首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The pattern of aldehyde oxidase (AO) activity was determined in wing discs of Drosophila melanogaster larvae homozygous for the mutants apt 73n, Beaded, and vestigial (vg) in order to determine if reduction in field size in the pouch could be related to alterations of the wild-type AO pattern, as suggested by the Kauffman (1978) hypothesis. The pattern in wild-type discs was resolved into six areas for comparison with mutant discs. vg discs developed at 25° C showed restriction of the pattern into a small area on the anterior side of the disc, and comparison of vg and wild-type prepupal wings allowed positive identification of the AO pattern elements which remained. AO patterns in vg wing discs grown at 27°, 29°, and 31° C were progressively more complete and similar to wild-type, reflecting the reduction in cell death in discs grown at higher temperatures. These results show that cell loss during the third instar in vg development at 25° C is responsible for the alteration of the AO pattern, rather than field size reduction, and that determination of the pattern must take place much earlier than the time of its first appearance during the third larval instar, and before cell death in vg discs begins. Thus mutants acting at earlier stages will be necessary for further tests of the Kauffman hypothesis.  相似文献   

2.
The vestigal (vg) gene encodes a nuclear protein which plays a major role in the formation of the wing of Drosophila. Resistance or sensitivity to aminopterin, an inhibitor of the dihydrofolate reductase enzyme in D. melanogaster, seems to be associated with a specific alteration in vg gene function. Wild-type and vg mutant strains selected for growth on increasing concentrations of aminopterin display changes in physiological and biochemical parameters such as viability on normal and aminopterin-containing media, duration of development, wing phenotype, dihydrofolate reductase activity, and cross-resistance to fluorodeoxyuridine (FUdR) and to methotrexate. Our results indicate that the mechanisms of resistance differ in the wild-type and mutant strains. The vg 83b27 mutant, in which the major part of intron 2 of the vg gene is deleted, is associated with a high rate of resistance to FUdR, an inhibitor of thymidylate synthetase. Moreover, vg 83b27/vg BGheterozygotes, which are wild type when grown on normal medium, display a strong vg phenotype when grown on aminopterin. Our results indicate a role for the vestigial locus in mediating resistance to inhibitors of dTMP synthesis.  相似文献   

3.
Homozygosity for recessive mutations inDrosophila tumour suppressor genes likelethal giant larvae (Igl), lethal giant discs (Igd) orfat (ft) induce uncontrolled cell proliferations in the imaginal discs of the mutant larvae. Imaginal discs of larvae mutant forIgl tumour suppressor gene display neoplastic growths while those mutant forIgd orfat display hyperplastic growths. Results presented in this study reveal that mutant wing imaginal discs with neoplastic or hyperplastic overgrowths display high mitotic activity primarily during the extended period of larval life when their wild-type siblings have already pupariated. Both these categories of overgrowths show overall stability of the karyotypes and only low frequency of aneuploidy. The hyperplastic imaginal discs ofIgd orft mutant larvae displayed normal chromosome condensation. In contrast, the neoplastic imaginal discs ofIgl mutants showed high frequency of mitotic cells with undercondensed chromosomes. In this respect the neoplastic discs resemble malignant neuroblastomas of theIgl larvae which also display undercondensed chromosomes. These results thus suggest an indirect role of the cytoskeletal protein encoded byIgl tumour suppressor gene in aspects of normal chromosome condensation during mitosis.  相似文献   

4.
5.
6.
The vestigal (vg) gene encodes a nuclear protein which plays a major role in the formation of the wing of Drosophila. Resistance or sensitivity to aminopterin, an inhibitor of the dihydrofolate reductase enzyme in D. melanogaster, seems to be associated with a specific alteration in vg gene function. Wild-type and vg mutant strains selected for growth on increasing concentrations of aminopterin display changes in physiological and biochemical parameters such as viability on normal and aminopterin-containing media, duration of development, wing phenotype, dihydrofolate reductase activity, and cross-resistance to fluorodeoxyuridine (FUdR) and to methotrexate. Our results indicate that the mechanisms of resistance differ in the wild-type and mutant strains. The vg 83b27 mutant, in which the major part of intron 2 of the vg gene is deleted, is associated with a high rate of resistance to FUdR, an inhibitor of thymidylate synthetase. Moreover, vg 83b27/vg BGheterozygotes, which are wild type when grown on normal medium, display a strong vg phenotype when grown on aminopterin. Our results indicate a role for the vestigial locus in mediating resistance to inhibitors of dTMP synthesis.  相似文献   

7.
In Pheidole bicarinata vinelandica, soldier larvae have prominent mesothoracic wing discs. Imaginal wing discs are suppressed in minor worker larvae. In soldiers, wing discs appear abruptly late in larvae life and are unusually large when compared with wing discs in worker larvae of other ant genera. Once development has been initiated, wing discs of soldier larvae grow at a rate comparable to soldier leg discs. The dynamics of development of soldier wing discs differ fundamentally from those of other holometabolous insects, worker ants and Pheidole bicarinata queens. This unusual developmental pattern may provide a clue to the physiological basis and timing of soldier determination.  相似文献   

8.
The density of gap junctions in four Drosophila melanogaster mutants with abnormal wing disc development has been determined using quantitative electron microscopy and compared with the gap junction density in wild-type wing discs. No appreciable differences relative to wild-type controls were found in the cell death mutant vestigial or in the mildly hyperplastic mutant lethal giant disc which could not be accounted for in terms of altered lateral plasma membrane surface density or as an extension of the gap junction growth which normally occurs during the third larval stage of development in wild-type wing discs. However, both the severely hyperplastic mutant l(3)c43hs1 and the neoplastic mutant lethal giant larva have significant reductions in the gap junction surface density, the number of gap junctions, and the gap junction areal fraction of the lateral plasma membrane compared with wild-type controls. These differences cannot be attributed to altered lateral plasma membrane surface densities which are not significantly different from wild-type control wing discs. The reduced gap junction density in severely hyperplastic and neoplastic wing discs suggests that alterations in the number or distribution of gap junctions may be as disruptive to normal growth and development as their complete absence.  相似文献   

9.
Summary Vestigial (vg) mutants of Drosophila melanogaster are characterized by atrophied wings. In this paper we show that: (1) aminopterin an inhibitor of dihydrofolate reductase (DHFR) and fluorodeoxyuridine (FUdR), an inhibitor of thymidylate synthetase induce nicks in the wings of wild-type flies and phenocopies of the vg mutant phenotype when vg/+ and vg B/+ flies are reared on these substances (vgB is a deficiency of the vg locus). Only thymidine and thymidylate can rescue the flies from the effect of aminopterin. We propose that the vg phenotype is due to a decrease in the dTMP pool in the wings. (2) Mutant vg strains yield more offspring on medium containing aminopterin than on normal medium. The resistance of vg larvae to the inhibitor seems specific to the gene. This is the first case of aminopterin resistance in living eucaryotes. In contrast sensitivity of the vg larvae to FUdR is observed. (3) An increase in the activity and amount of DHFR is observed in mutant strains as compared with the wild-type flies.Our data suggest that the vg + gene is a regulatory gene acting on the DHFR gene or a structural gene involved in the same metabolic pathway.  相似文献   

10.
The mutant allele giant of Drosophila melanogaster affects the timing and the level of increase in ecdysteroid titer normally occurring at puparium formation. The third larval instar is extended by 4 days in phenotypically “giant” individuals during which the imaginal discs mature slower than normal and finally take on the folding pattern characteristic of maturity at a time when normal individuals have already formed puparia. After puparium formation, development occurs at the same rate in giant and wild-type animals. Feeding 20-hydroxyecdysone at 94 hr after oviposition allows giant larvae to develop at the same rate as wild-type larvae and to produce normal-sized adults (although at 94 hr the imaginal discs of giant lack much of the folding pattern of mature discs). Radioimmunological determination of ecdysteroid titers in giant and normal individuals indicates that the peak of ecdysteroid activity associated with puparium formation is lower in giant and occurs 4 days later than normal. These results indicate that giant is an ecdysteroid-deficient mutant with major effects on metamorphosis. Unlike previously reported ecdysteroid-deficient mutants, however, giant larvae eventually develop into adults and may be induced to undergo complete metamorphosis at the same time as wild type by feeding 20-hydroxyecdysone.  相似文献   

11.
The abnormal wing discs gene of Drosophila encodes a soluble protein with nucleosidediphosphate kinase activity. This enzymic activity is necessary for the biological function ofthe abnormal wing discs gene product. Complete loss of function, i.e., null, mutations causelethality after the larval stage. Most larval organs in such null mutant larvae appear to benormal, but the imaginal discs are small and incapable of normal differentiation.Killer-of-prune is a neomorphic mutation in the abnormal wing discs gene. It causes dominant lethalityin larvae that lack prune gene activity. The Killer-of-prune mutant protein may have alteredsubstrate specificity. Null mutant larvae have a low level of nucleoside diphosphate kinaseactivity. This suggests that there may be additional Drosophila genes that encode proteinswith nucleoside dipthosphate kinase activity. Candidate genes have been found in theDrosophila genome.  相似文献   

12.
13.
Summary The mutationsvestigial (vg; recessive) andUltravestigial (vg U; dominant) ofDrosophila melanogaster give rise to identical mutant adult phenotypes in which much of the cases this results from cell death in the presumptive wing margin of the wing disc in the third larval instar, but the process of cell degeneration is quite different in the two mutants. Invg cell death occurs continuously throughout the third larval instar, while invg U it occurs only in the early third instar. Cells fragment and some of the fragments condense, becoming electron dense (apoptosis). Both condensed and ultrastructurally normal cell fragments are extruded to the basal side of thevg disc epithelium. They accumulate under the basal lamina in the wing pouch area until they are phagocytosed by blood cells entering the wing pouch during the six hours following pupariation. Fragments are not extruded from thevg U epithelium but are apparently phagocytosed by neighboring epithelial cells. The basal lamina undergoes mophological changes following pupariation and is phagocytosed by blood cells in both wild-type andvestigial, but investigial the degenerated cell fragments are also engulfed by the same blood cells.  相似文献   

14.
Antibodies have been raised against a fusion protein containing the 3' region of the coding sequence of the Antennapedia (Antp) gene fused to β-galactosidase. The distribution of the protein on whole mount embryos and imaginal discs of third instar larvae was examined by immunofluorescence. In young embryos, expression of the Antp protein was limited to the thoracic segments in the epidermis, whereas it was found in all neuromeres of head, thorax and abdomen. At the end of embryogenesis, the Antp protein mainly accumulated in the ventral nervous system in certain parts of the thoracic neuromeres, from posterior T1 to anterior T3, with a gap in posterior T2. Comparison of Antp protein distribution in nervous systems from wild-type and Df P9 embryos, lacking the genes of the Bithorax-complex (BX-C), revealed a pattern of expression which indicated that the BX-C represses Antp in the posterior segments with the exception of the last abdominal neuromeres (A8-9) which are regulated independently. The protein pattern in nervous systems from Sex combs reduced(ScrxF9) mutant embryos was indistinguishable from that found in wild-type embryos; thus, neurogenic expression of Antp in T1 and the more anterior segments does not appear to be under the control of Scr+. All imaginal discs derived from the three thoracic segments express Antp protein. The distribution was distinct in each disc; strongest expression was observed in the proximal parts of the discs. In the leg discs the protein distribution seemed to be compartmentally restricted, whereas in the wing disc this was not the case. Antp protein was not detected in the eye-antennal disc. In embryos, as well as in imaginal discs, the protein is localized in the nucleus.  相似文献   

15.
16.
17.
The wingless mutant flügellos ( fl ) of the silkworm lacks all four wings. Although wing discs of the fl seem to develop normally until the fourth larval instar, wing morphogenesis stops after the fourth larval ecdysis, probably caused by aberrant expression of an unidentified factor, referred to as fl . To characterize factor fl , the wing discs dissected from the wild-type (WT) and fl larvae were transplanted into other larvae and developmental changes of the discs were examined. When the wing disc from a WT larva was transplanted into another WT larva and allowed to grow until emergence, a small wing appeared that was covered with scales. Thus, the transplanted wing discs can develop autonomously, form scales and evert from adult skin. The WT wing discs transplanted into the fl larvae also developed at a high rate. However, the fl wing discs transplanted into the WT larvae did not develop during the larval to pupal developmental stages. These data suggest that the fl gene product (factor fl) works in the wing disc cells during wing morphogenesis. Its function cannot be complemented by hemolymph in the WT larva. It is also implied that the level of humoral factors and hormones required for wing morphogenesis are normally maintained in the fl larva.  相似文献   

18.
High-resolution two dimensional gel electrophoresis has been used to study the patterns of protein synthesis in imaginal discs of Drosophila melanogaster. In this paper we first compare the patterns of protein synthesis in wing, haltere, leg 1, leg 2, leg 3 and eye antenna imaginal discs of late third instar larvae. We have detected only quantitative changes: differences in 17 proteins among the different imaginal discs. In addition, we have analysed the variations in pattern of proteins in the wing disc of the last larval stage and early pupae as well as in wing discs cultured in vivo for 6 days. Variations in these patterns affect more than 20% of the proteins and involve both qualitative and quantitative changes. Some of the changes may correspond to protein phosphorylation. Correlations of these changes between discs and through development are also discussed. Correspondence to: F. Santaren  相似文献   

19.
The lethal(3)discs overgrown (dco) locus of Drosophila melanogaster, located on the third chromosome at cytogenetic position 100A5,6-100B1,2, is necessary for normal development and growth control in the imaginal discs of the larva. Three recessive lethal alleles (dco2, dco3, and dco18) in heteroallelic combinations and one allele (dco3) when homozygous cause the imaginal discs to continue to grow beyond the normal disc-intrinsic limit during an extended larval period. Some degeneration also occurs in the overgrowing discs. The discs overgrow even when transplanted early in their development into wild-type hosts, whereas normal discs stop growth at about the normal final size under such conditions, indicating that the overgrowth is a disc-autonomous effect of the mutations. During overgrowth the imaginal discs retain their single-layered epithelial structure except near regions of degeneration, and they differentiate into disc-appropriate but abnormal adult structures when transplanted into wild-type larval hosts. When the mutant larvae are reared under certain conditions a small percentage develop to the pharate adult stage, and these animals show a characteristic syndrome of abnormalities including swollen leg segments with many extra bristles, small or missing eyes, duplicated antennae and palpi, and separated vesicles of cuticle. A fourth recessive lethal allele (dcole88), when homozygous or in heteroallelic combination with the overgrowth alleles, causes the imaginal discs to degenerate, producing a "discless" phenotype. Gap junction-mediated communication was assayed by observing the intercellular transfer of injected fluorescein complexon (dye coupling). Dye coupling in the imaginal discs of the dco genotypes that cause overgrowth was dramatically reduced at 4 days after egg laying (AEL) compared with wild-type controls. Coupling was more normal although still significantly reduced at 7-8 and 12-14 days AEL. In c43hs1, another disc overgrowth mutant, the imaginal disc cells also showed very reduced dye coupling at 4 days and incomplete coupling at 9 days. In contrast, discs from wild-type larvae, two other imaginal disc overgrowth mutants, and a cell death mutant showed extensive dye coupling at all stages tested. Electron microscopic morphometry revealed a reduction in gap-junction length per unit lateral plasma membrane length in dco3/dco18 and c43hs1 wing discs, although not in dco2/dco3, compared with wild-type wing discs. The results suggest that gap-junctional cell communication may be involved in the cell interactions that limit cell proliferation in vivo.  相似文献   

20.
 Free amino acids were determined in developing seed of a rice mutant with enhanced grain lysine. This phenotype frequently has enhanced protein. Some free amino acids of developing seed are inversely related to the level of total amino acids in proteins of the mature grain. Amino acids that were enhanced in protein, including aspartic acid, threonine, methionine and lysine, were notably lower in the free amino-acid pool. Our conclusion is that mutant-developing grains process aspartate amino acids more rapidly than the controls. Conversely, arginine, valine and glutamic acid/glutamine accumulate as free amino acids with mutant/control ratios of 1.39, 1.29 and 1.12, respectively. Glutamic acid/glutamine in proteins of mature seeds is lower in the mutant than the control. 3H-lysine incorporation showed enhanced isotope incorporation into at least four proteins. One mutant protein was less actively labelled than analogous controls. The 3Hlysine pattern indicates processing modifications in this useful rice mutant. Received: 14 October 1996/Accepted: 8 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号