首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
F M Chen 《Biochemistry》1992,31(27):6223-6228
Studies on the binding specificity of actinomycin D (ACTD) to tetranucleotide sequences of the form -XGCY- have been extended to include the non-self-complementary sequences. ACTD binding characteristics are investigated by equilibrium, kinetic, and thermal denaturation for decameric duplexes d(ATA-XGCY-ATA)-d(TAT-Y'GCX'-TAT), where X and Y are complementary to X' and Y', respectively, but not to each other. The results indicate that when X = G or Y = C, the oligomers exhibit significantly weaker ACTD binding affinities, smaller melting temperature increases upon drug binding, and faster SDS-induced ACTD dissociation rates than the other sequences. Estimated binding constants at 18.5 degrees C for decameric duplexes containing -AGCA-/-TGCT-, -AGCG-/-CGCT-, or -CGCA-/-TGCG- are in the range of 4-9 microM-1, whereas for the ones containing -GGCT-/-AGCC-, -GGCA-/-TGCC-, or -GGCG-/-CGCC- they range from 0.6 to 2 microM-1. In contrast to the characteristic SDS-induced ACTD dissociation times of 600-1000 s for the stronger binding sites, the sequences containing X = G or Y = C exhibit at least an order of magnitude faster dissociation kinetics. These observations are further supported by the induced CD results and fluorescence measurements with 7-amino-ACTD. The findings from these non-self-complementary -XGCY- tetranucleotide sequences are consistent with those found earlier for the self-complementary counterparts, and they together clearly demonstrate that a base sequence alteration adjacent to the GC site can have a profound effect on the ACTD binding as well as dissociation characteristics, likely a consequence of subtle conformational alterations near the binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
F M Chen 《Biochemistry》1988,27(6):1843-1848
Comparative kinetic, melting, and equilibrium binding studies of actinomycin D (ACTD) with d(ATATACGTATAT), four d(TGCA)-containing dodecamers, and poly(dG-dC).poly(dG-dC) revealed that (1) the affinity of ACTD for the dC-dG sequence is much less than for the dG-dC sequence; (2) ACTD forms 1:1 and 2:1 drug-duplex complexes with d(TATATGCATATA) and d(TATGCATGCATA), respectively, and their SDS driven dissociations exhibit single-exponential characteristics with rates (approximately 5 X 10(-4)s-1 at 20 degrees C) slightly slower than that of poly(dG-dC).poly(dG-dC); (3) although the melting temperature of d(CATGCATGCATG) is 8-9 deg higher than that of d(TATGCATGCATA), the rates of ACTD dissociation from these two oligomers are not greatly different and binding constants of (1-5) X 10(7) M-1 have been estimated for both; (4) a 3:1 stoichiometry is exhibited by ACTD binding to duplex d(TGCATGCATGCA) and the complex dissociates with two characteristic times, the fast component (1/k = approximately 100 s) comprising 2/3 of the contribution and the slow process (approximately 2000 s) contributing the other 1/3; and (5) the slow dissociation kinetics of an oligomer appears to be correlated to the higher percentage of slow association kinetics detectable by non-stop-flow techniques. These results indicate that the d(TGCA) sequence is a stronger binding and a slower dissociation site than the d(CGCG) sequence and suggest that base pairs flanking the dG-dC intercalative site may modulate interactions of the pentapeptide rings of ACTD with the DNA minor groove.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
S B Lin  K R Blake  P S Miller  P O Ts'o 《Biochemistry》1989,28(3):1054-1061
EDTA-derivatized oligonucleoside methylphosphonates were prepared and used to characterize hybridization between the oligomers and single-stranded DNA or RNA. The melting temperatures of duplexes formed between an oligodeoxyribonucleotide 35-mer and complementary methylphosphonate 12-mers were 4-12 degrees C higher than those of duplexes formed by oligodeoxyribonucleotide 12-mers as determined by spectrophotometric measurements. Derivatization of the methylphosphonate oligomers with EDTA reduced the melting temperature by 5 degrees C. Methylphosphonate oligomer-nucleic acid complexes were stabilized by base stacking interactions between the terminal bases of the two oligomers binding to adjacent binding sites on the target. In the presence of Fe2+ and DTT, the EDTA-derivatized oligomers produce hydroxyl radicals that cause degradation of the sugar-phosphate backbone of both targeted DNA and RNA. Degradation occurs specifically in the region of the oligomer binding site and is approximately 20-fold more efficient for single-stranded DNA than for RNA. In comparison to the presence of one oligomer, the extent of target degradation was increased considerably by additions of two oligomers that bind at adjacent sites on the target. For example, the extent of degradation of a single-stranded DNA 35-mer caused by two contiguously binding oligomers, one of which was derivatized by EDTA, was approximately 2 times greater than that caused by the EDTA-derivatized oligomer alone. Although EDTA-derivatized oligomers are stable for long periods of time in aqueous solution, they undergo rapid autodegradation in the presence of Fe2+ and DTT with half-lives of approximately 30 min. This autodegradation reaction renders the EDTA-derivatized oligomers unable to cause degradation of their complementary target nucleic acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
2'-Deoxyribo- and ribo-oligonucleotide N3'-->P5'phosphoramidates containing 2,6-diaminopurine nucleosides were synthesized. Thermal denaturation experiments demonstrated a significant stabilization of the complexes formed by these compounds with DNA and RNA complementary strands, relative to adenosine-containing phosphoramidate counterparts. The increase in melting temperature of the complexes reached up to 6.9 degrees C per substitution. The observed stabilization was attributed to the apparent synergistic effects of N-type sugar puckering of the oligonucleotide N3'-->P5' phosphoramidate backbone, and the ability of 2,6-diaminopurine bases to form three hydrogen bonds.  相似文献   

5.
The binding of oligodeoxynucleotides modified with adenine 2′-O-methyl riboside, 2,6-diaminopurine 2′-O-methyl riboside, cytosine 2′-O-methyl riboside, 2,6-diaminopurine deoxyriboside or 5-bromodeoxyuridine was studied with a microarray containing all possible (4096) polyacrylamide-bound hexadeoxynucleotides (a generic microchip). The generic microchip was manufactured by using reductive immobilization of aminooligonucleotides in the activated copolymer of acrylamide, bis-acrylamide and N-(2,2-dimethoxyethyl) acrylamide. The binding of the fluorescently labeled modified octanucleotides to the array was analyzed with the use of both melting profiles and the fluorescence distribution at selected temperatures. Up to three substitutions of adenosines in the octamer sequence by adenine 2′-O-methyl ribosides (Am), 2,6-diaminopurine 2′-O-methyl ribosides (Dm) or 2,6-diaminopurine deoxyribosides (D) resulted in increased mismatch discrimination measured at the melting temperature of the corresponding perfect duplex. The stability of complexes formed by 2′-O-methyl-adenosine-modified oligodeoxynucleotides was slightly decreased with every additional substitution, yielding ~4°C of total loss in melting temperature for three modifications, as followed from microchip thermal denaturation experiments. 2,6-Diaminopurine 2′-O-methyl riboside modifications led to considerable duplex stabilization. The cytosine 2′-O-methyl riboside and 5-bromodeoxyuridine modifications generally did not change either duplex stability or mismatch resolution. Denaturation experiments conducted with selected perfect duplexes on microchips and in solution showed similar results on thermal stabilities. Some hybridization artifacts were observed that might indicate the formation of parallel DNA.  相似文献   

6.
7.
The cleavage of specific DNA sequences by the restriction endonucleases AluI, DdeI, HinfI, RsaI, and TaqI has been studied by monitoring the effect of various nucleotide modifications on the rate of DNA digestion. Bacteriophage fd DNA was completely substituted in one strand with a single nucleotide analog, using an in vitro primed DNA synthesis reaction on a single-stranded viral DNA template. Twelve deoxynucleotide analogs were incorporated into these DNA substrates: 2-aminopurine, 2,6-diaminopurine, deoxytubercidin, deoxyuridine, 5-bromodeoxyuridine, 5-allylamine deoxyuridine, 5-biotinyl deoxyuridine, deoxypseudouridine, deoxyinosine, 8-azadeoxyguanosine, 5-iododeoxycytidine, and 5-bromodeoxycytidine. The restriction enzymes tested varied considerably in their ability to digest hemi-substituted DNAs containing these modified nucleotides. Structural alterations in the base pairs immediately adjacent to the phosphodiester bonds cleaved by the enzyme reduced the rate of enzyme activity most dramatically, and in most cases more than a single determinant on each base pair altered activity. Interactions with nucleotides outside the recognition site seem to have little importance in the binding or catalytic activity of these enzymes.  相似文献   

8.
A solid-phase synthesis for a DNA analogue with a mixed guanidinium and urea backbone is reported. This material is nearly identical in structure to deoxynucleic guanidine (DNG) but the neutral urea internucleoside linkages can be used to attenuate the overall positive charge on the oligomer. The opposite charge attraction between urea containing DNG oligomers (DNGUs) and complimentary DNA can be controlled so that the affinity of DNG for DNA does not overwhelm the base-pairing discrimination necessary for specific binding. Octameric DNGU containing between 1 and 3 urea substitutions covered the range between very tight and very weak bonding. Each deletion of a positive charge reduced the thermal denaturation temperature (Tm) by approximately 5 degrees C. Mismatches in the DNA oligomers reduced the Tm values by 3 to 5 degrees C for each of the DNGU oligomers. DNGUs were found to bind in a 2:1 fashion to complimentary DNA in the same manner as DNG.  相似文献   

9.
Octadeoxynucleotides based on the recognition sequence of the restriction endonuclease NotI were synthesized containing unmodified nucleotides and nucleotides with methyl and bromide additions at the C5 position of the pyrimidine ring of deoxycytosine. On annealing to single-stranded DNA bearing one NotI site, thin-layer chromatography (TLC) of the different oligonucleotides was used quantitatively to determine differences in dissociation temperature (Td) and binding equilibrium. Buffers used in filter hybridization experiments could be used in this TLC system. In addition, actual hybridizations were carried out to filter-bound DNA with and without a NotI site. The incorporation of 5-methyldeoxycytosine and 5-bromodeoxycytosine led to a significant increase in stability of homoduplex formation during hybridization, due to a shift in the binding equilibrium and an increase of the Td, thereby improving discrimination considerably. Some implications of the results for several techniques involving oligomer hybridization are discussed.  相似文献   

10.
A new class of microgonotropen compounds (FIMGTs), which fluoresce upon binding to dsDNA, is introduced. The FMGTs consist of a minor groove binding moiety based upon Hoescht 33258 covalently attached to a polyamine chain capable of interacting with the phosphodiester backbone of dsDNA. The interactions of FMGTs with dsDNA were investigated by fluorescence and UV spectroscopy. Several different dsDNA oligomers were studied to determine the effect of binding site sequence on stoichiometric and binding affinity. The FMGTs were found to bind a dsDNA oligomer that contained the sequence 5'-AATTT-3' with FMGT:dsDNA stoichiometrics equal to 2:1 or 3:1. Hoechst 33258 bound the same dsDNA oligomer with a 1:1 stoichiometry. The second and third order equilibrium constants for complexation were determined to be Log(K1K2) = 17.9 M(-2) and Log(K1K2K3) = 26.1 M(-3), respectively, for two of strongest binding FMGTs. From thermal melting experiments deltaTm for Hoechst 33258 was determined to be 10 degrees C while the deltaTm values for FMGTs ranged from 20-26 degrees C indicating the greater stability of the latter.  相似文献   

11.
12.
To characterize the internalization and degradation of model immune complexes in murine macrophages, the endocytosis of well-defined radiolabeled IgG dimers and heavy oligomers (5 to 7 IgG molecules per complex), which were covalently cross-linked at the antigen-combining site, was studied. Of those heavy oligomers which were bound to the cell at 4 degrees C, 50 to 60% (400,000 molecules of IgG) were internalized within 30 min at 37 degrees C and, subsequently, were completely degraded over a period of 3 hr. Low pH had little effect on the dissociation of the oligomer from its receptor. The degradation of oligomers was markedly inhibited when macrophages were treated with monensin, a proton ionophore which raises organelle pH. Because this treatment did not prevent the delivery of oligomer into the lysosome, the transport of a soluble complex of IgG from the cell surface to the lysosome was not a pH-dependent event. On the other hand, 25 to 30% (50,000 molecules) of those dimers capable of binding to the cell entered the macrophage, but only 5000 molecules were degraded. When macrophages were studied by using density gradient centrifugation, within 15 min, heavy oligomers were found in a vesicle which sedimented at a density between that of the plasma membrane and lysosome. The density of this vesicle was similar to that of endosomes studied in other receptor-ligand systems. Heavy oligomers were within lysosomes shortly thereafter. Incubation of cells at 18 degrees C prevented the appearance of heavy oligomer within the lysosomes and resulted in the concentration of oligomers within an intracellular compartment of a density slightly heavier than that of plasma membrane. At 37 degrees C, dimers sedimented in a similar region of the gradient. But unlike heavy oligomers, dimers never entered lysosomes. These data suggest that the degree of Fc receptor clustering induced by oligomers of IgG influenced the intracellular fate of the ligand.  相似文献   

13.
Guanidine-based peptide nucleic acid (GPNA) monomers and oligomers containing all four natural (adenine (A), cytosine (C), guanine (G), and thymine (T)) and two unnatural (2-thiouracil (sU) and 2,6-diaminopurine (D)) nucleobases have been synthesized. Thermal denaturation study showed that GPNA oligomers containing alternate D-backbone configuration bind sequence-specifically to DNA and, when incubated with mammalian cells, localized specifically to the endoplasmic reticulum (ER).  相似文献   

14.
Cassidy RA  Kondo NS  Miller PS 《Biochemistry》2000,39(29):8683-8691
Interactions between nuclease-resistant, 5'-psoralen-conjugated, chimeric methylphosphonate oligodeoxyribo- or oligo-2'-O-methylribo-triplex-forming oligomers (TFOs) and a purine tract found in the envelope gene of HIV proviral DNA (env-DNA) were investigated by gel mobility shift assays or by photo-cross-linking experiments. These chimeric TFOs contain mixtures of methylphosphonate and phosphodiester internucleotide bonds. A pyrimidine chimeric TFO composed of thymidine and 5-methyl-2'-deoxycytidine (C), d-PS-TpCpTpCpTpCpTpTpTpTpTpTpCpTpC (1mp) where PS is trimethylpsoralen and p is methylphosphonate, forms a stable triplex with env-DNA whose dissociation constant is 1. 3 microM at 22 degrees C and pH 7.0. The dissociation constant of chimeric TFO 2mp, d-PS-UpCpTpCpTpCpTpUpTpUpTpUpCpTpC, decreased to 400 nM when four of the thymidines in 1mp were replaced by 5-propynyl-2'-deoxyuridines (U), a result consistent with the increased stacking interactions and hydrophobic nature of 5-propynyl-U. An even greater decrease, 470 -50 nM, was observed for the all-phosphodiester versions of 1mp and 2mp. The differences in behavior of the chimeric versus the all-phosphodiester oligomers may be related to differences in the conformations between the propynyl-U-substituted versus the nonsubstituted TFOs. Thus, in the chimeric oligomer, the stabilizing effect of the propynyl-U's may be offset by the reduced ability of the methylphosphonate backbone to assume an A-type conformation, a conformation that appears to be preferred by propynyl-U-containing TFOs. A chimeric oligo-2'-O-methylribopyrimidine with the same sequence as 1mp also formed a stable triplex, K(d) = 1.4 microM, with env-DNA. In contrast to the behavior of the pyrimidine TFOs, antiparallel A/G oligomers and parallel or antiparallel T/G oligomers did not form triplexes with env-DNA, even at oligomer concentrations of 10 microM. This lack of binding may be a consequence of the low G content (33%) of the triplex binding site. Irradiation of triplexes formed between the pyrimidine TFOs and env-DNA resulted in formation of photoadducts with either the upper-strand C or the lower-strand T at the 5'-CpA-3' duplex/triplex junction. No interstrand cross-links were observed. The presence of a 5-propynyl-U at the 5'-end of the oligomer caused a reduction in the amount of upper-strand photoadduct but had no effect on photoadduct formation with the lower strand, suggesting that increased stacking interactions caused by the presence of the 5-propynyl-U change the orientation of psoralen with respect to the upper-strand C. The ability of chimeric methylphosphonate TFOs to bind to DNA, combined with their resistance to degradation by serum 3'-exonucleases, suggests that they may have utility in biological experiments.  相似文献   

15.
Imino proton and 31P NMR studies were conducted on the binding of actinomycin D (ActD) to self-complementary oligodeoxyribonucleotides with adjacent 5'-GC-3' sites. ActD showed very high specificity for binding to GC sites regardless of oligomer length and surrounding sequence. For a first class of duplexes with a central GCGC sequence, a mixture of 1:1 complexes was observed due to the two different orientations of the ActD phenoxazone ring system. Analysis of 1H chemical shifts suggested that the favored 1:1 complex had the benzenoid side of the phenoxazone ring over the G base in the central base pair of the GCGC sequence. This is the first case in which an unsymmetrical intercalator has been shown to bind to DNA in both possible orientations. A unique 2:1 complex, with significantly different 1H and 31P chemical shifts relative to those of the 1:1 complexes, was formed with these same oligomers, again with the benzenoid side of the ActD molecule over the G base of the central GC base pair. There is considerable anticooperativity to binding of the second ActD in a GCGC sequence. In titrations of oligomers with the GCGC sequence, only the two 1:1 complexes are found up to ratios of one ActD per oligomer. Increasing the ActD concentration, however, resulted in stoichiometric formation of the unique 2:1 adduct. Spectrophotometric binding studies indicated that the apparent binding equilibrium constant for a GC site adjacent to a bound site is reduced by approximately a factor of 20 relative to the ActD binding constant to an isolated GC site.  相似文献   

16.
Abstract

2′-Deoxyribo- and ribo-oligonucleotide N3′→P5′phosphoramidates containing 2,6-diaminopurine nucleosides were synthesized. Thermal denaturation experiments demonstrated a significant stabilization of the complexes formed by these compounds with DNA and RNA complementary strands, relative to adenosine-containing phosphoramidate counterparts. The increase in melting temperature of the complexes reached up to 6.9 °C per substitution. The observed stabilization was attributed to the apparent synergistic effects of N-type sugar puckering of the oligonucleotide N3′→5′ phosphoramidate backbone, and the ability of 2,6-diaminopurine bases to form three hydrogen bonds.  相似文献   

17.
F M Chen 《Biochemistry》1988,27(17):6393-6397
Binding of actinomycin D (ACTD) to self-complementary decamers d(ATA-XGCY-TAT), where XGCY = TGCA, AGCT, CGCG, and GGCC, has been investigated by equilibrium, kinetic, and thermal denaturation studies. The results indicate that despite the presence of a GC dinucleotide sequence, -GGCC- exhibits a much weaker binding affinity toward ACTD than the other three tetranucleotide sequences. Binding constants estimated from Scatchard plots indicate that binding to the -GGCC- site is at least an order of magnitude weaker than binding to -CGCG- and -AGCT-, which in turn is only slightly weaker than binding to the -TGCA- sequence. At 18.5 degrees C and 1% SDS, ACTD dissociates from d-(ATA-TGCA-TAT) with a slow characteristic time of 3300 s, roughly 4 times slower than dissociation from those containing -CGCG- and -AGCT- sequences and more than 2 orders of magnitude slower than that from -GGCC-. An 18.2 degrees C increase in the melting temperature is observed for the -TGCA-containing decamer upon binding of the ACTD, whereas increases of 10.3, 6.7, and 2.0 degrees C are observed for the -CGCG-, -AGCT-, and -GGCC-containing decamers, respectively. The effects observed by changing the adjacent base pair (sequence) may occur as a result of differential stacking and/or peptide ring-DNA groove interactions. Base sequence alterations adjacent to the ACTD binding site may result in differences in the minor groove environment and/or subtle conformational alterations at the intercalation site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
One of the problems that hamper the use of antisense DNAs as effective drugs is the non-specific binding of chemically-modified oligonucleotides to cellular proteins. We previously showed that the affinity of a model ssDNA-binding protein, the Ff gene 5 protein (g5p), was >300-fold higher for phosphorothioate-modified DNA (S-DNA) than for unmodified dA36, consistent with the propensity of S-DNA to bind indiscriminately to proteins. The current work shows that g5p binding is also sensitive to sugar and pyrimidine modifications used in antisense oligomers. Binding affinities of g5p for 10 36mer oligomers were quantitated using solution circular dichroism measurements. The oligomers contained C-5-propyne (prC), 2′-O-methyl (2′-O-Me) or 2′-OH (RNA) groups, alone or combined with the phosphorothioate modification. In agreement with reported increases in antisense activity, the addition of prC or 2′-O-Me modifications substantially reduced the affinity of oligomers for g5p by ~2-fold compared with the same DNA oligomer sequences containing only phosphorothioate linkages. That is, such modifications moderated the propensity of the phosphorothioate group to bind tightly to the g5p. The Ff g5p could be a useful model protein for assessing non-specific binding effects of antisense oligomer modifications.  相似文献   

19.
S A Woodson  D M Crothers 《Biochemistry》1988,27(25):8904-8914
Complexes of 9-aminoacridine and two derivatives with oligomers based on the sequence of a hot spot for frame-shift mutations, 5'dGATGGGGCAG, are investigated by proton NMR and equilibrium dialysis. Competition dialysis experiments show that the drug binds bulge-containing oligomers more strongly than regular duplexes of similar sequence and length, with one apparent strong site. A duplex containing an extra cytidine in a run of C's has the highest affinity for 9-aminoacridine among the sequences tested. An oligomer containing five consecutive G.C pairs shows cooperative drug binding, indicating that G tracts of this length may have an altered helical structure. Complexes of a regular 8-mer and a 9-mer containing a bulged guanosine are examined in detail by two-dimensional NMR techniques. 9-Aminoacridine preferentially binds at TpG sites in the 8-mer but binds primarily at the bulged guanosine in the G-bulge 9-mer. Drug-DNA NOE's in the 8-mer complex are compared with the crystal structure of 9-aminoacridine and 5-iodo-CpG [Sakore et al. (1979) J. Mol. Biol. 135, 763-785]. The NMR data suggest that the drug intercalates across the base pairs of both strands with the amino group projecting into the minor groove.  相似文献   

20.
N Sugimoto  R Kierzek  D H Turner 《Biochemistry》1988,27(17):6384-6392
The self-splicing intervening sequence from the rRNA precursor in Tetrahymena thermophila produces a covalently closed, circularized form (C IVS). Reaction rates for reverse cyclization (linearization) of C IVS by the covalent addition of the oligoncleotides CU, UCU, CUCU, and CUCUCU have been measured. The dependence of the observed rates on oligomer and Mg2+ concentrations indicates the presence of intermediates that are generated by separate binding steps for both oligomer and Mg2+. Linearization of C IVS by OH- hydrolysis is suppressed in the presence of oligomer, suggesting oligomer binds near the active site. The binding constants derived for CU at 30 degrees C in 1 and 10 mM Mg2+ are 5 X 10(3) and 2.5 X 10(4) M-1, respectively. These are roughly 4 orders of magnitude larger than expected for simple Watson-Crick base pairing. The binding constants derived for UCU, CUCU, and CUCUCU at 30 degrees C in 10 mM Mg2+ are 1.2 X 10(5), 4 X 10(5), and greater than 10(7) M-1, respectively. The free energy increments for binding of UCU and CUCU relative to CU are similar to those expected from a nearest-neighbor model for addition of base pairs. This indicates the factors responsible for the unusually strong binding of CU to C IVS are restricted to two nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号