首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study was designed to determine whether patients with McArdle's disease, who do not increase their blood lactate levels during and after maximal exercise, have a slow "lactacid" component to their recovery O2 consumption (VO2) response after high-intensity exercise. VO2 was measured breath by breath during 6 min of rest before exercise, a progressive maximal cycle ergometer test, and 15 min of recovery in five McArdle's patients, six age-matched control subjects, and six maximal O2 consumption- (VO2 max) matched control subjects. The McArdle's patients' ventilatory threshold occurred at the same relative exercise intensity [71 +/- 7% (SD) VO2max] as in the control groups (60 +/- 13 and 70 +/- 10% VO2max) despite no increase and a 20% decrease in the McArdle's patients' arterialized blood lactate and H+ levels, respectively. The recovery VO2 responses of all three groups were better fit by a two-, than a one-, component exponential model, and the parameters of the slow component of the recovery VO2 response were the same in the three groups. The presence of the same slow component of the recovery VO2 response in the McArdle's patients and the control subjects, despite the lack of an increase in blood lactate or H+ levels during maximal exercise and recovery in the patients, provides evidence that this portion of the recovery VO2 response is not the result of a lactacid mechanism. In addition, it appears that the hyperventilation that accompanies high-intensity exercise may be the result of some mechanism other than acidosis or lung CO2 flux.  相似文献   

3.
We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects (n = 10; age = 25.6 +/- 1.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials (same absolute workload, 65% of old VO2 peak; and same relative workload, 65% of new VO2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3, 3-2H]glycerol. An additional nine subjects (age 25.4 +/- 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 9.4 +/- 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65% VO2 peak (Ra: 8.14 +/- 1.28 vs. 6.64 +/- 0.46, Rd: 8. 03 +/- 1.28 vs. 6.42 +/- 0.41 mol. kg-1. min-1) (P 相似文献   

4.
The effect of dynamic exercise on the NADH content of human type I (slow-twitch) and II (fast-twitch) muscle fibres was investigated. Muscle biopsy samples were obtained from the quadriceps femoris of seven healthy subjects at rest and after bicycle exercise at 40, 75 and 100% of the maximal oxygen uptake [VO2(max.)]. At rest and after exercise at 100% VO2(max.), muscle NADH content was significantly higher (P less than 0.05) in type I than in type II fibres. After exercise at 40% VO2(max.), muscle NADH decreased in type I fibres (P less than 0.01), but was not significantly changed in type II fibres. After exercise at 75 and 100% VO2(max.), muscle NADH increased above the value at rest in both type I and II fibres (P less than 0.05). Muscle lactate was unchanged at 40% VO2(max.), but increased 20- and 60-fold after exercise at 75 and 100% VO2(max.) respectively. The finding that NADH decreased only in type I fibres at 40% VO2(max.) supports the idea that type I is the fibre type predominantly recruited during low-intensity exercise. The increase of NADH in both fibre types after exercise at 75% and 100% VO2(max.) suggests that the availability of oxygen relative to the demand is decreased in both fibre types at high exercise intensities.  相似文献   

5.
In six male subjects the sweating thresholds, heart rate (fc), as well as the metabolic responses to exercise of different intensities [40%, 60% and 80% maximal oxygen uptake (VO2max)], were compared at ambient temperatures (Ta) of 5 degrees C (LT) and 24 degrees C (MT). Each period of exercise was preceded by a rest period at the same temperature. In LT experiments, the subjects rested until shivering occurred and in MT experiments the rest period was made to be of exactly equivalent length. Oxygen uptake (VO2) at the end of each rest period was higher in LT than MT (P less than 0.05). During 20-min exercise at 40% VO2max performed in the cold no sweating was recorded, while at higher exercise intensities sweating occurred at similar rectal temperatures (Tre) but at lower mean skin (Tsk) and mean body temperatures (Tb) in LT than MT experiments (P less than 0.001). The exercise induced VO2 increase was greater only at the end of the light (40% VO2max) exercise in the cold in comparison with MT (P less than 0.001). Both fc and blood lactate concentration [1a]b were lower at the end of LT than MT for moderate (60% VO2max) and heavy (80% VO2max) exercises. It was concluded that the sweating threshold during exercise in the cold environment had shifted towards lower Tb and Tsk. It was also found that subjects exposed to cold possessed a potentially greater ability to exercise at moderate and high intensities than those at 24 degrees C since the increases in Tre, fc and [1a]b were lower at the lower Ta.  相似文献   

6.
Objective: Previous studies have shown that fat metabolism is different in upper body (UB) and lower body (LB) obese women. The present study investigated whether the effect of low‐intensity exercise training on fat metabolism is different in UB and LB obese premenopausal women. Research Methods and Procedures: Twenty‐one healthy, premenopausal women with either LB obesity (waist‐to‐hip ratio of ≤0.79; n = 8) or UB obesity (waist‐to‐hip ratio of ≥0.85; n = 13) participated in the present study. The UB obese women were matched and randomly divided in an exercise training group (UB) and a nonexercising control group (UB‐C). Subjects in the UB and LB groups participated in a low‐intensity exercise training program (40% Vo 2max) three times per week for 12 weeks. Before and after the intervention, measurements of fat metabolism at rest and during exercise, body composition, and maximal aerobic capacity were performed. Results: Exercise training did not change the respiratory exchange ratio at rest in the UB and LB groups. During exercise, relative fat oxidation increased in the UB group by 19% (p < 0.05), whereas no change in the LB and UB‐C groups was found. Plasma free fatty acid oxidation did not change by exercise training, and nonplasma fatty acid oxidation tended to increase in the UB group compared with the UB‐C group (p = 0.08). Discussion: Low‐intensity exercise training increased the contribution of fat oxidation to total energy expenditure during exercise but not at rest in UB obese women. Exercise training had no significant effect on fat metabolism in the LB obese women.  相似文献   

7.
Glucose 1,6-bisphosphate (G-1,6-P2) is a potent activator of phosphofructokinase (PFK) and an inhibitor of hexokinase in vitro. It has been suggested that increases in G-1,6-P2 are a main means by which PFK can achieve significant catalytic function in vivo despite falling pH and that increases in G-1,6-P2 will inhibit hexokinase in vivo. The purpose of the present study was to determine whether contraction-induced changes in flux through PFK and hexokinase are associated with changes in G-1,6-P2 in skeletal muscle. Ten men performed bicycle exercise for 10 min at 40 and 75% of maximal O2 uptake (VO2max) and to fatigue [4.8 +/- 0.6 (SE) min] at 100% VO2max. Biopsies were obtained from the quadriceps femoris muscle at rest and after each work load and analyzed for G-1,6-P2. G-1,6-P2 averaged 111 +/- 13 mumol/kg dry wt at rest and 121 +/- 16, 123 +/- 15, and 123 +/- 11 mumol/kg dry wt after the low-, moderate-, and high-intensity exercise bouts, respectively (P less than 0.05 for all means vs. rest). Flux through PFK was estimated to increase exponentially as the exercise intensity increased and muscle pH decreased at the higher work loads, whereas flux through hexokinase was estimated to increase during exercise at 40 and 75% VO2max but decrease sharply at 100% VO2max. These data demonstrate that flux through neither PFK nor hexokinase is mediated by changes in G-1,6-P2 in human skeletal muscle during short-term dynamic exercise.  相似文献   

8.
Eleven laboratory-pretrained subjects (initial VO2max = 54 ml.kg-1.min-1) took part in a study to evaluate the effect of a short endurance training programme [8-12 sessions, 1 h per session, with an intensity varying from 60% to 90% maximal oxygen consumption (VO2max)] on the responses of blood ammonia (b[NH+4]) and lactate (b[la]) concentrations during progressive and constant exercise intensities. After training, during which VO2max did not increase, significant decreases in b[NH+4], b[la] and muscle proton concentration were observed at the end of the 80% VO2max constant exercise intensity, although b[NH+4] and b[la] during progressive exercise were unchanged. On the other hand, no correlations were found between muscle fibre composition and b[NH+4] in any of the exercise procedures. This study demonstrated that a constant exercise intensity was necessary to reveal the effect of training on muscle metabolic changes inducing the decrease in b[NH+4] and b[la]. At a relative power of exercise of 80% VO2max, there was no effect of muscle fibre composition on b[NH+4] accumulation.  相似文献   

9.
We examined the association between an angiogenin gene polymorphism and blood pressure (BP) at rest and in response to acute exercise before and after a 20-wk endurance-training program. Subjects were 737 normotensive and borderline hypertensive subjects (257 black and 480 white). The polymorphism was detected by PCR and digestion with AvaII, yielding an allele of 253 bp or a rare allele of 194 + 59 bp. Resting and exercise [50 W; 60, 80, and 100% of maximal O2 consumption (VO2 max)] systolic (SBP) and diastolic BP were determined before and after training. Among blacks, adjusted SBP in the sedentary state was significantly lower in carriers of the rare allele at rest and exercise intensities of 60, 80, and 100% of VO2 max. In the trained state, carriers of the rare allele had a significantly (P < 0.05) lower SBP than did noncarriers at rest and at 80 and 100% of VO2 max. The genotypic effect observed among blacks was not evident among whites. Furthermore, change in BP (after--before) was not significantly associated with the genotype. In conclusion, the angiogenin gene AvaII polymorphism is associated with a lower SBP at rest and in response to acute high-intensity exercise in blacks but not in whites.  相似文献   

10.
Disposal of blood [1-13C]lactate in humans during rest and exercise   总被引:1,自引:0,他引:1  
Lactate irreversible disposal (RiLa) and oxidation (RoxLa) rates were studied in six male subjects during rest (Re), easy exercise [EE, 140 min of cycling at 50% of maximum O2 consumption (VO2max)] and hard exercise (HE, 65 min at 75% VO2max). Twenty minutes into each condition, subjects received a Na+-L(+)-[1-13C]lactate intravenous bolus injection. Blood was sampled intermittently from the contralateral arm for metabolite levels, acid-base status, and enrichment of 13C in lactate. Expired air was monitored continuously for determination of respiratory parameters, and aliquots were collected for determination of 13C enrichment in CO2. Steady-rate values for O2 consumption (VO2) were 0.33 +/- 0.01, 2.11 +/- 0.03, and 3.10 +/- 0.03 l/min for Re, EE, and HE, respectively. Corresponding values of blood lactate levels were 0.84 +/- 0.01, 1.33 +/- 0.05, and 4.75 +/- 0.28 mM in the three conditions. Blood lactate disposal rates were significantly correlated to VO2 (r = 0.78), averaging 123.4 +/- 20.7, 245.5 +/- 40.3, and 316.2 +/- 53.7 mg X kg-1 X h-1 during Re, EE, and HE, respectively. Lactate oxidation rate was also linearly related to VO2 (r = 0.81), and the percentage of RiLa oxidized increased from 49.3% at rest to 87.0% during exercise. A curvilinear relationship was found between RiLa and blood lactate concentration. It was concluded that, in humans, 1) lactate disposal (turnover) rate is directly related to the metabolic rate, 2) oxidation is the major fate of lactate removal during exercise, and 3) blood lactate concentration is not an accurate indicator of lactate disposal and oxidation.  相似文献   

11.
This study determined the effects of endurance or resistance exercise training on maximal O2 consumption (VO2max) and the cardiovascular responses to exercise of 70- to 79-yr-old men and women. Healthy untrained subjects were randomly assigned to a control group (n = 12) or to an endurance (n = 16) or resistance training group (n = 19). Training consisted of three sessions per week for 26 wk. Resistance training consisted of one set of 8-12 repetitions on 10 Nautilus machines. Endurance training consisted of 40 min at 50-70% VO2max and at 75-85% VO2max for the first and last 13 wk of training, respectively. The endurance training group increased its VO2max by 16% during the first 13 wk of training and by a total of 22% after 26 wk of training; this group also increased its maximal O2 pulse, systolic blood pressure, and ventilation, and decreased its heart rate and perceived exertion during submaximal exercise. The resistance training group did not elicit significant changes in VO2max or in other maximal or submaximal cardiovascular responses despite eliciting 9 and 18% increases in lower and upper body strength, respectively. Thus healthy men and women in their 70s can respond to prolonged endurance exercise training with adaptations similar to those of younger individuals. Resistance training in older individuals has no effect on cardiovascular responses to submaximal or maximal treadmill exercise.  相似文献   

12.
To determine the effect of posture on maximal O2 uptake (VO2 max) and other cardiorespiratory adaptations to exercise training, 16 male subjects were trained using high-intensity interval and prolonged continuous cycling in either the supine or upright posture 40 min/day 4 days/wk for 8 wk and 7 male subjects served as non-training controls. VO2 max measured during upright cycling and supine cycling, respectively, increased significantly (P less than 0.05) by 16.1 +/- 3.4 and 22.9 +/- 3.4% in the supine training group (STG) and by 14.6 +/- 2.0 and 6.0 +/- 2.0% in the upright training group (UTG). The increase in VO2 max measured during supine cycling was significantly greater (P less than 0.05) in the STG than in the UTG. The increase in VO2 max in the UTG was significantly greater (P less than 0.05) when measured during upright exercise than during supine exercise. However, there was no significant difference in posture-specific VO2 max adaptations in the STG. A postural specificity was also evident in other maximal cardiorespiratory variables (ventilation, CO2 production, and respiratory exchange ratio). In the UTG, maximal heart rate decreased significantly (P less than 0.05) only during supine cycling; there was no significant difference in maximal heart rate after training in the STG. We conclude that posture affects maximal cardiorespiratory adaptations to cycle training. Additionally, supine training is more effective than upright training in increasing maximal cardiorespiratory responses measured during supine exercise, and the effects of supine training generalize to the upright posture to a greater extent than the effects of upright training generalize to the supine posture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The dilution of an intravenous bolus dose of [13C]bicarbonate is used as an estimate for the metabolic rate under certain conditions. It is a consistent finding in all studies that the total amount of intravenous [13C]bicarbonate cannot be recovered as breath 13CO2. In this study, we used a breath-by-breath analysis of 13CO2 to depict the washout of 13CO2 at a high temporal resolution to analyze the extent to which a probable first-pass effect is responsible for the reduced recovery. Eight healthy men were tested at seated rest and with bicycle exercise at a constant load relative to 40 and 75% maximal O2 consumption VO2 max). [13C]bicarbonate (0.0125 g/kg body wt) was administered as an intravenous bolus in each test. Respiratory mass spectrometry was used to derive the course of the end-tidal 13CO2-to-12CO2 ratio from the breath-by-breath data. Approximately 2 min after 13C administration, the washout curve could be fitted well by a two-exponential curve describing a two-compartment mammillary model. Immediately after administration of the bolus dose, an excess peak in the end-tidal 13CO2-to-12CO2 ratio appeared. This peak could not be included in the two-exponential fitting. The area under the first peak resulted in 3.8 +/- 1.3% of the total [13C]bicarbonate dose at rest, 11.5 +/- 2.9% at moderate exercise (40% VO2 max), and 16.9 +/- 4.0% at intensive exercise (75% VO2 max). The first-pass effect had an increasing impact of up to about two-thirds of the lacking bicarbonate with higher exercise intensity. The "loss" of tracer via this first-pass effect must be considered when the results of studies with parenteral administration of [13C]bicarbonate are considered, especially when it is given as a bolus dose and during exercise.  相似文献   

14.
Lovell, DI, Mason, DG, Delphinus, EM, and McLellan, CP. Do compression garments enhance the active recovery process after high-intensity running? J Strength Cond Res 25(12): 3264-3268, 2011-This study examined the effect of wearing waist-to-ankle compression garments (CGs) on active recovery after moderate- and high-intensity submaximal treadmill running. Twenty-five male semiprofessional rugby league players performed two 30-minute treadmill runs comprising of six 5-minute stages at 6 km·h, 10 km·h, approximately 85% VO(2)max, 6 km·h as a recovery stage followed by approximately 85% VO(2)max and 6 km·h wearing either CGs or regular running shorts in a randomized counterbalanced order with each person acting as his own control. All stages were followed by 30 seconds of rest during which a blood sample was collected to determine blood pH and blood lactate concentration [La]. Expired gases and heart rate (HR) were measured during the submaximal treadmill tests to determine metabolic variables with the average of the last 2 minutes used for data analysis. The HR and [La] were lower (p ≤ 0.05) after the first and second 6 km·h recovery bouts when wearing CGs compared with when wearing running shorts. The respiratory exchange ratio (RER) was higher and [La] lower (p ≤ 0.05) after the 10 km·h stage, and only RER was higher after both 85% VO(2)max stages when wearing CGs compared with when wearing running shorts. There was no difference in blood pH at any exercise stage when wearing the CGs and running shorts. The results of this study indicate that the wearing of CGs may augment the active recovery process in reducing [La] and HR after high-intensity exercise but not effect blood pH. The ability to reduce [La] and HR has important consequences for many sports that are intermittent in nature and consist of repeated bouts of high-intensity exercise interspersed with periods of low-intensity exercise or recovery.  相似文献   

15.
This study was designed to examine the effects of alterations in dietary carbohydrate (CHO) intake on the performance of high-intensity exercise lasting approximately 10 min (EXP 1) and 30 min (EXP 2). Trained subjects exercised to exhaustion on four occasions on a cycle ergometer at 90% of maximal oxygen consumption (VO2max; EXP 1, n = 5) and 80% of VO2max (EXP 2, n = 7). The first two tests were familiarisation trials and were carried out following the subjects' normal diet. Normal training was continued but standardised during the periods of dietary control. The subsequent two tests were performed 2 weeks apart after 7 days of dietary manipulation. The two diets were a 70% and a 40% CHO diet, isoenergetic with each subject's normal diet and administered in a randomised order. At both exercise intensities, time to exhaustion following the high CHO and low CHO diets was not different [mean (SD) EXP 1: 11.56 (3.78) min and 8.95 (2.35) min, P = 0.22; EXP 2: 26.9 (7.4) min and 26.5 (6.5) min, P = 0.90]. No differences in resting blood metabolite concentrations were found apart from a lower beta-hydroxybutyrate (beta-HB) level following the high CHO diet in EXP 2. Blood lactate was higher after exercise at 90% of VO2max following the high CHO diet. Blood lactate was higher, and beta-HB lower during exercise at 80% of VO2max following the high CHO diet. No differences were found in the other blood metabolites tested. The respiratory exchange ratio after 15 min of exercise at 80% of VO2max was higher on the high CHO diet. No differences in oxygen uptake, heart rate (EXP 2) or ratings of perceived exertion (both experiments) were found between conditions. These results indicate that moderate changes in diet composition during training do not affect the performance of high-intensity exercise in trained individuals when the total energy intake is moderately high.  相似文献   

16.
Six trained male cyclists and six untrained but physically active men participated in this study to test the hypothesis that the use of percentage maximal oxygen consumption (%VO2max) as a normalising independent variable is valid despite significant differences in the absolute VO2max of trained and untrained subjects. The subjects underwent an exercise test to exhaustion on a cycle ergometer to determine VO2max and lactate threshold. The subjects were grouped as trained (T) if their VO2max exceeded 60 ml.kg-1.min-1, and untrained (UT) if their VO2max was less than 50 ml.kg-1.min-1. The subjects were required to exercise on the ergometer for up to 40 min at power outputs that corresponded to approximately 50% and 70% VO2max. The allocation of each exercise session (50% or 70% VO2max) was random and each session was separated by at least 5 days. During these tests venous blood was taken 10 min before exercise (- 10 min), just prior to the commencement of exercise (0 min), after 20 min of exercise (20 min), at the end of exercise and 10 min postexercise (+ 10 min) and analysed for concentrations of cortisol, [Na+], [K+], [Cl-], glucose, free fatty acid, lactate [la-], [NH3], haemoglobin [Hb] and for packed cell volume. The oxygen consumption (VO2) and related variables were measured at two time intervals (14-15 and 34-35 min) during the prolonged exercise tests. Rectal temperature was measured throughout both exercise sessions. There was a significant interaction effect between the level of training and exercise time at 50% VO2max for heart rate (fc) and venous [la-].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effects of 12 weeks of a low-intensity general conditioning programme on maximal instantaneous peak power (Wpeak) and maximal oxygen uptake (VO2max) were examined in 20 elderly women. After medical, familiarisation, and ethical procedures, the subjects were randomly divided into either a training and or a control group. The training group [n = 11; mean (SD) age 63.0 (3.1) years] agreed to take part in a 12-week training programme at an exercise intensity kept under 60% of the heart rate reserve for about 60 min, 3 times a week. The control group [n = 9; mean (SD) age 63.5 (3.3) years] did not perform any particular physical training. Before and after the training period, all participants underwent anthropometric measures and a maximal cycling test to exhaustion to measure their VO2max. In addition, Wpeak was determined 1 week later by the subjects performing a vertical jump from a squatting position on a force platform. Following training, neither the anthropometric characteristics nor the VO2max changed in either of the groups. In contrast, Wpeak increased significantly (P < 0.001) in the training group, but did not change in the control group. This result could be interpreted as the result of an improved level of neuromuscular activation. Furthermore, it shows that although muscle power declines with age at a faster rate than does aerobic power, its sensitivity to training seems to be higher than that of the aerobic system.  相似文献   

18.
The aim of this study was to determine the effects of exercise at different intensities on 24-h energy expenditure (EE) and substrate oxidation. Sixteen adults (8 men and 8 women) were studied on three occasions [sedentary day (Con), a low-intensity exercise day (LI; 400 kcal at 40% of maximal oxygen consumption) and a high-intensity exercise day (HI; 400 kcal at 70% of maximal oxygen consumption)] by using whole room indirect calorimetry. Both 24-h EE and carbohydrate oxidation were significantly elevated on the exercise days (Con < LI = HI), but 24-h fat oxidation was not different across conditions. Muscle enzymatic profile was not consistently related to 24-h fat or carbohydrate oxidation. With further analysis, it was found that, compared with men, women sustained slightly higher rates of 24-h fat oxidation (mg x kg FFM(-1) x min(-1)) and had a muscle enzymatic profile favoring fat oxidation. It is concluded that exercise intensity has no effect on 24-h EE or nutrient oxidation. Additionally, it appears that women may sustain slightly greater 24-h fat oxidation rates during waking and active periods of the day.  相似文献   

19.
The purposes of the present study were to characterize the histochemical and enzymatic profiles of various hindlimb skeletal muscles, as well as to determine maximal O2 consumption (VO2max) and respiratory exchange ratios (R) during steady-state exercise in the obese Zucker rat. The changes that occurred in these parameters in response to a 6-wk training program were then assessed. Obese rats were randomly assigned to a sedentary or training group. Lean littermates served as a second control. Training consisted of treadmill running at 18 m/min up an 8% grade, 1.5 h/day, 5 day/wk for 6 wk. During week 6, VO2max and R during a steady-state run (74% max) were determined. After 2 days of inactivity, hindlimb muscles were excised, stained for fiber type and capillaries, and assayed for hexokinase, citrate synthase, cytochrome oxidase, and beta-hydroxyacetyl-CoA dehydrogenase. The obese sedentary rats demonstrated greater oxidative enzyme activities per gram of muscle tissue than their lean littermates, greater R values during submaximal exercise of the same relative intensity, and greater absolute VO2max values. Training resulted in a 20-56% increase in oxidative enzymes, a 10% increase in VO2max, and an increase in capillary density in the soleus and plantaris. There was no alteration in R values during exercise at 74% VO2max or in fiber type composition in response to exercise training. Results suggest that the muscle of the obese Zucker rat manifests a greater oxidative capacity than the muscle of its lean littermates. The apparent inability of the obese rat to increase its use of fat during submaximal exercise of the same relative intensity in response to training remains to be elucidated.  相似文献   

20.
Stroke volume (SV) increases above the resting level during exercise and then declines at higher intensities of exercise in sedentary subjects. The purpose of this study was to determine whether an attenuation of the decline in SV at higher exercise intensities contributes to the increase in maximal cardiac output (Qmax) that occurs in response to endurance training. We studied six men and six women, 25 +/- 1 (SE) yr old, before and after 12 wk of endurance training (3 days/wk running for 40 min, 3 days/wk interval training). Cardiac output was measured at rest and during exercise at 50 and 100% of maximal O2 uptake (Vo2max) by the C2H2-rebreathing method. VO2max was increased by 19% (from 2.7 +/- 0.2 to 3.2 +/- 0.3 l/min, P less than 0.001) in response to the training program. Qmax was increased by 12% (from 18.1 +/- 1 to 20.2 +/- 1 l/min, P less than 0.01), SV at maximal exercise was increased by 16% (from 97 +/- 6 to 113 +/- 8 ml/beat, P less than 0.001) and maximal heart rate was decreased by 3% (from 185 +/- 2 to 180 +/- 2 beats/min, P less than 0.01) after training. The calculated arteriovenous O2 content difference at maximal exercise was increased by 7% (14.4 +/- 0.4 to 15.4 +/- 0.4 ml O2/100 ml blood) after training. Before training, SV at VO2max was 9% lower than during exercise at 50% VO2max (P less than 0.05). In contrast, after training, the decline in SV between 50 and 100% VO2max was only 2% (P = NS). Furthermore, SV was significantly higher (P less than 0.01) at 50% VO2max after training than it was before. Left ventricular hypertrophy was evident, as determined by two-dimensional echocardiography at the completion of training. The results indicate that in young healthy subjects the training-induced increase in Qmax is due in part to attenuation of the decrease in SV as exercise intensity is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号