首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using polyacrylamide electrophoresis the proteins of the haemolymph of the different developmental stages can be separated into eight strong and nine weak coloured fractions during the cocoon period of Formica pratensis. The proteins were stained with aniline black and measured quantitatively by a Chromoscan densitometer. The values were compared with those maintained with bovine serum albumin.The total protein content of the haemolymph was calculated as the sum of the different fractions; at maximum it amounts to 2·1 per cent (w/v). The maximum is reached during the pharate pupal stage and during the pigmentation of the eyes; the minimum can be observed at the end of pupal ecdysis. At the beginning of body pigmentation in all the forms the protein content of the haemolymph was very much reduced, especially in workers and females.All fractions change independently resulting in a different composition of the haemolymph proteins in pharate pupae, eclosed pupae, and pharate adults. The slow-running fractions f1, f3, f5, and f6 and the mean bands f8 and f11 are reduced weakly until body pigmentation, and from the eleventh day strongly in both castes. All fractions are reduced during the cocoon period, but mostly the slow-running ones. Only the front band f14 increases to nearly twice that of the protein content. The importance of the changes in the protein fractions for development of different organs and for the synthesis of the haemolymph proteins and the influence of hormones are discussed.  相似文献   

2.
The haemolymph protein concentration in Bombyx mori decreases normally by about one-fourth during pharate adult development. In females homozygous for the small egg gene, the concentration of haemolymph protein remained constant throughout the pupal and pharate adult stages. The sm gene does not influence the synthesis of vitellogenic female protein of pupal and pharate adult haemolymph (FP). Normal ovaries transferred to the haemocoele of sm females undergo normal vitellogenesis. In the absence of normal alleles of sm, the ovaries encounter difficulties in the incorporation of FP into their oöcytes from pharate adult haemolymph. These results suggest that an active translocation mechanism is involved in the transfer of haemolymph protein into the ovaries.  相似文献   

3.
Three storage proteins are synthesised by Spodoptera litura last-instar larvae as detected by an antiserum against pupal fat body proteins. The putative pupal storage proteins 1 and 2, appear in the haemolymph of the last-instar larvae 36 h after ecdysis under crowded rearing conditions: they appear 1 day later in isolated conditions. The appearance of these proteins in the haemolymph is prevented by juvenile hormone treatment and enhanced by allatectomy. Injection of 20-hydroxyecdysone into ligatured larvae does not induce appearance of these 2 proteins. Accumulation of protein 3 that reacts with Bombyx mori arylphorin antiserum is not blocked by juvenile hormone and is similar in both phases. It also accumulates to a small extent in the haemolymph during the moult to the final-larval instar and then disappears at ecdysis. One-hundred ng/ml ecdysteroid caused the sequestration of these proteins by the fat body, but a higher concentration of ecdysteroid (200 ng/ml) produced pupal cuticle in the isolated abdomens, suggesting that different ecdysteroid concentrations are necessary for these two events.  相似文献   

4.
The fat body of developing mid- and late fourth instar larvae of a midge, Chironomus thummi, has been investigated by means of the benzidine reaction for the localization of haemoglobin within cells. In the subepidermal fat body the reaction deposits of the haemoglobin pseudo-peroxidase activity appear predominantly in the intracisternal cavities of ER and the Golgi, and later, in the pharate pupal stage, in small dense granules (0.5–1 μm in. diameter).All the major protein bands of fat body extracts, which are resolved in electrophoresis, give the benzidine reaction and show incorporation of 14C-amino levulinic acids, in this case a specific marker for haemoglobin synthesis. In addition, labelled proteins show identical electrophoretic mobility as the haemoglobins of the haemolymph, suggesting that haemoglobins are synthesized in the fat body. Two types of fat body cells seem to differ with respect to their rôle in haemoglobin metabolism.  相似文献   

5.
The concentrations of three storage proteins (SL-1,SL-2 and SL-3, hexamers of 70-80kDa subunits) and two biliverdin-binding proteins (BP-A and BP-B, dimers of 165kDa) in the haemolymph and fat body during larval and pupal development of Spodoptera litura were determined by immunodiffusion tests using polyclonal antisera. SL-1 and SL-2 (methionine-rich) first appeared in the haemolymph of one-day-old sixth (final) instar larvae, prominently increased in the haemolymph during the later feeding period and were almost totally sequestered by the fat body after gut purge. SL-3 (arylphorin) was first detected in the haemolymph during the molting period to the final larval ecdysis, increased in concentration throughout the entire feeding period of the final larval instar and was partly sequestered by the fat body several hours later than the other storage proteins. BP-A showed nearly the same pattern in the haemolymph as SL-3: BP-B increased during feeding period and decreased during molting period and attained a maximum level during the penultimate larval instar, however its concentration decreased considerably and remained low in the final larval instar. BP-A was partly and BP-B was almost totally sequestered by the fat body 8 h after sequestration of SL-1 and SL-2, rendering the fat body blue in colour. These facts suggest an additional function of biliverdin-binding proteins as amino acid storage proteins and the results show a differential uptake mechanism for these proteins by the fat body.  相似文献   

6.
《Insect Biochemistry》1980,10(3):289-303
In the silkworm, Bombyx mori, two storage proteins named SP-1 and SP-2 were shown to decline in concentration in the haemolymph and increase in the fat body during the larval-pupal transformation, when protein granules are formed in the fat body at the same time as the degeneration of mitochondria and endoplasmic reticulum. At the larval-pupal ecdysis, in females the two proteins account for 60% of total fat body protein (80% of the soluble protein), while males have very little SP-1 and SP-2 comprises only 20% of the total fat body protein. The concentration of protein granules in the fat body cytoplasm is much greater in females than in males, and the granules in females have partially crystalline inner zones. This is different from males where granules with non-crystalline structure are most numerous.The properties of these proteins purified from pupal fat body are similar to those of Cecropia storage proteins and calliphorin, all of which have molecular weights of around 500,000 and are composed of subunits of mol. wt about 85,000. SP-1 differs from SP-2 by having an exceptionally high content of methionine, but much less glutamate, phenylalanine and tyrosine. SP-1 resembles another female-specific protein, vitellogenin and SP-2 resembles calliphorin in amino acid composition.From these results, it is concluded that SP-1 and SP-2 have storage roles and are deposited in protein granules.  相似文献   

7.
Juvenile hormone or ZR512 applied topically to day-5, fifth-instar, neck-ligated Manduca sexta larvae results in the acceleration of pharate pupal development when compared to neck-ligated, untreated larvae. This occurs as a result of an increase in the haemolymph ecdysteroid titre. Juvenile hormone, therefore, appears to stimulate ecdysone synthesis by the prothoracic glands of these animals, but not directly as shown by in vitro analysis. When ecdysone synthesis by the prothoracic glands of these ZR512- or juvenile hormone-treated animals was analyzed in vitro, increased gland activity was demonstrated but this did not occur until at least 2 days after treatment. This time lag in response supports the concept of an indirect stimulation of the prothoracic glands. Incubation of fat body from these ZR512- or juvenile hormone-treated, neck-ligated, larvae in 19AB culture medium revealed that the resulting pre-conditioned medium was capable of stimulating prothoracic glands in vitro up to 9-fold in a dose-dependent manner. A developmental profile was generated of the amount of this stimulatory factor released into the medium by fat body of untreated larvae representing each day of the last instar, and revealed that maximal release occurred with fat body from day-9 animals. The alterations in the amount of factor release by the fat body during larval-pupal development roughly correlated with the juvenile hormone titre and suggested a possible role for this factor in the regulation of the ecdysteroid titre. In contrast to the prothoracicotropic hormone, the fat body stimulatory factor is heat labile and has an apparent mol. wt in the 30,000 Dalton range. These data, particularly the kinetics of prothoracic gland stimulation, suggest that the factor may be a protein transporting a substrate for ecdysone biosynthesis to the prothoracic glands.  相似文献   

8.
In the last-larval instar of the tobacco hornworm, Manduca sexta, a switch from excretion of uric acid to storage in the fat body occurs during transition from the feeding to the wandering stage. Neuroendocrine control of this change from excretion to storage was demonstrated by neck-ligation experiments with synchronously reared larvae. Results indicate that a neurohormone is released from the head 24–30 hr before the initiation of wandering and coincident with the first release of ecdysone that initiates metamorphosis. Direct involvement of the moulting hormone was shown by the effects of multiple injections of 20-hydroxyecdysone into the abdomen of larvae that had been ligated before the release of hormone. Urate levels in the fat body were 20- to 100-fold higher from hormone-injected larvae as from saline inject controls. Topically applied juvenile hormone or methoprene reversed the 20-hydroxyecdysone-induced storage of urate. Increased levels of uric acid in the haemolymph during pupal development result from the presence of juvenile hormone, and the abrupt decrease in uric acid concentration in the haemolymph just prior to pupal ecdysis results from a decreased titre of juvenile hormone. Applications of methoprene prevented the decrease in uric acid levels in the haemolymph.  相似文献   

9.
Incorporation of palmitic acid-1-14C into pharate adult tissues and their lipid components of Bombyx mori was investigated. Rapid incorporation of radioactivity took place predominantly in fat body and haemolymph lipids, and partially in ovarian lipids immediately after the injection at the middle stage of pharate adult development. The major parts of the radioactivities in fat body, haemolymph and ovary were distributed in triglycerides and phospholipids, diglycerides, and triglycerides, respectively. The patterns of time course of incorporation of radioactivity into lipid components of pharate adult tissues suggest that the major form of lipid released from fat body may be diglycerides and the diglycerides in haemolymph are probably the main source of ovarian triglycerides.  相似文献   

10.
The epidermal cell commitment (to pupation or formation of immaculate larvae) and related haemolymph ecdysteroid titres of the southwestern corn borer, Diatraea grandiosella were studied in both nondiapause-bound and diapause-bound last-instar female larvae. Cell commitment was estimated by examining the characteristics of new cuticle secreted in response to an injection of 20-hydroxyecdysone. Haemolymph ecdysteroid titres were determined by radioimmunoassay. Juvenile hormone effect on epidermal cell commitment was studied by applying a juvenile hormone mimic (ZR-515) to last-instar non-diapause-bound larvae and examining the resulting cuticle.In non-diapause-bound larvae, the epidermis of different body regions was committed to pupal development at different times. When pupal cuticular characteristics were evaluated by a scoring system, it appeared that the development of normal pupal cuticle is discontinuous. Three sudden increases in pupal characteristics were observed at 1.67, 2.67 and 3.67 days into the last-larval instar. Haemolymph ecdysteroid titre changes were correlated with the sudden increases in pupal characteristics. Peak ecdysteroid titres were found at 1.67, 2.33, and 3.33 days into the final instar. A fourth ecdysteroid peak (138.8 ng/ml of haemolymph) occurred in pharate pupae. In contrast, the commitment of diapause-bound larvae to produce immaculate integument was made in a fast and continuous fashion. Full commitment was made by 50% of the individuals 4 days (ca. first quarter) into the stadium. Haemolymph ecdysteroid titres fluctuated during the first 2 weeks of the stadium but no significant peaks were observed prior to pharate stage. An ecdysteroid peak (29.8 ng/ml of haemolymph) was identified in pharate immaculate larvae.Pupal development could be completely prevented in 26.7% of nondiapause-bound larvae as late as 4 days into the last instar by topical application of ZR-515. This indicates that the commitment to pupation as revealed by 20-hydroxyecdysone injection is reversible.  相似文献   

11.
Correlative changes in the protein contents of haemolymph and fat body and the accumulation of protein storage granules in the fat body cells of Mamestra brassicae were investigated during the last larval stage in normally developing larvae and following administration of glutaurine (1 X 10(-4) mg/g body weight). The protein content of the haemolymph of untreated larvae increased up to the 4th day of the stage, declined during days 5 and 6, and increased again before pupation. In the glutaurine-treated larvae the amount of proteins in the haemolymph was as high as in the controls during the first four days but continued to rise up to the end of the stage. The protein content of the fat body started to increase from the 3rd day and heavy accumulation of protein storage granules in the cells of fat body was observed on the 5th and following days. The protein content of the fat body of glutaurine-treated larvae remained at a low level and the protein storage granules were absent in the cells. The inhibition of the selective uptake of haemolymphatic storage proteins by fat body following glutaurine treatment is suggested.  相似文献   

12.
The proteins of the fat body of non-diapausing, pre-diapausing, and newly-diapaused larvae of the southwestern corn borer, Diatraea grandiosella, were examined. Since a low titre of juvenile hormone (JH) is present in the haemolymph throughout the final instar of non-diapausing larvae, the hormone does not appear to stimulate the pre-metamorphic synthesis of proteins. In contrast, the high titre of JH in the haemolymph during the final instar of pre-diapausing larvae appears to stimulate the synthesis of selected proteins. For example, pre-diapausing larvae store in their fat body a low molecular weight protein which has been named the ‘diapause-associated protein’. When non-diapausing larvae were treated topically with C17-JH or a JH mimic, from 50 to 70% entered a diapause-like state as fully grown larvae. These hormone-treated larvae accumulated the diapause-associated protein and a high molecular weight protein in their fat bodies. Both of these proteins were shown to be released from the fat body of newly-diapaused larvae in vitro, and may function in the haemolymph during diapause. The high molecular weight protein, isolated from the haemolymph, was shown to contain neutral and polar lipids, including biochromes. Its storage in the fat body and release into the haemolymph may be essential for the transport of lipids during diapause. The fat body proteins of newly-diapaused larvae of the southern cornstalk borer, Diatraea crambidiodes, were also examined electrophoretically. They were found to contain a similar protein pattern to that of D. grandiosella, including the presence of a diapause-associated protein.  相似文献   

13.
Quantitative changes in haemolymph proteins from each physiological phase of the last three larval instars of the tobacco hornworm, Manduca sexta, were studied by means of disk electrophoresis. Twelve anodical migrating protein bands were found, six of which occurred only sporadically. Total protein concentration increased from pharate third instar to late fifth instar larvae, then decreased slightly in the pharate pupal stages. Some individual bands showed cyclic patterns within each instar similar to the overall cyclic pattern of total protein, whereas other bands showed different patterns or no pattern.  相似文献   

14.
The female silkworm, Bombyx mori, rapidly accumulates two storage proteins, that are synthesized by the fat body, in the haemolymph during the feeding stage of the last-larval instar, and then sequesters them from the haemolymph into fat body during the larval-pupal transformation.The rapid synthesis and uptake of storage proteins by the fat body are shown to be induced by allatectomy in the early-penultimate larval instar. A juvenile hormone analogue, methoprene, is highly effective in inhibiting the allatectomy-induced synthesis, and, in a higher dosage, further blocks the uptake. Allatectomy in the late-penultimate larval instar shortly before moulting does not enhance the storage protein synthesis, but causes the uptake to occur two days earlier in the last-larval instar. Injection of 20-hydroxyecdysone is not stimulatory for synthesis of the proteins, but is effective to induce their uptake. Starvation during the early last-larval instar completely blocks the synthesis.From these results, it is suggested that storage protein synthesis is induced in the absence of juvenile hormone by some supplementary stimulus, possibly the supply of nutrient after feeding, and uptake is induced by ecdysteroids after a decline in the juvenile hormone level.  相似文献   

15.
16.
The major functions of silkworm peritracheal athrocytes (nephrocytes) include endocytosis. Although athrocytes are also believed to function in protein degradation, there is limited experimental evidence for this. In this study, we detected the uptake and degradation of foreign proteins in peritracheal athrocytes by immunohistochemical, Western blot, and ex vivo analyses. IgG-FITC was detected in the athrocytes of silkworm larvae following injection, and LysoTracker analysis showed endosomal and lysosomal colocalizations. Athrocytes from larvae injected with IgG were incubated in Grace's medium for 2 days before being analyzed for the degradation of IgG by Western blotting. The level of incorporated IgG decreased and degradation products appeared following ex vivo culture. The highest level of IgG incorporation and degradation in the athrocytes was observed at the early pupal stage. The athrocytes also incorporated arylphorin, a major larval haemolymph protein and storage protein in silkworms. At the early pupal stage, arylphorin was actively degraded in the athrocytes. These results indicate that, in cooperation with the fat body, peritracheal athrocytes may function in the digestion of arylphorin during silkworm metamorphosis.  相似文献   

17.
The levels of an 81K storage protein in the waxmoth, Galleria mellonella, were monitored during the course of development using rocket immunoelectrophoresis. During the fifth and sixth larval stadia, 81K protein levels increased during feeding and growth but sharply declined at each larval molt. During the fifth and sixth stadia hemolymph levels of the 81K protein increased to about 1 and 2.5 mg/ml, respectively, with no discernible differences between levels in males and females. Neither the fat body nor the remainder of the carcass contained the 81K protein, indicating that the accumulation of this protein during the intermolt period was exclusively in the hemolymph and redistribution of the 81K protein into other tissues does not occur at the final two larval molts. During the seventh (final) larval stadium the absolute quantities of the 81K protein increased from 23 μg per insect to over 1,600 μg in females and to 300 μg in males. The hemolymph concentration of the 81K protein reached 28 mg/ml in females and 6 mg/ml in males with only low levels found in the remaining tissues. Shortly after pupal apolysis, marked by eyespot retraction, the fat body in both sexes rapidly and quantitatively sequestered the 81K protein from the hemolymph. The 81K protein in the hemolymph of both males and females rapidly dropped to nearly zero concentration by pupation. The 81K storage protein remained localized in the fat body cells after uptake occurred, even though the fat body cells disaggregate and reaggregate during metamorphosis. During pharate adult development the 81K storage protein disappeared from the fat body without entering the hemolymph. At adult eclosion 81K was virtually absent from the tissues of both males and females.  相似文献   

18.
Exposure of early fourth-instar larvae of Aedes aegypti to the juvenile hormone analogue Altosid ZR15® (methoprene) significantly increased the concentration of carbohydrates in the haemolymph of late fourth-instar larvae and reduced the haemolymph carbohydrate concentration of 24-h-old pupae relative to controls. Such treatment also effected a decline in haemolymph amino nitrogen levels of the pupal stage and a depletion of haemolymph proteins in late fourth-instar larvae as well as pupae. Two of nine protein fractions in the haemolymph of larvae were significantly depleted following methoprene treatment. Fourteen soluble protein fractions were present in the haemolymph of control pupae; two of these were missing from the pupae which were treated as larvae with methoprene. A further protein fraction, common to the haemolymph of both treated and control pupae, was significantly reduced in concentration as a consequence of exposure to methoprene. The juvenile hormone analogue impaired the capacity of the fat bodies of late fourth-instar larvae and pupae to synthesise proteins, resulting in a lowered concentration of fat body proteins. Glycogen levels in the fat bodies of treated larvae were significantly lower than in controls and glycogenolysis was suppressed due to an overall depletion of glycogen phosphorylase and, in pupae, a lowered ratio of active: inactive enzyme. The data are consistent with the proposition that the juvenile hormone analogue elicits neuroendocrinological changes in the target insect.  相似文献   

19.
From the first day of the last (fourth) larval instar no trace of juvenile hormone (JH) can be detected in the haemolymph by Galleria bioassay. Three specific diapause proteins, which are also found in diapausing adults, appear in the haemolymph. These proteins disappear towards the end of the pupal stage. Study of the ultrastructure of the fat body revealed the formation from lysosomes of proteinaceous bodies which are also characteristic for adult diapause. The behaviour of last instar larvae and pupae resembles that of prediapausing and diapausing adults respectively. Injection of synthetic JH delays the appearance of the diapause proteins in the haemolymph and of proteinaceous bodies in the fat body for 2 to 3 days. The absence of JH seems to trigger off these diapause phenomena.  相似文献   

20.
The haemolymph ecdysteroid titre of the last larval and pupal stadia of Calpodes ethlius was determined by radioimmunoassay. During the last larval stadium, four significant ecdysteroid peaks are present, two of which have been reported for other Lepidoptera. The first peak occurs 12 hr after ecdysis and correlates temporally with nucleolar activity, RNA synthesis and organelle formation in the fat body and epidermis. It correlates also with fat body DNA synthesis, polyploidy and the initiation of a low rate of lipid synthesis. Another peak, at 78 hr, starts its increase when the prothoracic glands no longer require the influence of the brain to produce ecdysone for pupation, and marks the first critical period. It correlates with the initiation of epidermal DNA synthesis and mitosis, and with the progressive determination of pupal characteristics (change in commitment, reprogramming). This ecdysteroid peak may also be involved in the massive intermoult syntheses in the epidermis (lamellate cuticle, wax) and the fat body (lipid, protein). The largest ecdysteroid peak is seen at 162 hr, 6 hr after the tissues no longer require the prothoracic glands for pupation (second critical period). It correlates temporally with the cessation of massive synthetic activity in both epidermis and fat body and initiates preparation for pupal synthesis in both tissues. At this time the ratio of ecdysone: 20-hydroxyecdysone is ~ 1 : 6.6.In common with other Lepidoptera, a single large ecdysteroid peak occurs during the first half of the pupal stadium. Comparisons between these events and the ecdysteroid titre are made between Calpodes and other insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号