首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While in the last decade mRNA expression profiling was among the most popular research areas, over the past years the study of non-coding RNAs, especially microRNAs (miRNAs), has gained increasing interest. For almost 900 known human miRNAs hundreds of pretended targets are known. However, there is only limited knowledge about putative systemic effects of changes in the expression of miRNAs and their regulatory influence. We determined for each known miRNA the biochemical pathways in the KEGG and TRANSPATH database and the Gene Ontology categories that are enriched with respect to its target genes. We refer to these pathways and categories as target pathways of the corresponding miRNA. Investigating target pathways of miRNAs we found a strong relation to disease-related regulatory pathways, including mitogen-activated protein kinase (MAPK) signaling cascade, Transforming growth factor (TGF)-beta signaling pathway or the p53 network. Performing a sophisticated analysis of differentially expressed genes of 13 cancer data sets extracted from gene expression omnibus (GEO) showed that targets of specific miRNAs were significantly deregulated in these sets. The respective miRNA target analysis is also a novel part of our gene set analysis pipeline GeneTrail. Our study represents a comprehensive theoretical analysis of the relationship between miRNAs and their predicted target pathways. Our target pathways analysis provides a ‘miRNA-target pathway’ dictionary, which enables researchers to identify target pathways of differentially regulated miRNAs.  相似文献   

2.
3.
4.
Gastric cancer is the fourth leading cause of cancer-related mortality and one of the most commonly diagnosed malignancies worldwide. Gastric adenocarcinoma (GAC) accounts for the majority of gastric cancer cases. Circular RNAs (circRNAs) have been shown to be associated with carcinogenesis and cancer progression. This research aims to investigate GAC-associated circRNAs and the underlying mechanisms of circRNA-miRNA-mRNA networks in the development and progression of GAC. Differentially expressed miRNAs and mRNAs (DEMs and DEGs) were identified in Gene Expression Omnibus (GEO) microarray datasets using the R package Limma. A microarray meta-analysis was performed to identify potential GAC-associated circRNAs with high statistical power, resulting in 13 up-regulated and 19 down-regulated circRNAs. CircRNA-miRNA-mRNA networks were constructed by combining predicted and experimentally validated databases and considering differentially expressed miRNAs and mRNAs. The constructed ceRNA networks revealed the potential regulatory effect of hsa_circ_0002019 and hsa_circ_0074736 on key survival-related genes. The expression levels of these two circRNAs were measured in plasma samples from GAC patients and healthy controls using SYBR Green-based real-time PCR. Axon guidance, cellular senescence, AGE-RAGE signaling pathway in diabetic complications, and AMPK signaling pathway were among the major significant (P-value <0.05) enriched pathways of "main mRNAs" in the constructed ceRNA networks. In conclusion, we identified strongly correlated circRNAs and their likely mechanisms of action in GAC, which may improve the knowledge of regulatory networks underlying GAC formation and contribute to developing better strategies for early diagnosis, prognosis, and treatment.  相似文献   

5.
6.
7.
Almost all Echinococcus multilocularis (Em) infections occur in the liver of the intermediate host, causing a lethal zoonotic helminthic disease, alveolar echinococcosis (AE). However, the long non-coding RNAs (lncRNAs) expression profiles of the host and the potential regulatory function of lncRNA during Em infection are poorly understood. In this study, the profiles of lncRNAs and mRNAs in the liver of mice at different time points after Em infection were explored by microarray. Thirty-one differentially expressed mRNAs (DEMs) and 68 differentially expressed lncRNAs (DELs) were found continuously dysregulated. These DEMs were notably enriched in “antigen processing and presentation”, “Th1 and Th2 cell differentiation” and “Th17 cell differentiation” pathways. The potential predicted function of DELs revealed that most DELs might influence Th17 cell differentiation and TGF-β/Smad pathway of host by trans-regulating SMAD3, STAT1, and early growth response (EGR) genes. At 30 days post-infection (dpi), up-regulated DEMs were enriched in Toll-like and RIG-I-like receptor signaling pathways, which were validated by qRT-PCR, Western blotting and downstream cytokines detection. Furthermore, flow cytometric analysis and serum levels of the corresponding cytokines confirmed the changes in cell-mediated immunity in host during Em infection that showed Th1 and Th17-type CD4+ T-cells were predominant at the early infection stage whereas Th2-type CD4+ T-cells were significantly higher at the middle/late stage. Collectively, our study revealed the potential regulatory functions of lncRNAs in modulating host Th cell subsets and provide novel clues in understanding the influence of Em infection on host innate and adaptive immune response.  相似文献   

8.
We recently reported that peritumoral CpG-ODN treatment, activating TLR-9 expressing cells in tumor microenvironment, induces modulation of genes involved in DNA repair and sensitizes cancer cells to DNA-damaging cisplatin treatment. Here, we investigated whether this treatment induces modulation of miRNAs in tumor cells and their relevance to chemotherapy response. Array analysis identified 20 differentially expressed miRNAs in human IGROV-1 ovarian tumor cells from CpG-ODN-treated mice versus controls (16 down- and 4 up-regulated). Evaluation of the role of the 3 most differentially expressed miRNAs on sensitivity to cisplatin of IGROV-1 cells revealed significantly increased cisplatin cytotoxicity upon ectopic expression of hsa-miR-302b (up-modulated in our array), but no increased effect upon reduced expression of hsa-miR-424 or hsa-miR-340 (down-modulated in our array). Accordingly, hsa-miR-302b expression was significantly associated with time to relapse or overall survival in two data sets of platinum-treated ovarian cancer patients. Use of bio-informatics tools identified 19 mRNAs potentially targeted by hsa-miR-302b, including HDAC4 gene, which has been reported to mediate cisplatin sensitivity in ovarian cancer. Both HDAC4 mRNA and protein levels were significantly reduced in IGROV-1 cells overexpressing hsa-miR-302b. Altogether, these findings indicate that hsa-miR-302b acts as a “chemosensitizer” in human ovarian carcinoma cells and may represent a biomarker able to predict response to cisplatin treatment. Moreover, the identification of miRNAs that improve sensitivity to chemotherapy provides the experimental underpinning for their possible future clinical use.  相似文献   

9.
Although Lycium chinense (goji berry) is an important traditional Chinese medicinal plant, little genome information is available for this plant, particularly at the small-RNA level. Recent findings indicate that the evolutionary role of miRNAs is very important for a better understanding of gene regulation in different plant species. To elucidate small RNAs and their potential target genes in fruit and shoot tissues, high-throughput RNA sequencing technology was used followed by qRT-PCR and RLM 5’-RACE experiments. A total of 60 conserved miRNAs belonging to 31 families and 30 putative novel miRNAs were identified. A total of 62 significantly differentially expressed miRNAs were identified, of which 15 (14 known and 1 novel) were shoot-specific, and 12 (7 known and 5 novel) were fruit-specific. Additionally, 28 differentially expressed miRNAs were recorded as up-regulated in fruit tissues. The predicted potential targets were involved in a wide range of metabolic and regulatory pathways. GO (Gene Ontology) enrichment analysis and the KEGG (Kyoto Encyclopedia of Genes and Genomes) database revealed that “metabolic pathways” is the most significant pathway with respect to the rich factor and gene numbers. Moreover, five miRNAs were related to fruit maturation, lycopene biosynthesis and signaling pathways, which might be important for the further study of fruit molecular biology. This study is the first, to detect known and novel miRNAs, and their potential targets, of L. chinense. The data and findings that are presented here might be a good source for the functional genomic study of medicinal plants and for understanding the links among diversified biological pathways.  相似文献   

10.
11.
High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington’s disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered “ABC transporters”, “RIG-I-like receptor signaling pathway”, immune system”, “adaptive immune system”,“tissue remodeling and wound repair” and “cytoskeleton remodeling”. In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases.  相似文献   

12.
Studies have indicated that Nel-like molecule-1 (NELL-1) was an osteoblast-specific cytokine and some specific microRNAs (miRNAs) could serve as competing endogenous RNA (ceRNA) to partake in osteogenic differentiation of human adipose-derived stem cells (hASCs). The aim of this study was to explore the potential functional mechanisms of recombinant human NELL-1 protein (rhNELL-1) during hASCs osteogenic differentiation. rhNELL-1 was added to osteogenic medium to activate osteogenic differentiation of hASCs. High-throughput RNA sequencing (RNA-Seq) was performed and validated by real-time quantitative polymerase chain reaction. Gene ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed to detect the functions of differentially expressed miRNAs and genes. Coding-noncoding gene co-expression network and ceRNA networks were constructed to predict the potential regulatory role of miRNAs. A total of 1010 differentially expressed miRNAs and 1762 differentially expressed messenger RNAs (mRNAs) were detected. miRNA-370-3p, bone morphogenetic protein 2 (BMP2), and parathyroid hormone like hormone (PTHLH) were differentially expressed during NELL-1-induced osteogenesis. Bioinformatic analyses demonstrated that these differentially expressed miRNAs and mRNAs enriched in Rap1 signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, Glucagon signaling pathway, and hypoxia-inducible factor-1 signaling pathway, which were important pathways related to osteogenic differentiation. In addition, miRNA-370-3p and has-miR-485-5p were predicted to interact with circ0001543, circ0002405, and ENST00000570267 in ceRNA networks. Based on the gain or loss of functional experiments by transfection, the results showed that miR-370-3p was a key regulator in osteogenic differentiation by targeting BMP2 and disturbing the expression of PTHLH, and participated in NELL-1-stimulated osteogenesis. The present study provided the primary data and evidence for further exploration on the roles of miRNAs and ceRNAs during NELL-1-induced ossification of hASCs.  相似文献   

13.
14.
Long non-coding RNA (lncRNA) has increasingly been identified as a key regulator in pathologies such as cancer. Multiple platforms were used for comprehensive analysis of ovarian cancer to identify molecular subgroups. However, lncRNA and its role in mapping the ovarian cancer subpopulation are still largely unknown. RNA-sequencing and clinical characteristics of ovarian cancer were acquired from The Cancer Genome Atlas database (TCGA). A total of 52 lncRNAs were identified as aberrant immune lncRNAs specific to ovarian cancer. We redefined two different molecular subtypes, C1(188) and C2(184 samples), in “iClusterPlus” R package, among which C2 grouped ovarian cancer samples have higher survival probability and longer median survival time (P <0.05) with activated IFN-gamma response, Wound Healing and Cytotoxic lymphocytes signal; 456 differentially expressed genes were acquired in C1 and C2 subtypes using limma (3.40.6) package, among which 419 were up-regulated and 37 were down-regulated, in TCGA dataset. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis revealed that these genes were actively involved in ECM-receptor interaction, PI3K-Akt signaling pathway interaction KEGG pathway. Compared with the existing immune subtype, the Cluster2 sample showed a substantial increase in the proportion of the existing C2 immune subtype, accounting for 81.37%, which was associated with good prognosis. Our C1 subtype contains only 56.49% of the existing immune C1 and C4, which also explains the poor prognosis of C1. Furthermore, 52 immune-related lncRNAs were used to divide the TCGA-endometrial cancer and cervical cancer samples into two categories, and C2 had a good prognosis. The differentially expressed genes were highly correlated with immune-cell-related pathways. Based on lncRNA, two molecular subtypes of ovarian cancer were identified and had significant prognostic differences and immunological characteristics.  相似文献   

15.
This study aims to reveal the regulatory mechanism of lncRNAs–miRNAs–mRNAs network during the proliferative phase of liver regeneration (LR). High-throughput sequencing technology was performed, and a total of 1,738 differentially expressed lncRNAs (DE lncRNAs), 167 known differentially expressed miRNAs (DE miRNAs), and 2,727 differentially expressed mRNAs were identified. Then, the target DE lncRNAs and DE mRNAs regulated by the same miRNAs were screened and a ceRNA regulatory network containing 32 miRNAs, 107 lncRNAs, and 270 mRNAs was constructed. Insulin signaling pathway, pyrimidine metabolism, axon guidance, carbohydrate digestion and absorption, and pyruvate metabolism were significantly enriched in the network. Through literature review and the regulatory relationship between lncRNAs and miRNAs, nine core lncRNAs were identified, which might play important roles during the proliferative phase of rat LR. This study analyzed lncRNA–miRNA–mRNA regulatory network for the first time during the proliferative phase of rat LR, providing clues for exploring the mechanism of LR and the treatment of liver diseases.  相似文献   

16.
In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained “in silico” must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development.  相似文献   

17.

Background

Chorioamnionitis has recently been reported as a risk factor for various neonatal diseases, including cerebral palsy, bronchopulmonary dysplasia, and necrotizing enterocolitis, but its effect on patent ductus arteriosus (PDA) is unclear. We performed a systematic review and meta-analysis to evaluate the effect of chorioamnionitis on PDA.

Methods

We searched PubMed, EMBASE, Cochrane Library, and KoreaMed databases using the terms: “intrauterine infection” or “maternal infection” or “antenatal infection” or “chorioamnionitis” or “placenta inflammation” or “placenta pathology” or “neonatal outcome” or “neonatal morbidity” or “PDA or patent ductus arteriosus” or “ductus arteriosus,” and “prematurity” or “very low birth weight infant.” Studies were included if they were randomized controlled trials, case–control studies, or cohort studies that included information relating to chorioamnionitis and PDA.

Results

Among 1,571 studies, a total of 23 studies (17,708 cases) were included in the meta-analysis to analyze the relationship between chorioamnionitis and PDA, except one study that only included PDA requiring surgical ligation. The association between chorioamnionitis and PDA was statistically significant (odds ratio [OR] 1.43; 95% confidence interval [CI] 1.19, 1.72; P < 0.0001). In subgroup analysis, clinical chorioamnionitis was not associated with PDA (OR 1.28; 95% CI 1.00, 1.64, 1.790; P = 0.05), whereas histologic chorioamnionitis (OR 1.54; 95% CI 1.10, 2.15; P = 0.01) and chorioamnionitis diagnosed from both clinical and histologic findings (OR 1.75; 95% CI 1.07, 2.86; P = 0.03) showed significant associations with PDA. Chorioamnionitis did not increase the risk of PDA requiring surgical ligation (OR 1.23; 95% CI 0.69, 2.17; P = 0.48), and antenatal steroid use reduced the risk of PDA (OR 0.62; 95% CI 0.42, 0.90; P = 0.01) after chorioamnionitis.

Conclusions

The results from this meta-analysis support an association between maternal chorioamnionitis and PDA in offspring.  相似文献   

18.
Intrinsically disordered regions have been associated with various cellular processes and are implicated in several human diseases, but their exact roles remain unclear. We previously defined two classes of conserved disordered regions in budding yeast, referred to as “flexible” and “constrained” conserved disorder. In flexible disorder, the property of disorder has been positionally conserved during evolution, whereas in constrained disorder, both the amino acid sequence and the property of disorder have been conserved. Here, we show that flexible and constrained disorder are widespread in the human proteome, and are particularly common in proteins with regulatory functions. Both classes of disordered sequences are highly enriched in regions of proteins that undergo tissue-specific (TS) alternative splicing (AS), but not in regions of proteins that undergo general (i.e., not tissue-regulated) AS. Flexible disorder is more highly enriched in TS alternative exons, whereas constrained disorder is more highly enriched in exons that flank TS alternative exons. These latter regions are also significantly more enriched in potential phosphosites and other short linear motifs associated with cell signaling. We further show that cancer driver mutations are significantly enriched in regions of proteins associated with TS and general AS. Collectively, our results point to distinct roles for TS alternative exons and flanking exons in the dynamic regulation of protein interaction networks in response to signaling activity, and they further suggest that alternatively spliced regions of proteins are often functionally altered by mutations responsible for cancer.  相似文献   

19.
In a study of nine families with “site-specific” ovarian cancer (criterion: three or more cases of epithelial ovarian cancer and no cases of breast cancer diagnosed at age <50 years) we have obtained evidence of linkage to the breast-ovarian cancer susceptibility gene, BRCA1 on 17q12-21. If the risk of cancer in these families is assumed to be restricted to the ovary, the best estimate of the proportion of families linked to BRCA1 is .78 (95% confidence interval .32–1.0). If predisposition to both breast and ovarian cancer is assumed, the proportion linked is 1.0 (95% confidence interval .46–1.0). The linkage of familial site-specific ovarian cancer to BRCA1 indicates the possibility of predictive testing in such families; however, this is only appropriate in families where the evidence for linkage to BRCA1 is conclusive.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号