首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Dopaminergic inhibition of prolactin release from the anterior pituitary may be mediated through both the adenylate cyclase and Ca2+ mobilization/phosphoinositide pathways. The D2-dopamine receptor of the bovine anterior pituitary has been partially purified by affinity chromatography on CMOS-Sepharose (immobilized carboxymethyleneoximinospiperone). Reinsertion of these partially purified receptor preparations into phospholipid vesicles reconstituted guanine nucleotide-sensitive high affinity agonist binding, agonist-promoted GTPase and 35S-labeled guanosine 5'-O-(thiotriphosphate) [( 35S]GTP gamma S) binding activity in these preparations. Pertussis toxin treatment of the purified receptor preparation abolished agonist-stimulated GTPase and guanine nucleotide-sensitive high affinity agonist binding. These observations suggest that the receptor copurifies with an endogenous, pertussis toxin-sensitive guanine nucleotide binding protein (N). [32P]ADP-ribosylation of affinity-purified D2 receptor preparations by pertussis toxin revealed the presence of a substrate of Mr 39,000-40,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Peptide maps generated using elastase of the [32P]ADP-ribosylated endogenous N protein, transducin, and Ni and No from brain revealed similarities but not identity between the endogenous pituitary N protein and brain Ni and No. Immunoblotting of the partially purified D2 receptor preparations showed an Mr 39,000-40,000 band with an Ni-specific antiserum raised against a synthetic peptide, and with RV3, an No-specific anti-serum, but not with CW6, an antiserum strongly reactive with brain Ni. Several lines of evidence indicate that endogenous pituitary N protein is functionally coupled to the D2 receptor. As measured by [35S]GTP gamma S binding, ratios of 0.2-0.6 mol N protein/mol receptor were observed. Association of N protein with the D2 receptor was increased by agonist pretreatment and decreased by guanine nucleotides. These results suggest that No and/or a form of Ni distinct from the Mr 41,000 pertussis toxin substrate (Ni) is the predominant N protein functionally coupled with the D2-dopamine receptor of anterior pituitary.  相似文献   

2.
Nucleotides such as GTP and GDP appear to be involved in signal transduction via G protein modulation of adenylate cyclase activity. Studies on direct binding of [3H]GDP to membranes prepared from cultured immature rat Sertoli cells indicated that this process was reversible, approached steady state within 10 min, had a Ka of 4.5 ·106M−1 and was specific for guanine nucleotides. The non-hydrolyzable analog, guanosine 5′-O-[3-thio]triphosphate (GPPP[S]), was most effective as an inhibitor of [3H]GDP binding (ED50 = 4.8·10−8M), whereas guanosine 5′-O-[2-thio]diphosphate (Gpp[S]) was less potent (ED50 = 3.4·10−7M). Release of bound GDP was enhanced by follitropin (FSH) in the presence of Gppp[S], although not by FSH alone. Sertoli cell membranes possess guanine nucleotide hydrolase activity, where 95% of added nucleotide was rapidly degraded to guanosine. Binding kinetics were significantly influenced by nucleotide metabolism, which was prevented by controlling the Mg2+ concentration with EDTA and including App[NH]p to reduce nonspecific hydrolysis. Kinetic studies indicated that Gpp[S] inhibited (P < 0.05) Gppp[S]-stimulated adenylate cyclase activity (Ki = 1.8·10−7M), whereas basal activity remained unaffected. Addition of Gpp[S] to pre-activated enzyme (FSH plus GTP) resulted in a time-dependent decay of adenylate cyclase activity with a Koff value of 6 ± 1·min−1. Using a two-stage pre-inculbation technique, adenylate cyclase activity was demonstrated to be sensitive to the nucleotide bound. When FSH was included, catalytic activity was not altered by the order of pre-incubation with the nucleotides. This suggested that the exchange of bound Gpp[S] for Gppp[S] was enhance by FSH. Activation and attenuation of FSH-sensitive adenylate cyclase activity is dependent on a nucleotide exchange mechanism which is driven by (1) the higher affinity of G for GTP than GDP, (2) enhanced release of GD when FSH is present and (3) GTP hydrolysis coupled to rapid metabolism of guanine nucleotides.  相似文献   

3.
Plasma membranes (1–2 mg protein) prepared from the livers of adult male rats and human organ donors were incubated with 0.6 μM [α-32P] guanosine triphosphate (GTP) in an adenosine triphosphate (ATP)-regenerating buffer at 37°C for 1 h; during this incubation, the [32P]GTP is hydrolyzed and the nucleotide that is predominantly bound to the membranes is [32P] guanosine diphosphate (GDP). [32P]GDP release from the liver membranes was proportional to the protein concentration and increased as a function of time. At 5 mM, Ca2+, Mg2+, Mn2+, and Zn2+ maximally inhibited GDP release by 80–90%, whereas, 5 mM Cu2+ maximally stimulated the reaction by 100%. Therefore, cations were not included in the buffer used in the GDP release step. One μM Gpp(NH)p (5′-guanylylimidodiphosphate), a nonhydrolyzable analog of GTP, maximally stimulated [32P]GDP release in the liver membranes by up to 30%. Although 10 nM Gpp(NH)p had no effect on GDP release, it appeared to stabilize the hormonal effect by blocking further GDP/GTP exchange. In the rat membranes, 1–100 nM glucagon (used as a positive control) stimulated [32P]GDP release by about 17% (P < .05); similarly, 0.1–100 nM insulin stimulated [32P]GDP release by 10–13% (P < .05). In the human membranes, 10 pM to 100 nM insulin stimulated [32P]GDP release by 7–10%. In the rat membranes, 10 nM insulin stimulated [32P]GDP release by 17 and 24% at 2 and 4 min, respectively (P < .05); in the human membranes, 10 nM insulin stimulated [32P]GDP release by about 9% at 2 and 4 min. Normal rabbit IgG (used as a control for insulin receptor antibody) by itself stimulated the GDP release by rat and human membranes. However, the stimulation of the GDP release by insulin receptor antibody was consistently higher than that observed with normal rabbit IgG. Four to 15 μg of insulin receptor antibody stimulated [32P]GDP release by 12–22% (P < .05) and 7–14% in rat and human membranes, respectively. These results indicate that ligand binding to the insulin receptor results in a functional interaction of the receptor with a guanine nucleotide-binding transducer protein (G protein) and activation of GTP/GDP exchange.  相似文献   

4.
Incubation of turkey erythrocyte membranes with cholera toxin and [32P]NAD caused toxin-dependent incorporation of 32P into a 42,000 Mr peptide which could be distinguished from toxin-independent 32P incorporation into other membrane proteins. The radiolabeled 42,000 Mr peptide could be extracted from the membranes using Lubrol PX. When toxin-treated membranes were incubated with isoproterenol and GMP before detergent solubilization, the 42,000 Mr labeled peptide was adsorbed by GTP-γ-agarose which, with the same conditions, adsorbed the adenylate cyclase guanine nucleotide regulatory protein. The labeled peptide and guanine nucleotide regulatory protein activity were coeluted from the affinity matrix by guanylyl-β,γ-imidodiphosphate, GDP, and GMP. Guanosine 5′-O-(2-thiodiphosphate), an analog of GDP which blocks guanine nucleotide- and fluoride-stimulated adenylate cyclase activity, caused elution of labeled peptide which exhibited no regulatory protein activity. Our data support the view that the 42,000 Mr peptide is part of the adenylate cyclase guanine nucleotide regulatory protein. The labeled peptide allows identification of both active and inactive regulatory protein and should be useful in monitoring the purification of the regulatory protein from turkey erythrocytes.  相似文献   

5.
Transducin (T) mediates vision in retinal rods by transmitting light signals detected by rhodopsin to a cGMP phosphodiesterase. The flow of information relies on a subunit association/dissociation cycle of T regulated by a guanine nucleotide exchange/hydrolysis reaction. 5′-[p-(Fluorosulfonyl)benzoyl] guanosine (FSBG) was synthesized and examined here as an affinity label for the guanine nucleotide binding site of T. Although the relative binding affinity of FSBG to T was much lower than for GTP and β,γ-imido-guanosine 5′-triphosphate (GMPPNP), the incorporation of FSBG to T inhibited its light-dependent [3H] GMPPNP binding activity in a concentration dependent manner. Additionally, GDP, GTP and GTP analogs hindered the binding of [3H] FSBG to T. These results demonstrated that FSBG could be used to specifically modify the active site of T. In addition, FSBG was not capable of dissociating T from T:photoactivated rhodopsin complexes, suggesting that in this case FSBG is acting as a GDP analog.  相似文献   

6.
Plasma membranes (1-2 mg protein) purified from the anterior pituitary lobes of adult male rats were incubated with 0.6 mumol [alpha-32P]guanosine 5'-triphosphate (GTP) l-1 in an ATP-regenerating buffer at 37 degrees C for 60 min; during this incubation the [32P]GTP was hydrolysed and the nucleotide that was predominantly bound to the membranes was [32P]GDP. The release of [32P]GDP from the membranes was monitored at 37 degrees C; the amount released was proportional to the protein concentration and increased as a function of time. 5'-Guanylylimidodiphosphate (Gpp(NH)p) increased [32P]GDP release by up to 30% at 0.1 mumol l-1. Although 10 nmol Gpp(NH)p l-1 had no effect on GDP release, it appeared to stabilize the hormonal effect by blocking further GDP-GTP exchange. Gonadotrophin-releasing hormone (GnRH) agonist and thyrotrophin-releasing hormone (TRH), at 0.1 mumol l-1 caused a maximum increase in the release of [32P]GDP of 31-38%. The GnRH agonist (0.1 mumol l-1) stimulated GDP release by 21%, 24%, 17% and 14% at 30 s, 1, 2 and 5 min, respectively. TRH (0.1 mumol l-1) stimulated GDP release by 38%, 30%, 17% and 16% at 30 s, 1, 2 and 5 min, respectively. A GnRH antagonist also stimulated [32P]GDP release, albeit less effectively than GnRH agonist; the antagonist did not inhibit agonist stimulation of GDP release. These results indicate that ligand binding to the GnRH and TRH receptors results in interaction of the receptor with a guanine-nucleotide-dependent transducer protein (G protein) and activation of GTP-GDP exchange.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The intent of the present study was to investigate adenosine receptor sites in brain membranes of the saltwater teleost fish, Mullus surmuletus, using the A1 receptor selective agonist, [3H]CHA, and A2a receptor selective agonist [3H]CGS 21680. The A1 selective agonist, [3H]CHA, bound saturably, reversibly and with high affinity to a single-class of binding sites (Kd 1.47 nM; Bmax 100–190 fmol/mg protein, dependent on fish length). The A2a selective agonist, [3H]CGS 21680, also bound saturably, reversibly and with relative high affinity to a single-class of binding sites (Kd 44.2 nM; Bmax 150–300 fmol/mg protein dependent on fish length). In equilibrium competition experiments, adenosine analogous, NECA, CGS 21680, CHA, CPA, S-PIA, R-PIA, CPCA, DPMA, and xanthine antagonists, DPCPX, XAC, and THEO all displaced [3H]CHA and [3H]CGS 21680 specifically bound to brain membranes from Mullus surmuletus. Specific binding of both [3H]CHA and [3H]CGS 21680 was inhibited by GDPβS. For [3H]CHA the IC50 value was 2.5 ± 0.1 μM, while for [3H]CGS 21680 the IC50 value was 7.7 ± 0.3 μM. Our results indicate that the high affinity binding sites for [3H]CHA have some pharmacological characteristics of mammalian A1 adenosine receptors, while the binding sites for [3H]CGS 21680 appear to be virtually identical to the binding sites for [3H]CHA.  相似文献   

8.
We recently demonstrated that the non-classical muscarinic receptor antagonist [3H]pirenzepine ([3H]PZ) identifies a high affinity population of muscarinic sites in the rat cerebral cortex. We now report that cortical muscarinic sites to which [3H]PZ binds with high affinity are modulated by ions but not guanine nucleotides. We also have examined equilibrium [3H]PZ binding in homogenates of various rat tissues using a new rapid filtration assay. All regional saturation isotherms yielded a similar high affinity dissociation constant (Kd = 2 ? 8 nM) in 10 mM sodium-potassium phosphate buffer. Receptor density (Bmax in fmol/mg tissue) varied as follows: corpus striatum = 154.5, cerebral cortex = 94.6, hippocampus = 94.3, ileum = 1.3, cerebellum = 1.0, and heart = 0.45. The cerebral cortex and hippocampus possess 61 percent of striatal binding sites, while the ileum, cerebellum and heart contain only 0.84 percent, 0.65 percent and 0.29 percent of striatal sites respectively. The [3H]PZ sites in heart, ileum, and cerebellum represent 3.1 percent, 9.6 percent, and 10.4 percent of the sites obtained by using [3H](?)quinuclidinyl benzilate. Thus, [3H]PZ labels high affinity muscarinic receptor binding sites with a tissue distribution compatible with the concept of distinct M1 and M2 receptor subtypes. Accordingly, regions such as heart, cerebellum, and ileum would be termed M2, though each have an extremely small population of the M1 high affinity [3H]PZ site. [3H]PZ therefore appears to be a useful ligand for M1 receptor identification. Furthermore, the inability to demonstrate a significant effect of guanine nucleotides upon high affinity [3H]PZ binding to putative M1 receptors suggests that M1 sites may be independent of a guanine regulatory protein.  相似文献   

9.
P B Jones  P M Conn  J Marian  A J Hsueh 《Life sciences》1980,27(22):2125-2132
We have previously shown that gonadotropin releasing hormone (GnRH) and its agonists inhibit ovarian functions by a direct action on ovarian granulosa cells in vitro. A labeled GnRH agonist, [des-Gly10, D-Ser (TBu)6, Pro9-NHEt]GnRH, was used here to examine the possibility that these inhibitory actions of GnRH were mediated through specific receptors which recognize GnRH. Ovarian membrane fractions obtained from immature, hypophysectomized diethylstilbesterol-treated rats were incubated with the 125I-GnRH agonist and specific binding was determined by a filtration assay. Stereospecific, high affinity binding was detected in the ovarian membranes; the dissociation constant for the labeled GnRH agonist was determined to be 0.84 ± 0.33 × 10?10 M and the binding capacity was calculated to be 12.9 fmol/mg protein, or 0.142 fmol/μg DNA. The binding affinity for the GnRH decapeptide was 3.3 times lower than that of the GnRH agonist whereas two GnRH partial peptides did not compete for the 125I-agonist binding. After sequential treatment with FSH, LH and prolactin to the hypophysectomized female rats, the ovarian GnRH binding capacity increased per ovary, but decreased per mg ovarian protein.Furthermore, ovarian granulosa cells were isolated and their binding capacity was determined to be 25.2 fmol/mg protein, or 0.133 fmol/μg DNA, suggesting that the granulosa cells contain GnRH binding sites. Thus, this report demonstrates the presence of stereospecific, high affinity GnRH binding sites in the rat ovarian granulosa cells.  相似文献   

10.
The guanine nucleotide regulatory protein component (N) of the frog erythrocyte membrane adenylate cyclase system appears to form a stable complex with the beta-adrenergic receptor (R) in the presence of agonist (H). This agonist-promoted ternary complex HRN can be solubilized with Lubrol. The guanine nucleotide regulatory protein associated with the solubilized complex can be adsorbed either to GTP-Sepharose directly or to wheat germ lectin-Sepharose via its interaction with the receptor which is a glycoprotein. Guanosine 5'-O-(3-thiotriphosphate)(GTP gamma S) can be used to elute the guanine nucleotide regulatory protein from either Sepharose derivative. The resulting N.GTP gamma S complex conveys nucleotide-dependent adenylate cyclase activity when combined with a Lubrol-solubilized extract of turkey erythrocyte membranes. The ability to observe GTP gamma S-dependent reconstitution of adenylate cyclase activity in the eluate from either resin required the formation of the HRN complex prior to solubilization. The N protein can be identified by its specific [32P]ADP ribosylation catalyzed by cholera toxin in the presence of [32P]NAD+. The existence of a stable HRN intermediate complex is supported by the observation that agonist pretreatment of frog erythrocyte membranes results in a 100% increase in the amount of 32P-labeled N protein eluted from the lectin-Sepharose in the presence of GTP gamma S compared to membranes pretreated with either antagonist or agonist plus GTP. Our results therefore provide evidence that the same guanine nucleotide-binding protein that associates with the beta-adrenergic receptor in the presence of agonist mediates adenylate cyclase activation.  相似文献   

11.
The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions.  相似文献   

12.
The guanine nucleotide binding properties of rap1 protein purified from human neutrophils were examined using both the protein kinase A-phosphorylated and the non-phosphorylated forms of the protein. Binding of GTP[S] (guanosine 5'-[gamma-thio]triphosphate) or GDP was found to be slow in the presence of free Mg2+, but very rapid in the absence of Mg2+. The binding of guanine nucleotides was found to correlate with the loss of endogenous nucleotide from the rap1 protein, which was rapid in the absence of Mg2+. The relative affinities of GTP and GDP for the binding site on rap1 were modulated by the presence of Mg2+, with a preferential affinity (approx. 15-fold) for GTP observed only in the absence of this bivalent cation. The dissociation of GDP from rap1 was not affected by the G-protein beta/gamma-subunit complex. Phosphorylation of rap1 in vitro by protein kinase A did not modify any of the observed nucleotide-binding parameters. Furthermore, the ability of a cytosolic rap1 GTPase-activating protein to stimulate neutrophil rap1 GTP hydrolysis was not modified by phosphorylation. These data suggest that the activation of rap in vivo may be regulated by the release of endogenous GDP, but that phosphorylation by protein kinase A does not affect guanine nucleotide binding or hydrolysis.  相似文献   

13.
C A Nelson  K B Seamon 《Life sciences》1988,42(14):1375-1383
The binding of [3H]forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating [3H]forskolin bound to protein from free [3H]forskolin by rapid filtration. The Kd for [3H]forskolin binding to solubilized proteins was 14 nM which was similar to that for [3H]forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for [3H]forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. [3H]forskolin bound to proteins solubilized from membranes with a Bmax of 38 fmol/mg protein which increased to 94 fmol/mg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on [3H]forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmol/mg/min which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmol/mg/min which was not stimulated by GppNHp or forskolin. Thus, the number of high affinity binding sites for [3H]forskolin in solubilized preparations correlated with the activation of adenylate cyclase by GppNHp via the guanine nucleotide binding protein (GS).  相似文献   

14.
Binding of the poorly hydrolyzable GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to purified guanine-nucleotide-binding regulatory proteins (G proteins) has been shown to be nonreversible in the presence of millimolar concentrations of Mg2+. In porcine atrial membranes, binding of [35S]GTP[S] to G proteins was stable in the presence of 1 mM Mg2+. However, either large dilution or, even more strongly, addition of unlabelled guanine nucleotides, in the potency order, GTP[S] greater than GTP greater than or equal to guanosine 5'-[beta,gamma-imino]triphosphate greater than GDP greater than or equal to guanosine 5'-[beta-thio]diphosphate greater than GMP, markedly enhanced the observed dissociation, with 20-30% of bound [35S]GTP[S] being released by unlabelled guanine nucleotide within 20 min at 25 degrees C. Most interestingly, dissociation of [35S]GTP[S] was rapidly and markedly stimulated by agonist (carbachol) activation of cardiac muscarinic acetylcholine receptors. Carbachol-stimulated release of [35S]GTP[S] was strictly dependent on the presence of Mg2+ and an unlabelled guanine nucleotide. Although having different potency and efficiency in releasing [35S]GTP[S] from the membranes by themselves, the guanine nucleoside triphosphates and diphosphates studied, at maximally effective concentrations, promoted the carbachol-induced dissociation to the same extent, while GMP and ATP were ineffective. GTP[S]-binding-saturation experiments indicated that one agonist-activated muscarinic acetylcholine receptor can cause release of bound GTP[S] from three to four G proteins. The data presented indicate that binding of GTP[S] to G proteins in intact membranes, in contrast to purified G proteins, is reversible, and that agonist-activated receptors can even, either directly or indirectly, interact with GTP[S]-bound G proteins, resulting in release of bound guanine nucleoside triphosphate.  相似文献   

15.
The unique properties of agonist binding to the frog erythrocyte beta-adrenergic receptor include the existence of two affinity forms of the receptor. The proportion and relative affinity of these two states of the receptor for ligands varies with the intrinsic activity of the agonist and the presence of guanine nucleotides. The simplest model for hormone-receptor interactions which can explain and reproduce the experimental data involves the interaction of the receptor R with an additional membrane component X, leading to the agonist-promoted formation of a high affinity ternary complex HRX. Computer modeling of agonist binding data with a ternary complex model indicates that the model can fit the data with high accuracy under conditions where the ligand used is either a full or a partial agonist and where the system is altered by the addition of guanine nucleotide or after treatment with group-specific reagents, e.g. p-hydroxymercuribenzoate. The parameter estimates obtained indicate that the intrinsic activity of the agonist is correlated significantly with the affinity constant L of the component X for the binary complex HR. The major effect of adding guanine nucleotides is to destabilize the ternary complex HRX from which both the hormone H and the component X can dissociate. The modulatory role of nucleotides on the affinity of agonists for the receptor is consistent with the assumption that the component X is the guanine nucleotide binding site. The ternary complex model was also applied successfully to the turkey erythrocyte receptor system. The model provides a general scheme for the activation by agonists of adenylate cyclase-coupled receptor systems and also of other systems where the effector might be different.  相似文献   

16.
Computer-assisted quantitative analysis of radioligand binding to rat cortical S2 serotonin receptors indicates the existence of two affinity states of the same receptor population. Monophasic antagonist competition curves for [3H]ketanserin-labelled sites suggest a uniform population of receptors with one affinity state for antagonists. Biphasic competition curves of agonists suggest that agonists discriminate high- and low-agonist-affinity forms of the S2 receptors. The affinities of agonists for the high- and low-affinity states, and the apparent percentages of high agonist-affinity forms varies with different agonists. The guanine nucleotides GTP and guanyl-5'-imido-diphosphate [Gpp(NH)p], as well as divalent cations, modulate the proportion of the sites with high affinity for agonists as evidenced by their ability to shift the agonist competition curves for [3H]ketanserin-labelled S2 receptors. GTP and Gpp(NH)p effects appear to be agonist-specific, as they do not affect antagonist competition for [3H]ketanserin-labelled S2 receptors, or [3H]ketanserin binding to S2 receptors. ATP and ADP have little or no effect on the binding properties of S2 serotonin receptors, whereas GDP is less potent than GTP. The presence of these specific nucleotide effects are the first evidence suggesting involvement of a guanine nucleotide-binding protein in the mechanism of agonist interaction with the S2 serotonin receptor. In general, the binding properties of [3H]ketanserin-labelled S2 serotonin receptors strongly resemble those of adenylate-cyclase coupled receptors such as the beta-adrenergic, the alpha 2-receptor, and the D-2 dopamine receptor. This may indicate the S2 serotonin receptor is coupled to adenylate cyclase activity, through a GTP binding protein.  相似文献   

17.
A major site of regulation of polypeptide chain initiation is the binding of Met-tRNA to 40 S ribosomal subunits which is mediated by eukaryotic initiation factor 2 (eIF-2). The formation of ternary complex, eIF-2.GTP.Met-tRNA, is potently inhibited by GDP. Measurement of the parameters for guanine nucleotide binding to eIF-2 is critical to understanding the control of protein synthesis by fluctuations in cellular energy levels. We have compared the dissociation constants (Kd) of eIF-2.GDP and eIF-2.GTP and find that GDP has a 400-fold higher affinity for GDP than GTP. The Kd for GDP is almost an order of magnitude less than has been reported previously. The difference between the Kd values for the two nucleotides is the result of a faster rate constant for GTP release, the rate constants for binding being approximately equal. This combination of rate constants and low levels of contaminating GDP in preparations of GTP can explain the apparently unstable nature of eIF-2.GTP observed by others. Mg2+ stabilizes binary complexes slowing the rates of release of nucleotide from both eIF-2.GDP and eIF-2.GTP. The competition between GTP and GDP for binding to eIF-2.guanine nucleotide exchange factor complex has been measured. A 10-fold higher GTP concentration than GDP is required to reduce [32P] GDP binding to eIF-2.guanine nucleotide exchange factor complex by 50%. The relevance of this competition to the regulation of protein synthesis by energy levels is discussed.  相似文献   

18.
Dopamine D1 receptors were solubilized from canine and bovine striatal membranes with the detergent digitonin. The receptors retained the pharmacological characteristics of membrane-bound D1 receptors, as assessed by the binding of the selective antagonist [3H]SCH 23390. The binding of [3H]SCH 23390 to solubilized receptor preparations was specific, saturable, and reversible, with a dissociation constant of 5 nM. Dopaminergic antagonists and agonists inhibited [3H]SCH 23390 binding in a stereoselective and concentration-dependent manner with an appropriate rank order of potency for D1 receptors. Moreover, agonist high affinity binding to D1 receptors and its sensitivity to guanine nucleotides was preserved following solubilization, with agonist dissociation constants virtually identical to those observed with membrane-bound receptors. To ascertain the molecular basis for the existence of an agonist-high affinity receptor complex, D1 receptors labeled with [3H] dopamine (agonist) or [3H]SCH 23390 (antagonist) prior to, or following, solubilization were subjected to high pressure liquid steric-exclusion chromatography. All agonist- and antagonist-labeled receptor species elute as the same apparent molecular size. Treatment of brain membranes with the guanine nucleotide guanyl-5'-yl imidodiphosphate prior to solubilization prevented the retention of [3H]dopamine but not [3H]SCH 23390-labeled soluble receptors. This suggests that the same guanine nucleotide-dopamine D1 receptor complex formed in membranes is stable to solubilization and confers agonist high affinity binding in soluble preparations. These results contrast with those reported on the digitonin-solubilized dopamine D2 receptor, and the molecular mechanism responsible for this difference remains to be elucidated.  相似文献   

19.
Muscarinic receptor properties in rat cortical and brain stem synaptoneurosomes and in heart myocytes were examined at resting potential and at depolarization. Depolarization induced the conversion of agonist-binding sites of the receptor from a high to a low affinity state, which could be reversed by a return to resting potential. No effect was observed on the affinity of the receptor for antagonists. Pertussis-toxin (PTX)-catalyzed ADP-ribosylation of all substrates in both synaptoneurosomal and myocyte membranes, when conducted at resting potential, prevented depolarization-induced conversion of the receptor affinity in these preparations. The target substrates were identified by [32P]ADP-ribosylation of membranes prepared from brain stem synaptoneurosomes. Autoradiography revealed labeling of a 39-kDa protein band, which reacted mainly with antibodies to the alpha-subunit of Go-proteins. The possible involvement of G-proteins in depolarization-induced changes in the receptor activity was further investigated by examining the effect of membrane potential on the PTX-sensitive binding of di- and triphosphated guanine nucleotides to synaptoneurosomal membranes. Brain stem synaptoneurosomes were made permeable to guanine nucleotides ([3H]GTP, [3H]GDP, [3H]5'-guanylyl imidodiphosphate) by treatment with ATP. After the synaptoneurosomes had been loaded with labeled GTP/GDP, resealed, and then subjected to either resting potential of short depolarization, binding of [3H]GDP to the membranes of depolarized synaptoneurosomes was 4.0 +/- 0.3 (n = 20) times higher than to the membranes of synaptoneurosomes at resting potential. Repolarization reversed this effect. Enhancement of [3H]GDP binding to the synaptoneurosomal membranes was induced also by muscarinic activation, although the increase obtained was only 30-40% (n = 5) relative to [3H]GDP binding at resting potential. Both the depolarization-induced and the muscarinically-induced enhancement of [3H]GDP binding were prevented following PTX-catalyzed ADP-ribosylation of G-proteins in the synaptoneurosomal membrane. Our results suggest that the depolarization-induced enhancement in the binding of [3H]GTP/[3H]GDP may be attributable to activation of PTX-sensitive G-proteins, which mediate the depolarization-induced alteration of the affinity of the muscarinic receptor for agonists.  相似文献   

20.
[3H]Forskolin binding sites were identified using membranes prepared from the iris-ciliary body of adult, albino rabbits. Scatchard analysis of saturation binding experiments demonstrated that [3H]forskolin bound to a single population of high affinity sites. The Kd and Bmax values were 8.7 +/- 0.9 nM and 119.0 +/- 30.9 fmol/mg prot. using membranes prepared from frozen tissue and 17.0 +/- 6.2 nM and 184.4 +/- 47.2 fmol/mg prot. using fresh tissue. The binding of [3H]forskolin was magnesium-dependent. The Bmax was enhanced by sodium fluoride and Gpp(NH)p, a nonhydrolyzable guanine nucleotide analog. Forskolin was the most potent inhibitor of [3H]forskolin binding; two commercially-available analogs were weaker inhibitors. In an adenylate cyclase assay, there was the same rank order of potency to enhance enzyme activity. Based upon binding affinities, magnesium-dependence, sensitivity to sodium fluoride and Gpp(NH)p, rank order of potencies of analogs and correlation of binding with adenylate cyclase activity, these studies suggest that the [3H]forskolin binding site in the iris-ciliary body is similar to the binding site in other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号