首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu S  Yin S  Pham N  Wong P  Kang SC  Petersen RB  Li C  Sy MS 《The FEBS journal》2008,275(22):5564-5575
Aggregation of the normal cellular prion protein, PrP, is important in the pathogenesis of prion disease. PrP binds glycosaminoglycan (GAG) and divalent cations, such as Cu(2+) and Zn(2+). Here, we report our findings that GAG and Cu(2+) promote the aggregation of recombinant human PrP (rPrP). The normal cellular prion protein has five octapeptide repeats. In the presence of either GAG or Cu(2+), mutant rPrPs with eight or ten octapeptide repeats are more aggregation prone, exhibit faster kinetics and form larger aggregates than wild-type PrP. When the GAG-binding motif, KKRPK, is deleted the effect of GAG but not that of Cu(2+) is abolished. By contrast, when the Cu(2+)-binding motif, the octapeptide-repeat region, is deleted, neither GAG nor Cu(2+) is able to promote aggregation. Therefore, the octapeptide-repeat region is critical in the aggregation of rPrP, irrespective of the promoting ligand. Furthermore, aggregation of rPrP in the presence of GAG is blocked with anti-PrP mAbs, whereas none of the tested anti-PrP mAbs block Cu(2+)-promoted aggregation. However, a mAb that is specific for an epitope at the N-terminus enhances aggregation in the presence of either GAG or Cu(2+). Therefore, although binding of either GAG or Cu(2+) promotes the aggregation of rPrP, their aggregation processes are different, suggesting multiple pathways of rPrP aggregation.  相似文献   

2.
We compared the biochemical properties of a wild type recombinant normal human cellular prion protein, rPrP(c), with a recombinant mutant human prion protein that has three additional octapeptide repeats, rPrP(8OR). Monoclonal antibodies that are specific for the N terminus of rPrP(c) react much better with rPrP(8OR) than rPrP(c), suggesting that the N terminus of rPrP(8OR) is more exposed and hence more available for antibody binding. The N terminus of PrP(c) contains a glycosaminoglycan binding motif. Accordingly, rPrP(8OR) also binds more glycosaminoglycan than rPrP(c). In addition, the divalent cation copper modulates the conformations of rPrP(c) and rPrP(8OR) differently. When compared with rPrP(c), rPrP(8OR) is also more susceptible to oxidative damage. Furthermore, the abnormalities associated with rPrP(8OR) are recapitulated, but even more profoundly, in another insertion mutant, which has five extra octapeptide repeats, rPrP(10OR). Therefore, insertion mutants appear to share common features, and the degree of abnormality is proportional to the number of insertions. Any of these anomalies may contribute to the pathogenesis of inherited human prion disease.  相似文献   

3.
RNA aptamers specifically interact with the prion protein PrP.   总被引:9,自引:0,他引:9       下载免费PDF全文
We have isolated RNA aptamers which are directed against the recombinant Syrian golden hamster prion protein rPrP23-231 (rPrPc) fused to glutathione S-transferase (GST). The aptamers did not recognize the fusion partner GST or the fusion protein GST::rPrP90-231 (rPrP27-30), which lacks 67 amino acids from the PrP N terminus. The aptamer-interacting region of PrPc was mapped to the N-terminal amino acids 23 to 52. Sequence analyses suggest that the RNA aptamers may fold into G-quartet-containing structural elements. Replacement of the G residues in the G quartet scaffold with uridine residues destroyed binding to PrP completely, strongly suggesting that the G quartet motif is essential for PrP recognition. Individual RNA aptamers interact specifically with prion protein in brain homogenates from wild-type mice (C57BL/6), hamsters (Syrian golden), and cattle as shown by supershifts obtained in the presence of anti-PrP antibodies. No interaction was observed with brain homogenates from PrP knockout mice (prn-p(0/0)). Specificity of the aptamer-PrP interaction was further confirmed by binding assays with antisense aptamer RNA or a mutant aptamer in which the guanosine residues in the G tetrad scaffold were replaced by uridine residues. The aptamers did not recognize PrP27-30 in brain homogenates from scrapie-infected mice. RNA aptamers may provide a first milestone in the development of a diagnostic assay for the detection of transmissible spongiform encephalopathies.  相似文献   

4.
Yu S  Yin S  Li C  Wong P  Chang B  Xiao F  Kang SC  Yan H  Xiao G  Tien P  Sy MS 《The Biochemical journal》2007,403(2):343-351
Mutation in the prion gene, PRNP, accounts for approx. 10-15% of human prion diseases. However, little is known about the mechanisms by which a mutant prion protein (PrP) causes disease. We compared the biochemical properties of a wild-type human prion protein, rPrP(C) (recombinant wild-type PrP), which has five octapeptide-repeats, with two recombinant human prion proteins with insertion mutations, one with three more octapeptide repeats, rPrP(8OR), and the other with five more octapeptide repeats, rPrP(10OR). We found that the insertion mutant proteins are more prone to aggregate, and the degree and kinetics of aggregation are proportional to the number of inserts. The octapeptide-repeat and alpha-helix 1 regions are important in aggregate formation, because aggregation is inhibited with monoclonal antibodies that are specific for epitopes in these regions. We also showed that a small amount of mutant protein could enhance the formation of mixed aggregates that are composed of mutant protein and wild-type rPrP(C). Accordingly, rPrP(10OR) is also more efficient in promoting the aggregation of rPrP(C) than rPrP(8OR). These findings provide a biochemical explanation for the clinical observations that the severity of the disease in patients with insertion mutations is proportional to the number of inserts, and thus have implications for the pathogenesis of inherited human prion disease.  相似文献   

5.
The transmissible agent of prion disease consists of a prion protein in its abnormal, β-sheet rich state (PrP(Sc)), which is capable of replicating itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a PrP(Sc) template. Here we report that authentic PrP(Sc) and transmissible prion disease can be generated de novo in wild type animals by recombinant PrP (rPrP) amyloid fibrils, which are structurally different from PrP(Sc) and lack any detectable PrP(Sc) particles. When induced by rPrP fibrils, a long silent stage that involved two serial passages preceded development of the clinical disease. Once emerged, the prion disease was characterized by unique clinical, neuropathological, and biochemical features. The long silent stage to the disease was accompanied by significant transformation in neuropathological properties and biochemical features of the proteinase K-resistant PrP material (PrPres) before authentic PrP(Sc) evolved. The current work illustrates that transmissible prion diseases can be induced by PrP structures different from that of authentic PrP(Sc) and suggests that a new mechanism different from the classical templating exists. This new mechanism designated as "deformed templating" postulates that a change in the PrP folding pattern from the one present in rPrP fibrils to an alternative specific for PrP(Sc) can occur. The current work provides important new insight into the mechanisms underlying genesis of the transmissible protein states and has numerous implications for understanding the etiology of neurodegenerative diseases.  相似文献   

6.
The prion protein (PrP) is the major agent implicated in the diseases known as transmissible spongiform encephalopathies. The onset of transmissible spongiform encephalopathy is related to a change in conformation of the PrP(C), which loses most of its alpha-helical content, becoming a beta-sheet-rich protein, known as PrP(Sc). Here we have used two Syrian hamster prion domains (PrP 109-141 and PrP 109-149) and the murine recombinant PrP (rPrP 23-231) to investigate the effects of anilino-naphtalene compounds on prion oligomerization and aggregation. Aggregation in the presence of bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-sulfonate), ANS (1-anilinonaphthalene-8-sulfonate), and AmNS (1-amino-5-naphtalenesulfonate) was monitored. Bis-ANS was the most effective inhibitor of prion peptide aggregation. Bis-ANS binds strongly to rPrP 23-231 leading to a substantial increase in beta-sheet content and to limited oligomerization. More strikingly, the binding of bis-ANS to full-length rPrP is diminished by the addition of nanomolar concentrations of oligonucleotides, demonstrating that they compete for the same binding site. Thus, bis-ANS displays properties similar to those of nucleic acids, causing oligomerization and conversion to beta-sheet (Cordeiro, Y., Machado, F., Juliano, L., Juliano, M. A., Brentani, R. R., Foguel, D., and Silva, J. L. (2001) J. Biol. Chem. 276, 49400-49409). This dual effect of bis-ANS on prion protein makes this compound highly important to sequester crucial conformations of the protein, which may be useful to the understanding of the disease and to serve as a lead for the development of new therapeutic strategies.  相似文献   

7.
Transmissible spongiform encephalitis (TSE) is a lethal illness with no known treatment. Conversion of the cellular prion protein (PrP(C)) into the infectious isoform (PrP(Sc)) is believed to be the central event in the development of this disease. Recombinant PrP (rPrP) protein folded into the amyloid conformation was shown to cause the transmissible form of prion disease in transgenic mice and can be used as a surrogate model for PrP(Sc). Here, we introduced a semiautomated assay of in vitro conversion of rPrP protein to the amyloid conformation. We have examined the effect of known inhibitors of prion propagation on this conversion and found good correlation between their activity in this assay and that in other in vitro assays. We thus propose that the conversion of rPrP to the amyloid isoform can serve as a high-throughput screen for possible inhibitors of PrP(Sc) formation and potential anti-TSE drugs.  相似文献   

8.
In recent studies, we developed a protocol for in vitro conversion of full-length mouse recombinant PrP (Mo rPrP23-230) into amyloid fibrils [Bocharova et al. (2005) J. Mol. Biol. 346, 645-659]. Because amyloid fibrils produced from recombinant Mo PrP89-230 display infectivity [Legname et al. (2004) Science 305, 673-676], polymerizatiom of rPrPs in vitro represents a valuable model for elucidating the mechanism of prion conversion. Unexpectedly, when the same conversion protocol was used for hamster (Ha) rPrP23-231, we experienced substantial difficulties in forming fibrils. While searching for potential reasons of our failure to produce fibrils, we probed the effect of methionine oxidation in rPrP. We found that oxidation of methionines interferes with the formation of rPrP fibrils and that this effect is more profound for Ha than for Mo rPrP. To minimize the level of spontaneous oxidation, we developed a new protocol for rPrP purification, in which highly amyloidogenic Ha rPrP with minimal levels of oxidized residues was produced. Furthermore, our studies revealed that oxidation of methionines in preformed fibrils inhibited subsequent maturation of fibrils into proteinase K-resistant PrP(Sc)-like conformation (PrP-res). Our data are consistent with the proposition that conformational changes within the central region of the protein (residues 90-140) are essential for adopting PrP-res conformation and demonstrate that methionine oxidation interferes with this process. These studies provide new insight into the mechanism of prion polymerization, solve a long-standing practical problem in producing PrP-res fibrils from full-length PrP, and may help in identifying new genetic and environmental factors that modulate prion disease.  相似文献   

9.
In recent studies, the amyloid fibrils produced in vitro from recombinant prion protein encompassing residues 89-230 (rPrP 89-230) were shown to produce transmissible form of prion disease in transgenic mice (Legname et al., (2004) Science 305, 673-676). Long incubation time observed upon inoculation of the amyloid fibrils, however, suggests that the fibrils generated in vitro have low infectivity titers. These results emphasize the need to define optimal conditions for prion conversion in vitro, under which high levels of infectivity can be generated in a cell-free system. Because copper(II) has been implicated in normal and pathological functions of the prion protein, here we investigated the effect of Cu(2+) on cell-free conversion of recombinant PrP. Our results show that at pH 7.2 and at micromolar concentrations, Cu(2+) inhibited conversion of full-length recombinant PrP (rPrP 23-230) into amyloid fibrils. This effect was most pronounced for Cu(2+), and less so for Zn(2+), while Mn(2+) had no effect on the conversion. Cu(2+)-dependent inhibition of the amyloid formation was less effective at pH 6.0, at which rPrP 23-230 displays lower Cu(2+)-binding capacity. Using rPrP 89-230, we found that Cu(2+)-dependent inhibition occurred even in the absence of octarepeat region; however, it was less effective. Our further studies indicated that Cu(2+) inhibited conversion by stabilizing a nonamyloidogenic PK-resistant form of alpha-rPrP. Remarkably, Cu(2+) also had a profound effect on preformed amyloid fibrils. When added to the fibrils, Cu(2+) induced long-range coiling of individual fibrils and enhanced their PK-resistance. It, however, produced only minor changes in their secondary structures. In addition, Cu(2+) induced further aggregation of the amyloid fibrils into large clumps, presumably, through interfibrillar coordination of copper ions by octarepeats. Taken together, our studies suggest that the role of Cu(2+) in the pathogenesis of prion diseases is complex. Because Cu(2+) may inhibit prion replication, while at the same time stabilize disease-specific isoform against proteolytic clearance, the final outcome of copper-induced effect on progression of prion disease may not be straightforward.  相似文献   

10.
Recently published data show that the prion protein in its cellular form (PrP(C)) is a component of multimolecular complexes. In this report, zero-length cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) allowed us to identify tubulin as one of the molecules interacting with PrP(C) in complexes observed in porcine brain extracts. We found that porcine brain tubulin added to these extracts can be cross-linked with PrP(C). Moreover, we observed that the 34 kDa species identified previously as full-length diglycosylated prion protein co-purifies with tubulin. Cross-linking of PrP(C) species separated by Cu(2+)-loaded immobilized metal affinity chromatography confirmed that only the full-length protein but not the N-terminally truncated form (C1) binds to tubulin. By means of EDC cross-linking and cosedimentation experiments, we also demonstrated a direct interaction of recombinant human PrP (rPrP) with tubulin. The stoichiometry of cosedimentation implies that rPrP molecules are able to bind both the alpha- and beta-isoforms of tubulin composing microtubule. Furthermore, prion protein exhibits higher affinity for microtubules than for unpolymerized tubulin.  相似文献   

11.
Prion diseases are characterised at autopsy by neuronal loss and accumulation of amorphous protein aggregates and/or amyloid fibrils in the brains of humans and animals. These protein deposits result from the conversion of the cellular, mainly alpha-helical prion protein (PrP(C)) to the beta-sheet-rich isoform (PrP(Sc)). Although the pathogenic mechanism of prion diseases is not fully understood, it appears that protein aggregation is itself neurotoxic and not the product of cell death. The precise nature of the neurotoxic species and mechanism of cell death are yet to be determined, although recent studies with other amyloidogenic proteins suggest that ordered pre-fibrillar or oligomeric forms may be responsible for cellular dysfunction. In this study we have refolded recombinant prion protein (rPrP) to two distinct forms rich in beta-sheet structure with an intact disulphide bond. Here we report on the structural properties of globular aggregates and pre-fibrils of rPrP and show that both states are toxic to neuronal cells in culture. We show that exogenous rPrP aggregates are internalised by neuronal cells and found in the cytoplasm. We also measured the changes in electrophysiological properties of cultured neuronal cells on exposure to exogenous prion aggregates and discuss the implications of these findings.  相似文献   

12.
The main hypothesis for prion diseases is that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform (PrP(Sc)), which undergoes aggregation and triggers the onset of transmissible spongiform encephalopathies. Here, we investigate the effects of amino-terminal deletion mutations, rPrP(Delta51-90) and rPrP(Delta32-121), on the stability and the packing properties of recombinant murine PrP. The region lacking in rPrP(Delta51-90) is involved physiologically in copper binding and the other construct lacks more amino-terminal residues (from 32 to 121). The pressure stability is dramatically reduced with decreasing N-domain length and the process is not reversible for rPrP(Delta51-90) and rPrP(Delta32-121), whereas it is completely reversible for the wild-type form. Decompression to atmospheric pressure triggers immediate aggregation for the mutants in contrast to a slow aggregation process for the wild-type, as observed by Fourier-transform infrared spectroscopy. The temperature-induced transition leads to aggregation of all rPrPs, but the unfolding temperature is lower for the rPrP amino-terminal deletion mutants. The higher susceptibility to pressure of the amino-terminal deletion mutants can be explained by a change in hydration and cavity distribution. Taken together, our results show that the amino-terminal region has a pivotal role on the development of prion misfolding and aggregation.  相似文献   

13.
A growing body of evidence indicates that small, soluble oligomeric species generated from a variety of proteins and peptides rather than mature amyloid fibrils are inherently highly cytotoxic. Here, we show for the first time that mature amyloid fibrils produced from full-length recombinant mammalian prion protein (rPrP) were highly toxic to cultured cells and primary hippocampal and cerebella neurons. Fibrils induced apoptotic cell death in a time- and dose-dependent manner. The toxic effect of fibrils was comparable with that exhibited by soluble small beta-oligomers generated from the same protein. Fibrils prepared from insulin were not toxic, suggesting that the toxic effect was not solely due to the highly polymeric nature of the fibrillar form. The cell death caused by rPrP fibrils or beta-oligomers was substantially reduced when expression of endogenous PrP(C) was down-regulated by small interfering RNAs. In opposition to the beta-oligomer and amyloid fibrils of rPrP, the monomeric alpha-helical form of rPrP stimulated neurite out-growth and survival of neurons. These studies illustrated that both soluble beta-oligomer and amyloid fibrils of the prion protein are intrinsically toxic and confirmed that endogenously expressed PrP(C) is required for mediating the toxicity of abnormally folded external PrP aggregates.  相似文献   

14.
A misfolded form of the prion protein (PrP) is the primary culprit in mammalian prion diseases. It has been shown that nucleic acids catalyze the misfolding of cellular PrP into a scrapie-like conformer. It has also been observed that the interaction of PrP with nucleic acids is nonspecific and that the complex can be toxic to cultured cells. No direct correlation has yet been drawn between changes in PrP structure and toxicity due to nucleic acid binding. Here we asked whether different aggregation, stability, and toxicity effects are detected when nonrelated DNA sequences interact with recombinant PrP. Using spectroscopic techniques to analyze PrP tertiary and secondary structure and cellular assays to assess toxicity, we found that rPrP-DNA interactions lead to different aggregated species, depending on the sequence and size of the oligonucleotide tested. A 21-mer DNA sequence (D67) induced higher levels of aggregation and also dissimilar structural changes in rPrP, compared to binding to oligonucleotides with the same length and different nucleotide sequences or different GC contents. The rPrP-D67 complex induced significant cell dysfunction, which appears to be correlated with the biophysical properties of the complex. Although sequence specificity is not apparent for PrP-nucleic acid interactions, we believe that particular nucleic acid patterns, possibly related to GC content, oligonucleotide length, and structure, govern PrP recognition. Understanding the structural and cellular effects observed for PrP-nucleic acid complexes may shed light on the still mysterious pathology of the prion protein.  相似文献   

15.
Previous studies identified several single-point mutants of the prion protein that displayed dominant-negative effects on prion replication. The dominant-negative effect was assumed to be mediated by protein X, an as-yet-unknown cellular cofactor that is believed to be essential for prion replication. To gain insight into the mechanism that underlies the dominant-negative phenomena, we evaluated the effect of the Q218K variant of full-length recombinant prion protein (Q218K rPrP), one of the dominant-negative mutants, on cell-free polymerization of wild-type rPrP into amyloid fibrils. We found that both Q218K and wild-type (WT) rPrPs were incorporated into fibrils when incubated as a mixture; however, the yield of polymerization was substantially decreased in the presence of Q218K rPrP. Furthermore, in contrast to fibrils produced from WT rPrP, the fibrils generated in the mixture of WT and Q218K rPrPs did not acquire the proteinase K-resistant core of 16 kDa that was shown previously to encompass residues 97-230 and was similar to that of PrP(Sc). Our studies demonstrate that the Q218K variant exhibits the dominant-negative effect in cell-free conversion in the absence of protein X, and that this effect is, presumably, mediated by physical interaction between Q218K and WT rPrP during the polymerization process.  相似文献   

16.
During prion infection, the normal, protease-sensitive conformation of prion protein (PrPC) is converted via seeded polymerization to an abnormal, infectious conformation with greatly increased protease-resistance (PrPSc). In vitro, protein misfolding cyclic amplification (PMCA) uses PrPSc in prion-infected brain homogenates as an initiating seed to convert PrPC and trigger the self-propagation of PrPSc over many cycles of amplification. While PMCA reactions produce high levels of protease-resistant PrP, the infectious titer is often lower than that of brain-derived PrPSc. More recently, PMCA techniques using bacterially derived recombinant PrP (rPrP) in the presence of lipid and RNA but in the absence of any starting PrPSc seed have been used to generate infectious prions that cause disease in wild-type mice with relatively short incubation times. These data suggest that lipid and/or RNA act as cofactors to facilitate the de novo formation of high levels of prion infectivity. Using rPrP purified by two different techniques, we generated a self-propagating protease-resistant rPrP molecule that, regardless of the amount of RNA and lipid used, had a molecular mass, protease resistance and insolubility similar to that of PrPSc. However, we were unable to detect prion infectivity in any of our reactions using either cell-culture or animal bioassays. These results demonstrate that the ability to self-propagate into a protease-resistant insoluble conformer is not unique to infectious PrP molecules. They suggest that the presence of RNA and lipid cofactors may facilitate the spontaneous refolding of PrP into an infectious form while also allowing the de novo formation of self-propagating, but non-infectious, rPrP-res.  相似文献   

17.
The purpose of this report was to determine the effect of prion protein (PrP) gene disruption on T lymphocyte function. Previous studies have suggested that normal cellular prion protein (PrP(c)) binds to copper and Cu(2+) is essential for interleukin-2 (IL-2) mRNA synthesis. In this study, IL-2 mRNA levels in a copper-deficient condition were investigated using T lymphocytes from prion protein gene-deficient (PrP(0/0)) and wild-type mice. Results showed that Cu(2+) deficiency had no effect on PrP(c) expression in Con A-activated splenocytes. However, a delay in IL-2 gene expression was observed in PrP(0/0) mouse T lymphocyte cultures using Con A and Cu(2+)-chelator. These results suggest that PrP(c) expression may play an important role in rapid Cu(2+) transfer in T lymphocytes. The rapid transfer of Cu(2+) in murine T lymphocytes could be one of the normal functions of PrP(c).  相似文献   

18.
The central event in the pathogenesis of prion diseases is a profound conformational change of the prion protein (PrP) from an alpha-helical (PrP(C)) to a beta-sheet-rich isoform (PrP(Sc)). The elucidation of the mechanism of conformational transition has been complicated by the challenge of collecting high-resolution biophysical data on the relatively insoluble aggregation-prone PrP(Sc) isoform. In an attempt to facilitate the structural analysis of PrP(Sc), a redacted chimeric mouse-hamster PrP of 106 amino acids (MHM2 PrP106) with two deletions (Delta23-88 and Delta141-176) was expressed and purified from Escherichia coli. PrP106 retains the ability to support PrP(Sc) formation in transgenic mice, implying that it contains all regions of PrP that are necessary for the conformational transition into the pathogenic isoform [Supattapone, S., et al. (1999) Cell 96, 869-878]. Unstructured at low concentrations, recombinant unglycosylated PrP106 (rPrP106) undergoes a concentration-dependent conformational transition to a beta-sheet-rich form. Following the conformational transition, rPrP106 possesses properties similar to those of PrP(Sc)106, such as high beta-sheet content, defined tertiary structure, resistance to limited digestion by proteinase K, and high thermodynamic stability. In GdnHCl-induced denaturation studies, a single cooperative conformational transition between the unstructured monomer and the assembled beta-oligomer was observed. After proteinase K digestion, the oligomers retain an intact core with unusually high beta-sheet content (>80%). Using mass spectrometry, we discovered that the region of residues 134-215 of rPrP106 is protected from proteinase K digestion and possesses a solvent-independent propensity to adopt a beta-sheet-rich conformation. In contrast to the PrP(Sc)106 purified from the brains of neurologically impaired animals, multimeric beta-rPrP106 remains soluble, providing opportunities for detailed structural studies.  相似文献   

19.
Engineering the prion protein using chemical synthesis.   总被引:2,自引:0,他引:2  
In recent years, the technology of solid-phase peptide synthesis (SPPS) has improved to the extent that chemical synthesis of small proteins may be a viable complementary strategy to recombinant expression. We have prepared several modified and wild-type prion protein (PrP) polypeptides, of up to 112 residues, that demonstrate the flexibility of a chemical approach to protein synthesis. The principal event in prion disease is the conformational change of the normal, alpha-helical cellular protein (PrPc) into a beta-sheet-rich pathogenic isoform (PrP(Sc)). The ability to form PrP(Sc) in transgenic mice is retained by a 106 residue 'mini-prion' (PrP106), with the deletions 23-88 and 141-176. Synthetic PrP106 (sPrP106) and a His-tagged analog (sPrP106HT) have been prepared successfully using a highly optimized Fmoc chemical methodology involving DCC/HOBt activation and an efficient capping procedure with N-(2-chlorobenzyloxycarbonyloxy) succinimide. A single reversed-phase purification step gave homogeneous protein, in excellent yield. With respect to its conformational and aggregational properties and its response to proteinase digestion, sPrP106 was indistinguishable from its recombinant analog (rPrP106). Certain sequences that proved to be more difficult to synthesize using the Fmoc approach, such as bovine (Bo) PrP(90-200), were successfully prepared using a combination of the highly activated coupling reagent HATU and t-Boc chemistry. To mimic the glycosylphosphatidyl inositol (GPI) anchor and target sPrP to cholesterol-rich domains on the cell surface, where the conversion of PrPc is believed to occur, a lipophilic group or biotin, was added to an orthogonally side-chain-protected Lys residue at the C-terminus of sPrP sequences. These groups enabled sPrP to be immobilized on either the cell surface or a streptavidin-coated ELISA plate, respectively, in an orientation analogous to that of membrane-bound, GPI-anchored PrPc. The chemical manipulation of such biologically relevant forms of PrP by the introduction of point mutations or groups that mimic post-translational modifications should enhance our understanding of the processes that cause prion diseases and may lead to the chemical synthesis of an infectious agent.  相似文献   

20.
The "protein only" hypothesis postulates that the infectious agent of prion diseases, PrP(Sc), is composed of the prion protein (PrP) converted into an amyloid-specific conformation. However, cell-free conversion of the full-length PrP into the amyloid conformation has not been achieved. In an effort to understand the mechanism of PrP(Sc) formation, we developed a cell-free conversion system using recombinant mouse full-length PrP with an intact disulfide bond (rPrP). We demonstrate that rPrP will convert into the beta-sheet-rich oligomeric form at highly acidic pH (<5.5) and at high concentrations, while at slightly acidic or neutral pH (>5.5) it assembles into the amyloid form. As judged from electron microscopy, the amyloid form had a ribbon-like assembly composed of two non-twisted filaments. In contrast to the formation of the beta-oligomer, the conversion to the amyloid occurred at concentrations close to physiological and displayed key features of an autocatalytic process. Moreover, using a shortened rPrP consisting of 106 residues (rPrP 106, deletions: Delta23-88 and Delta141-176), we showed that the in vitro conversion mimicked a transmission barrier observed in vivo. Furthermore, the amyloid form displayed a remarkable resistance to proteinase K (PK) and produced a PK-resistant core identical with that of PrP(Sc). Fourier transform infrared spectroscopy analyses showed that the beta-sheet-rich core of the amyloid form remained intact upon PK-digestion and accounted for the extremely high thermal stability. Electron and real-time fluorescent microscopy revealed that proteolytic digestion induces either aggregation of the amyloid ribbons into large clumps or further assembly into fibrils composed of several ribbons. Fibrils composed of ribbons were very fragile and had a tendency to fragment into short pieces. Remarkably, the amyloid form treated with PK preserved high seeding activity. Our work supports the protein only hypothesis of prion propagation and demonstrates that formation of the amyloid form that recapitulates key physical properties of PrP(Sc) can be achieved in vitro in the absence of cellular factors or a PrP(Sc) template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号