Although carbachol stimulated net efflux of 45Ca from cells preequilibrated with 45Ca for 30 min, dibutyryl cAMP did not elicit any apparent changes in the cellular 45Ca level. Inositol trisphosphate, but not cAMP, evoked 45Ca release from saponin-permeabilized cells. These results suggest that cAMP does not mobilize calcium for amylase release from rat parotid cells.  相似文献   

18.
The fluorescence of microdissected pancreatic islets of ob/ob-mice was studied by microscope photometry after incubation with 10 μM chlorotetracycline. In Krebs-Ringer bicarbonate buffer, excitation at 390 nm yielded peak emission at 530 nm, suggesting that chelated Ca2+ was the major source of fluorescence. In support of this interpretation, incubation in Ca2+-free buffer markedly decreased the fluorescence, whereas withdrawal of Mg2+ increased it. Raising the Mg2+ concentration to 15 mM suppressed the fluorescence. In the presence of Ca2+, the substitution of choline ions for Na+ increased the fluorescence considerably; in the absence of Ca2+, however, Na+ deficiency had only little effect. Control experiments showed that Na+ or choline ions had no effect on the fluorescence of Ca2+-chlorotetracycline in 70 or 90% methanol. In 90%, but not in 70%, methanol 15 mM Mg2+ slightly quenched the fluorescence from 2.5 mM Ca2+ and 10 μM chlorotetracycline. It is suggested that Na+, and perhaps Mg2+, tends to decrease the amount of membrane-bound Ca2+ in the pancreatic islets.  相似文献   

19.
Bromocriptine treatment in rats (3 mg/kg per day, 7 days) significantly reduced alpha-msh and aldosterone plasma levels 2 hrs after the final treatment in animals on low, normal and high sodium diets. Alpha-MSH dose response curves for corticosterone and 18-hydroxydeoxycorticosterone (18-OH-DOC) in subsequently incubated glomerulosa cells gave stimulation at lower concentrations of alpha-MSH (10(-10) moles per litre) than in cells from untreated animals (10(-9) moles per 1). Curves for aldosterone (ald) and 18-hydroxycorticosterone (18-OH-B) were also affected in cells from animals on a low sodium diet. Fasciculata-reticularis cell responses to ACTH were unaffected. Metoclopramide (4 mg/kg per day, 7 days) elevated plasma alpha-MSH, although ald was unaffected, but inhibited the glomerulosa cell response to alpha-MSH in vitro. Acute dopaminergic responses in plasma ald may be mediated through alpha-MSH in rats, but chronically alpha-MSH may down- regulate glomerulosa cell alpha-MSH receptors. It is unlikely that alpha-MSH mediates the adrenocortical response to sodium depletion.  相似文献   

20.
The production of tritiated aldosterone and tritiated SM (a saponifiable 18-hydroxycorticosterone derivative) by rat adrenals were studied at various incubation times in absence or presence of two concentrations of ACTH. Tritiated 18-hydroxycorticosterone or 18-deoxyaldosterone served as precursors. The lower ACTH concentration (150 pM) increased the production of tritiated aldosterone. Whereas, the higher ACTH concentration (1.5 microM) stimulated tritiated aldosterone production at shorter incubation time (30 min), while after 60 min it inhibited. This time dependency would reflect variations in the levels of endogenous steroids. On the other hand, the effects of ACTH on tritiated SM production were opposite to those on tritiated aldosterone. In effect, while 150 pM ACTH inhibited SM production, 1.5 microM ACTH stimulated it. These results suggest that ACTH promotes opposite effects on the productions of aldosterone and SM and therefore both productions would be coordinated under the regulation of ACTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号