首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single tryptophan-containing mutants of low adenylylation state Escherichia coli glutamine synthetase have been studied by frequency-domain fluorescence spectroscopy in the presence of various substrates and inhibitors. At pH 6.5, the Mn-bound wild-type enzyme (wild type has two tryptophans/subunit) and the mutant enzymes exhibit heterogeneous fluorescence decay kinetics; the individual tryptophans are adequately described by a triple exponential decay scheme. The recovered lifetime values are 5.9 ns, 2.6 ns, and 0.4 ns for Trp-57 and 5.8 ns, 2.3 ns, and 0.4 ns for Trp-158. These values are nearly identical to the previously reported results at pH 7.5 (Atkins, W.M., Stayton, P.S., & Villafranca, J.J., 1991, Biochemistry 30, 3406-3416). In addition, Trp-57 and Trp-158 both exhibit an ATP-induced increase in the relative fraction of the long lifetime component, whereas only Trp-57 is affected by this ligand at pH 7.5. The transition-state analogue L-methionine-(R,S)-sulfoximine (MSOX) causes a dramatic increase in the fractional intensity of the long lifetime component of Trp-158. This ligand has no effect on the W158S mutant protein and causes a small increase in the fractional intensity of the long lifetime component of the W158F mutant protein. Addition of glutamate to the ATP complex, which affords the gamma-glutamylphosphate-ADP complex, results in the presence of new lifetime components at 7, 3.2, and 0.5 ns for Trp-158, but has no effect on Trp-57. Similar results were obtained when ATP was added to the MSOX complex; Trp-57 exhibits heterogeneous fluorescence decay with lifetimes of 7, 3.5, and 0.8 ns. Decay kinetics of Trp-158 are best fit to a nearly homogeneous decay with a lifetime of 5.5 ns in the MSOX-ATP inactivated complex. These results provide a model for the sequence of structural and dynamic changes that take place at the Trp-57 loop and the central loop (Trp-158) during several intermediate stages of catalysis.  相似文献   

2.
Comparison of the fluorescence spectra and the effect of temperature on the quantum yields of fluorescence of Azurin (from Pseudomonas fluorescens ATCC-13525-2) and 3-methylindole (in methylcyclohexane solution) provides substantive evidence that the tryptophan residue in azurin is completely inaccessible to solvent molecules. The quantum yields of azurin (CuII), azurin (CuI), and apoazurin (lambda ex = 291 nm) were 0.052, 0.054, and 0.31, respectively. Other evidence indicates that there is no energy transfer from tyrosine to tryptophan in any of these proteins. The fluorescence decay behavior of each of the azurin samples was found to be invariant with emission wavelength. The fluorescences of azurin (CuII) and azurin (CuI) decay with dual exponential kinetics (tau 1 = 4.80 ns, tau 2 = 0.18 ns) while that of apoazurin obeys single exponential decay kinetics (tau = 4.90). The ratio of pre-exponentials of azurin (CuII), alpha 1/alpha 2, is found to be 0.25, and this ratio increases to 0.36 on reduction to azurin (CuI). The results are interpreted as originating from different interactions of the tryptophan with two conformers of the copper-ligand complex in azurin.  相似文献   

3.
The fluorescence of the single tryptophan in Bacillus stearothermophilus phosphofructokinase was characterized by steady-state and time-resolved techniques. The enzyme is a tetramer of identical subunits, which undergo a concerted allosteric transition. Time-resolved emission spectral data were fitted to discrete and distributed lifetime models. The fluorescence decay is a double exponential with lifetimes of 1.6 and 4.4 ns and relative amplitudes of 40 and 60%. The emission spectra of both components are identical with maxima at 327 nm. The quantum yield is 0.31 +/- 0.01. The shorter lifetime is independent of temperature; the longer lifetime has weak temperature dependence with activation energy of 1 kcal/mol. The fluorescence intensity and decay are the same in H2O and D2O solutions, indicating that the indole ring is not accessible to bulk aqueous solution. The fluorescence is not quenched significantly by iodide, but it is quenched by acrylamide with bimolecular rate constant of 5 x 10(8) M-1 s-1. Static and dynamic light scattering measurements show that the enzyme is a tetramer in solution with hydrodynamic radius of 40 A. Steady-state and time-resolved fluorescence anisotropies indicate that the tryptophan is immobile. The allosteric transition has little effect on the fluorescence properties. The fluorescence results are related to the x-ray structure.  相似文献   

4.
5.
Synapsin I is a major nerve terminal-specific phosphoprotein. It consists of a hydrophobic head region containing one phosphorylation site for either cAMP-dependent protein kinase or Ca2+/calmodulin-dependent protein kinase I and of a basic and elongated tail region containing two phosphorylation sites for Ca2+/calmodulin-dependent protein kinase II. The steady-state emission spectrum of synapsin I was centered at 330 nm and was markedly red shifted upon denaturation, as expected for tryptophan residues segregated from the external aqueous environment in native conditions. Quenching studies showed a low accessibility of synapsin I tryptophans at low ionic strength which was further decreased by exposure to 200 mM NaCl but not significantly affected by phosphorylation. The intrinsic fluorescence of synapsin I was resolved into three major decay components with lifetimes of about 0.2, 3, and 7 ns. Upon phosphorylation of synapsin I on the tail sites, the spectra associated with the intermediate and long lifetimes were shifted to the red region, while the spectrum associated with the short lifetime was shifted to the blue region, in the absence of significant changes of the lifetimes. Phosphorylation of synapsin I on the head site was less effective. The anisotropy decay of synapsin I labeled with the long-living chromophore pyrene on Cys-223 was also analyzed. A shorter rotational correlation time was found for the tail phosphorylated form (corresponding to a Stokes radius of 41-42 A) than for the dephosphorylated or for the head phosphorylated form (corresponding to a Stokes radius of 60-63 A). The data suggest that phosphorylation of the tail sites induces changes in the conformation and hydrodynamic properties of synapsin I which may play a role in the regulation of the molecular interactions of synapsin I within the nerve terminal.  相似文献   

6.
G Nemecz  F Schroeder 《Biochemistry》1988,27(20):7740-7749
The fluorescent sterol delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) was investigated as a cholesterol analogue to examine sterol domains in and spontaneous exchange of sterol between 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) small unilamellar vesicles (SUV). Fluorescence lifetime, acrylamide quenching analyses, and intermembrane exchange kinetics were consistent with the presence of at least two sterol domains in POPC. Fluorescence lifetime was determined by phase and modulation fluorescence spectroscopy and analyzed by nonlinear least-squares as well as continuous distributional analyses. Both methods demonstrated that pure dehydroergosterol in POPC SUV had two lifetime components (C) and fractional intensities (F) near C1 = 0.851 ns (F1 0.96) and C2 = 2.668 ns (F2 0.004). In contrast to component C1, the center of lifetime distribution, fractional intensity, and peak width of dehydroergosterol lifetime component C2 was dependent on the polarity of the medium and vesicle curvature. The sterol domain corresponding to dehydroergosterol component C2 was preferentially quenched by acrylamide. Acrylamide quenching of dehydroergosterol fluorescence demonstrated that the two lifetime components of dehydroergosterol were not due to transbilayer sterol domains with different lifetimes. In a spontaneous exchange assay not requiring separation of donor and acceptor SUV, the lifetime component C2, but not C1, shifted to a shorter lifetime with altered distributional width. The kinetics of these lifetime and distributional width changes best fitted a two-exponential function, with a fast exchange rate constant K1 = 0.0325 min-1, t1/2 = 21.3 min, and a slow rate constant k2 = 0.00275 min-1, t1/2 = 261 min. The fast exchanging pool correlates with the longer lifetime component C2. These kinetics were confirmed both by dehydroergosterol exchange measured with fluorescence intensity and by [3H]cholesterol exchange. In summary, lifetime, distributional width, acrylamide quenching, and classical exchange assay data are consistent with the presence of at least two pools of sterol in POPC SUV.  相似文献   

7.
R Liao  C K Wang    H C Cheung 《Biophysical journal》1992,63(4):986-995
We have carried out a time-resolved fluorescence study of the single tryptophanyl residue (Trp-192) of bovine cardiac Tnl (CTnl). With excitation at 300 nm, the intensity decay was resolved into three components by a nonlinear least-squares analysis with lifetimes of 0.60, 2.22, and 4.75 ns. The corresponding fractional amplitudes were 0.27, 0.50, and 0.23, respectively. These decay parameters were not sensitive to complexation of CTnl with cardiac troponin C (CTnC), and magnesium and calcium had no significant effect on the decay parameters. After incubation with 3':5'-cyclic AMP-dependent protein kinase, the intensity decay of CTnl required a fourth exponential term for satisfactory fitting with lifetimes of 0.11, 0.81, 1.95, and 6.63 ns and fractional amplitudes of 0.06, 0.37, 0.27, and 0.29, respectively. When bound to CTnC, the intensity decay of phosphorylated CTnl (p-CTnl) also required four exponential terms for satisfactory fitting, but the longest lifetime increased by a factor of 1.7. The decay parameters obtained from the complex formed between p-CTnl and CTnC were not sensitive to either magnesium or calcium. The anisotropy decay was resolved into two components with rotational correlation times of 0.90 and 23.48 ns. Phosphorylation resulted in a decrease of the long correlation time to 14.61 ns. The anisotropy values recovered at zero time suggest that the side chain of the Trp-192 had considerable subnanosecond motional freedom not resolved in these experiments. Within the CTnl.CTnC complex, the unresolved fast motions appeared sensitive to calcium binding to the calcium-specific site of CTnC. The observed emission heterogeneity is discussed in terms of possible excited-state interactions in conjunction with the predicted secondary structure of CTnl. The loss of molecular asymmetry of cardiac troponin I induced by phosphorylation as demonstrated in this work may be related to the known physiological effect of beta-agonists on cardiac contractility.  相似文献   

8.
The time-resolved fluorescence characteristics of tryptophan in flavodoxin isolated from the sulfate-reducing bacteria Desulfovibrio vulgaris and Desulfovibrio gigas have been examined. By comparing the results of protein preparations of normal and FMN-depleted flavodoxin, radiationless energy transfer from tryptophan to FMN has been demonstrated. Since the crystal structure of the D. vulgaris flavodoxin is known, transfer rate constants from the two excited states 1 L a and 1 L b can be calculated for both tryptophan residues (Trp 60 and Trp 140). Residue Trp 60, which is very close to the flavin, transfers energy very rapidly to FMN, whereas the rate of energy transfer from the remote Trp 140 to FMN is much smaller. Both tryptophan residues have the indole rings oriented in such a way that transfer will preferentially take place from the 1 L a excited state. The fluorescence decay of all protein preparations turned out to be complex, the parameter values being dependent on the emission wavelength. Several decay curves were analyzed globally using a model in which tryptophan is involved in some nanosecond relaxation process. A relaxation time of about 2 ns was found for both D. gigas apo- and holoflavodoxin. The fluorescence anisotropy decay of both Desulfovibrio FMN-depleted flavodoxins is exponential, whereas that of the two holoproteins is clearly non-exponential. The anisotropy decay was analyzed using the same model as that applied for fluorescence decay. The tryptophan residues turned out to be immobilized in the protein. A time constant of a few nanoseconds results from energy transfer from tryptophan to flavin, at least for D. gigas flavodoxin. The single tryptophan residue in D. gigas flavodoxin occupies a position in the polypeptide chain remote from the flavin prosthetic group. Because of the close resemblance of steady-state and time-resolved fluorescence properties of tryptophan in both flavodoxins, the center to center distance between tryptophan and FMN in D. gigas flavodoxin is probably very similar to the distance between Trp 140 and FMN in D. vulgaris flavodoxin (i.e. 20 Å). Offprint requests to: A.J.W.G. Visser  相似文献   

9.
The time dependence of the fluorescence anisotropy expected when a fluorophore exists in distinct environments having different fluorescence decay and motional behavior is illustrated by simulation calculations. A wide range of behavior is observed. The analysis of such decays in terms of the underlying physical parameters is also illustrated and discussed. In particular, the analysis of 'associated' heterogeneous behavior using a homogeneous environment model with complex motional behavior is evaluated. It is argued that anisotropy decays that exhibit a high initial anisotropy and that rise at long times must be due to a heterogeneous environment. Anisotropic rotor diffusion cannot give rise to behavior of this type. A similar conclusion is reached for anisotropies that exhibit downward curvature. On the other hand, anisotropy decays that are monotonically decreasing and have a positive second derivative at all times cannot be analyzed in a unique fashion and therefore an ambiguity exists in the interpretation of such data in terms of motional behavior.  相似文献   

10.
Special analysis of the tryptophan residue localization in the structure of the macromolecule of Pseudomonas aeruginosa azurin made it possible to prove many explanations in the existing literature of the extraordinary fluorescence properties of this protein, to choose between various contradictory conclusions and in some cases even to make new interpretations of the known experimental data. It has been revealed that the microenvironment of the tryptophan residue is in principle formed by non-polar hydrocarbon groups. The density of the microenvironment is not very high and there are cavities around the ring. The conformation of the side chain of the tryptophan residue is unstrained. These results have been analysed in connection with available data on the unique short-wave fluorescence spectrum position and the existence of the high-frequency indole ring mobility with significant amplitude. Judging by the distance between tryptophan and tyrosine residues and their mutual orientation, the conclusion was made that there is no energy transfer from Tyr 72 to tryptophan and that the efficiency of the energy transfer from Tyr 108 to tryptophan is about 0.5. The mechanism of the dramatic increase in fluorescence efficiency when the copper atom is removed has been discussed with due regard to the fact that the 'blue' copper centre is displaced from the indole ring by more than 10 A.  相似文献   

11.
In fluorescence microscopy, the fluorescence emission can be characterised not only by intensity and position, but also by lifetime, polarization and wavelength. Fluorescence lifetime imaging (FLIM) can report on photophysical events that are difficult or impossible to observe by fluorescence intensity imaging, and time-resolved fluorescence anisotropy imaging (TR-FAIM) can measure the rotational mobility of a fluorophore in its environment. We compare different FLIM methods: a chief advantage of wide-field time-gating and phase modulation methods is the speed of acquisition whereas for time-correlated single photon counting (TCSPC) based confocal scanning it is accuracy in the fluorescence decay. FLIM has been used to image interactions between proteins such as receptor oligomerisation and to reveal protein phosphorylation by detecting fluorescence resonance energy transfer (FRET). In addition, FLIM can also probe the local environment of fluorophores, reporting, for example, on the local pH, refractive index, ion or oxygen concentration without the need for ratiometric measurements.  相似文献   

12.
The UV dynamic fluorescence and CD of several Pseudomonas aeruginosa azurins bearing single amino acid mutation have been studied. Two classes of mutants were examined. In the first class, two hydrophobic residues in the core of the protein, Ile 7 and Phe 110, nearest to the azurin single tryptophan Trp 48, were substituted by a serine (mutants 17S and F110S). In the second class, two residues in the outer sphere of the copper ligand field were changed, obtaining the following mutants: M44K, H35F, H35L, and H35Q. All these proteins showed two fluorescence lifetimes in the copper-containing form, but only one in the copper-free form. The lifetime of the latter derivatives was different from either those of the metal-bound samples, definitely ruling out the presence of apo-like species in the holo protein. Copper-free 17S and F110S showed a more complex fluorescence decay profile requiring a distribution of lifetimes rather than a single lifetime. Holo F110S was also better fitted, in the limit of confidence, with two distributions rather than a pair of lifetimes. Time-resolved anisotropy of these two mutants as well as of wild-type (wt) protein showed two components (rotational times for wt < or = 200 ps and 7 ns, respectively). These components were not affected significantly by copper removal in the case of wt protein. Instead, the short rotational component of the mutants dropped dramatically to values near zero, indicating a much greater mobility of the tryptophanyl residue in the mutant apo azurins. These data were supported by CD measurements showing a small effect of the copper presence in the region below 250 nm, i.e., in the secondary structure, but almost a collapse of the aromatic asymmetry at 270-295 nm related to a relaxation of the structural constraint around the tryptophan. Altogether these data show that copper does not play a structural role in wt azurin, whereas it is crucial in the stabilization of 17S and F110S mutants. Furthermore, although the metal site geometry is rigidly kept in wt apo-azurin, it regains the native form only in the presence of the metal in the "core" mutants. This finding is important for the theory of entatic states in metalloproteins (Williams RJP, 1995, Eur J Biochem 234:363-381).  相似文献   

13.
A time-resolved fluorescence study of azurin and metalloazurin derivatives   总被引:2,自引:0,他引:2  
C M Hutnik  A G Szabo 《Biochemistry》1989,28(9):3935-3939
Nickel and cobalt derivatives of Pseudomonas fluorescens (ATCC 13525) azurin were prepared and their steady-state fluorescence and time-resolved fluorescence monitored. Like the copper-containing native protein, the fluorescence decay of both metallo derivatives was best fit to a sum of three exponentials, whereas the apoazurin from which they were prepared obeyed single-exponential decay kinetics. However, comparison of the lifetimes and fractional of each of the components in these derivatives to those in the oxidized and reduced native proteins revealed significant differences. These results suggest that the presence of a metal center in azurin imparts a conformational heterogeneity which is strongly dependent on the nature of the metal center. Further, the results are used to comment on current ideas concerning the geometry of the active site in this redox protein.  相似文献   

14.
An engineered calmodulin (VU-9 calmodulin), which possesses a single tryptophan residue at position 99 in calcium binding domain III, was studied by time-resolved fluorescence. At least two exponential terms are needed to describe the tryptophan fluorescence decays, either in the presence or in the absence of calcium. The characteristics of the fluorescence decays are strongly dependent upon the number of calcium ions bound per molecule of VU-9 calmodulin until half of the calcium sites are occupied, i.e., three in the absence of magnesium and two in the presence of 5 mM magnesium. A clear time-dependent spectral shift is observed in the presence of calcium. The existence of an isosbestic point in the time-resolved spectra is in agreement with a two-state model. The biexponential analysis of the 340-nm fluorescence decay during calcium titration gives parameters consistent with a two-state model in which tryptophan 99 interconverts between two different conformations, characterized by a different lifetime value, with rates altered by calcium binding. This model explains the decrease in the protein quantum yield induced by calcium binding [Kilhoffer, M. C., Roberts, D. M. Adibi, A. O., Watterson, D. M., & Haiech, J. (1989) Biochemistry (preceding paper in this issue)].  相似文献   

15.
The unfolding of human serum proteins (HSP) was studied by measuring the intrinsic fluorescence intensity at a wavelength of excitation corresponding to tryptophan's or typosine's fluorescence and surface hydrophobicity. The maxima emission wavelengths (max) of human serum albumin (HSA) and human serum globulin (HSG) before beer consumption (BC) were 336.0 and 337.0 nm and after BC shifted to 335.0 and 334.0 nm, respectively. The surface hydrophobicity slightly increased after BC. In a solution of 8 M urea the max of BSA shifted to 346.4 and that of BSG to 342.5 nm. In contrast, in the same solution but after BC the max positions of HSA and HSG shifted to 355.9 and 357.7 nm, respectively. A decrease in fluorescence intensity, a shift in the maximum of emission, and an increase in surface hydrophobicity which reflected unfolding of proteins were observed. Here we provide evidence that the loosening of the HSP structure takes place primarily in various concentrations of urea before and after beer consumption. Differences in the fluorescence behavior of the proteins are attributed to disruption of the structure of proteins by denaturants as well as by the change in their compactability as a result of ethanol consumption.  相似文献   

16.
Kleinschmidt JH  Tamm LK 《Biochemistry》1999,38(16):4996-5005
The mechanism of insertion and folding of an integral membrane protein has been investigated with the beta-barrel forming outer membrane protein A (OmpA) of Escherichia coli. This work describes a new approach to this problem by combining structural information obtained from tryptophan fluorescence quenching at different depths in the lipid bilayer with the kinetics of the refolding process. Experiments carried out over a temperature range between 2 and 40 degrees C allowed us to detect, trap, and characterize previously unidentified folding intermediates on the pathway of OmpA insertion and folding into lipid bilayers. Three membrane-bound intermediates were found in which the average distances of the Trps were 14-16, 10-11, and 0-5 A, respectively, from the bilayer center. The first folding intermediate is stable at 2 degrees C for at least 1 h. A second intermediate has been isolated at temperatures between 7 and 20 degrees C. The Trps move 4-5 A closer to the center of the bilayer at this stage. Subsequently, in an intermediate that is observable at 26-28 degrees C, the Trps move another 5-10 A closer to the center of the bilayer. The final (native) structure is observed at higher temperatures of refolding. In this structure, the Trps are located on average about 9-10 A from the bilayer center. Monitoring the evolution of Trp fluorescence quenching by a set of brominated lipids during refolding at various temperatures therefore allowed us to identify and characterize intermediate states in the folding process of an integral membrane protein.  相似文献   

17.
R A Copeland  P A Smith  S I Chan 《Biochemistry》1987,26(23):7311-7316
When cytochrome c oxidase is reduced, it undergoes a conformational change that shifts its tryptophan fluorescence maximum from 329 to 345 nm. Studies of ligand-bound, mixed-valence forms of the enzyme show that this conformational change is dependent on the redox state of the low-potential metal centers, cytochrome a and CuA. The intrinsic fluorescence of oxidized cytochrome c oxidase is not effectively quenched by Cs+; however, marked quenching is observed for the reduced enzyme with a Stern-Volmer constant of 0.69. These observations, together with the significant red shift of the emission maximum, suggest that the emitting tryptophan residues are becoming more solvent accessible in the reduced enzyme. Stopped-flow spectra show that this conformational transition occurs rapidly upon reduction of the low-potential sites with a pseudo-first-order rate constant of 4.07 +/- 0.40 s-1. The conformational change monitored by tryptophan fluorescence is suggested to be related to the previously proposed "open-closed" transition of cytochrome c oxidase. Reductive titration of the cyanide-inhibited enzyme with ferrocytochrome c shows a nonlinear response of the fluorescence shift to added electron equivalents. A theoretical treatment of the reduction of the two interacting sites of the cyanide-inhibited enzyme has been developed that gives the population of each redox state as a function of the total number of electrons accepted by the enzyme. This treatment depends on two parameters: the difference in redox potential between the two metals and the redox interaction between the redox centers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Ligand-dependent structural changes in serum albumin are suggested to underlie its role in physiological solute transport and receptor-mediated cellular selection. Evidence of ligand-induced (oleic acid) structural changes in serum albumin are shown in both time-resolved and steady-state fluorescence quenching and anisotropy measurements of tryptophan 214 (Trp214). These studies were augmented with column chromatography separations. It was found that both the steady-state and time-resolved Stern-Volmer collisional quenching studies of Trp214 with acrylamide pointed to the existence of an oleate-dependent structural transformation. The bimolecular quenching rate constant of defatted human serum albumin, 1.96 x 10(9) M-1 s-1, decreased to 0.94 x 10(9) M-1 s-1 after incubation with oleic acid (9:1). Furthermore, Stern-Volmer quenching studies following fractionation of the structural forms by hydrophobic interaction chromatography were in accordance with this interpretation. Time-resolved fluorescence anisotropy measurements of the Trp214 residue yielded information of motion within the protein together with the whole protein molecule. Characteristic changes in these motions were observed after the binding of oleate to albumin. The addition of oleate was accompanied by an increase in the rotational diffusion time of the albumin molecule from approximately 22 to 33.6 ns. Within the body of the protein, however, the rotational diffusion time for Trp214 exhibited a slight decrease from 191 to 182 ps and was accompanied by a decrease in the extent of the angular motion of Trp214, indicating a transition after oleate binding to a more spatially restricted but less viscous environment.  相似文献   

19.
J B Ross  K W Rousslang  L Brand 《Biochemistry》1981,20(15):4361-4369
The direct time-resolved fluorescence anisotropy of the single tryptophan residue in the polypeptide hormone adrenocorticotropin-(1-24) (ACTH) and the fluorescence decay kinetics of this residue (Trp-9) are reported. Two rotational correlation times are observed. One, occurring on the subnanosecond time scale, reflects the rotation of the indole ring, and the other, which extends into the nanosecond range, is dominated by the complex motions of the polypeptide chain. The fluorescence lifetimes of the single tryptophan in glucagon (Trp-25) and the 23-26 glucagon peptide were also measured. In all cases the fluorescence kinetics were satisfied by a double-exponential decay law. The fluorescence lifetimes of several tryptophan and indole derivatives and two tryptophan dipeptides were examined in order to interpret the kinetics. In close agreement with the findings of Szabo and Rayner [Szabo, A. G., & Rayner, D. M. (1980) J. Am. Chem. Soc. 102, 554-563], the tryptophan zwitterion exhibits emission wavelength dependent double-exponential decay kinetics. At 320 nm tau 1 = 3.2 ns and tau 2 = 0.8 ns, with alpha 1 = 0.7 and alpha 2 = 0.3. Above 380 nm only the 3.2-ns component is observed. By contrast the neutral derivative N-acetyltryptophanamide has a single exponential decay of 3.0 ns. The multiexponential decay kinetics of the polypeptides are discussed in terms of flexibility of the polypeptide chain and neighboring side-chain interactions.  相似文献   

20.
Human recombinant interferon alpha 2 belongs a to family of proteins active against a wide range of viruses. It contains two tryptophan residues located at positions 77 and 141 in the peptide sequence. The fluorescence emission spectrum of these tryptophan residues displays a maximum at 335 nm. The fluorescence intensity decay is described by one broad excited-state-lifetime population centered around a value of 1.7 ns (full width at half maximum, 1.5 ns). These observations suggest that in the native protein, both tryptophan residues emit from similar environments, not directly exposed to the surrounding solvent. The anisotropy decay is essentially biexponential. The correlation-time value characterizing the Brownian rotation of the protein varies linearly with the viscosity/temperature ratio. The calculated hydrodynamic volumes are compatible with the existence of a dimer and a tetramer, at pH 5.5 and 9.4, respectively. Addition of urea at pH 5.5 disrupts the dimer and modifies to some extent the excited-state-lifetime distribution which becomes more heterogeneous. Disulfide-bond reduction also dissociates the dimer and leads to a highly heterogeneous fluorescence-intensity decay with four excited-state-lifetime populations. An opening of the local structure in the Trp region of the protein is likely to occur in these conditions. The fast-anisotropy-decay components can be due to either fast rotation or energy transfer between the indoles. Close proximity of the two Trp residues (less than 1 nm) is suggested from steady-state and time-resolved fluorescence-anisotropy measurements in vitrified medium [95% (by mass) glycerol at -38 degrees C]. This suggestion is in agreement with the recently published three-dimensional structure of the homologous protein murine interferon beta [Senda, T., Shimazu, T., Matsuda, S. Kawano, G., Shimizu, H., Nakamura, K. T. & Mitsui, Y. (1992) EMBO J. 11, 3193-3201].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号