首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S P Wilson 《Life sciences》1987,40(7):623-628
The neuropeptides substance P and vasoactive intestinal peptide (VIP), reported to exist in the splanchnic nerve terminals innervating the adrenal medulla, elevate the levels of enkephalin-containing peptides (ECPs) in cultured bovine adrenal medullary chromaffin cells. Cellular ECP stores were increased over 48 hr by 72 and 46 percent, respectively, following incubation with 5 microM VIP or 10 microM substance P, maximally effective concentrations. The results suggest that VIP and substance P may be trans-synaptic modulators of chromaffin cell ECP stores.  相似文献   

2.
The effect of angiotensin II on catecholamine release from bovine adrenal medulla has been investigated. In retrogradely perfused, isolated bovine adrenal glands, angiotensin II increased basal efflux of catecholamines, but the presence of angiotensin II did not increase the release of catecholamines evoked either by bolus injections of the secretagogue carbachol or by depolarization with a perfusing solution containing a raised concentration of K+. In chromaffin cells maintained in primary tissue culture, angiotensin II increased 3H release from cells preloaded with [3H]-noradrenaline but did not enhance the release evoked by carbachol or by depolarization with K+. The increase in 3H release evoked by angiotensin II from chromaffin cells in tissue culture was inhibited by its analogue antagonist Sar1,Ala8-angiotensin II (saralasin) and was entirely dependent on the presence of Ca2+ in the experimental medium. These findings suggest that, in the chromaffin cells of the bovine adrenal medulla, angiotensin II acts on specific receptors to cause a calcium-dependent catecholamine release but triggers no additional response that acts synergistically with depolarizing or nicotinic stimuli to augment catecholamine release.  相似文献   

3.
4.
Immunohistochemistry has been used to demonstrate tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) immunoreactivities, and acetylcholinesterase (AChE) activity was demonstrated in rat adrenal glands. The TH, DBH, NPY and VIP immunoreactivities and AChE activity were observed in both the large ganglion cells and the small chromaffin cells whereas PNMT immunoreactivity was found only in chromaffin cells, and not in ganglion cells. Most intraadrenal ganglion cells showed NPY immunoreactivity and a few were VIP immunoreactive. Numerous NPY-immunoreactive ganglion cells were also immunoreactive for TH and DBH; these cells were localized as single cells or groups of several cells in the adrenal cortex and medulla. Use of serial sections, or double and triple staining techniques, showed that all TH- and DBH-immunoreactive ganglion cells also showed NPY immunoreactivity, whereas some NPY-immunoreactive ganglion cells were TH and DBH immunonegative. NPY-immunoreactive ganglion cells showed no VIP immunoreactivity. AChE activity was seen in VIP-immunopositive and VIP-immunonegative ganglion cells. These results suggest that ganglion cells containing noradrenaline and NPY, or NPY only, or VIP and acetylcholine occur in the rat adrenal gland; they may project within the adrenal gland or to other target organs. TH, DBH, NPY, and VIP were colocalized in numerous immunoreactive nerve fibres, which were distributed in the superficial adrenal cortex, while TH-, DBH- and NPY-immunoreactive ganglion cells and nerve fibres were different from VIP-immunoreactive ganglion cells and nerve fibres in the medulla. This suggests that the immunoreactive nerve fibres in the superficial cortex may be mainly extrinsic in origin and may be different from those in the medulla.  相似文献   

5.
T Yanase  H Nawata  K Higuchi  K Kato  H Ibayashi 《Life sciences》1984,35(18):1869-1875
The effect of dexamethasone on dispersed cells in primary monolayer culture from bovine adrenal medulla and human extramedullary pheochromocytoma was examined by estimating the level of catecholamines (CAs) and Methionine-enkephalin (Met-enk) in the medium and cells. In cultured bovine adrenal chromaffin cells, dexamethasone caused significant increase in Met-enk levels 18 hours after administration. There was no release of Met-enk and CAs in the medium 10 min after administration, although nicotine did cause a significant release of Met-enk and CAs. A dose response increase in the level of CAs and Met-enk in bovine adrenal chromaffin cells was obtained with doses varying between 0 and 10(-6)M dexamethasone 18 hours after administration. In cultured human extramedullary pheochromocytoma cells, dexamethasone significantly increased the levels of norepinephrine and Met-enk in a dose dependent manner 24 hours after administration. These results suggest that dexamethasone does not act as a secretagogue but may be related to the synthesis of Met-enk and CAs.  相似文献   

6.
We observed the presence of the novel pituitary protein "7B2" and its release in the bovine adrenal medulla. The 7B2 concentration (mean +/- SEM) in extracts of the bovine adrenal medulla was 952 +/- 155 pg/mg tissue (n = 6). 7B2 was distributed in the chromaffin granule fraction prepared from the bovine adrenal medulla and was released by high K+ and/or nicotine from cultured cells of the bovine adrenal medulla. Co-release of 7B2 with catecholamine induced by nicotine from the cultured bovine chromaffin cells was also observed. In an analysis of the bovine adrenal medulla chromaffin granule fraction on gel permeation chromatography, there was a major peak with an apparent molecular weight of 45,000, whereas a major peak with an apparent molecular weight of 20,000 was found in that on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On reverse-phase HPLC, a major peak with a retention time of 35 min was observed in the bovine chromaffin granule fraction and in the bovine anterior pituitary extract. These findings indicate that 7B2 is a secretory protein in the bovine adrenal medulla. The possibility that 7B2 might be released with catecholamine, possibly in response to stress, warrants investigation.  相似文献   

7.
The distribution and secretion of atrial natriuretic peptides (ANPs) were investigated in bovine adrenal medulla. (1) Cultured bovine adrenal medullary cells (2 x 10(6)/dish) contained 100.4 +/- 6.0 fmol of immunoreactive ANP (IR-ANP) and 207.3 +/- 6.6 nmol of catecholamines as epinephrine plus norepinephrine. (2) Stimulation of nicotinic but not muscarinic acetylcholine receptors caused a cosecretion of IR-ANP and catecholamines corresponding to the ratio of IR-ANP to catecholamines in cultured bovine adrenal medullary cells. (3) Carbachol-stimulated secretion of IR-ANP was dependent on the presence of extracellular Ca2+. (4) Chromaffin granules isolated from bovine adrenal medulla contained large amounts of IR-ANP and catecholamines, in the same ratio as did cultured adrenal medullary cells. (5) Reverse-phase HPLC analysis showed that both stored and secreted IR-ANP consisted of two components, which eluted at the position of ANP(99-126) or ANP(1-126). These results indicate that ANPs are stored as ANP(99-126) and ANP(1-126) in chromaffin granules, and are cosecreted in parallel with catecholamines in a Ca2+-dependent manner by the stimulation of nicotinic acetylcholine receptors.  相似文献   

8.
Neurocalcin is a novel calcium-binding protein found in bovine brain tissue. We investigated immunoreactivity for neurocalcin in the mouse adrenal medulla using light and electron microscopy. The immunoreactivity was present in nerve fibers, nerve terminals, and ganglion cells in the adrenal medulla, but chromaffin cells, sustentacular cells, and Schwann cells were negative in reaction. Nerve bundles containing neurocalcin-immunoreactive fibers passed through the adrenal cortex and extended into the medulla. Immunopositive nerve fibers branched off and projected varicose terminals around the chromaffin cells. These varicose terminals contained small and large-cored vesicles and made synapses with the chromaffin cells. We performed paraformaldehyde-induced fluorescence-histochemical studies for catecholamine combined with immunohistochemical studies for neurocalcin. Neurocalcin-immunoreactive nerve terminals were more abundant at noradrenaline (fluorescent) cell-rich regions than at adrenaline (non-fluorescent) cell-rich regions. These results show that neurocalcin-immunoreactive nerves mainly innervate noradrenaline-containing chromaffin cells in the mouse adrenal medulla and that neurocalcin may regulate synaptic function in the nerve terminals. Received: 21 October 1996 / Accepted: 12 February 1997  相似文献   

9.
10.
Gel-eluted bovine chromogranin (CG), the 75,000 dalton acidic protein abundantly present in adrenal chromaffin granules, was used as immunogen to prepare anti-CG serum. The specificity of the antiserum was demonstrated in immunoblots of electrophoresed bovine CG and in immunohistochemical studies of bovine adrenal medulla. In the immunoblots, the predominant immunoreactive band had a molecular weight of 75,000 daltons. Bands with a higher or lower molecular weight were also immunoreactive and may represent CG precursors or breakdown products. In the adrenal gland, only adrenal chromaffin cells contained CG immunoreactivity. Immunoblots and immunohistochemistry were also used to characterize the distribution of CG in bovine tissues. CG was expressed by cells of the diffuse neuroendocrine system (DNS) including: adrenal chromaffin cells, enterochromaffin cells, pancreatic islet cells, cells of the adenohypophysis, thyroid C cells, parathyroid cells, and submandibular gland. CG was also seen in four locations not previously recognized to express this antigen: thymic epithelial cells, neurons, the inner segment of rods and cones, and the submandibular gland. We demonstrate a wider distribution of CG than previously recognized and that the molecule detected in tissue by immunohistochemistry is indeed CG. We conclude that CG is expressed by neurons, cells of the DNS, and by a few other cells that may or may not be related to the DNS. The antiserum described here should prove valuable in developing an understanding of the function(s) of CG.  相似文献   

11.
We have previously reported the existence of a peptide factor in the adrenal medulla which inhibits aldosterone secretion in cultured bovine zona glomerulosa cells. The acid extracts of chromaffin granules from bovine adrenal medulla were purified by a four step high performance liquid chromatography procedure. Two active fractions exhibited sequence homology with bovine atrial natriuretic factor ANF (Ser99-Tyr126) and its polypeptide precursor (Asn1-Tyr126). The occurrence of both precursor and mature forms of ANF within chromaffin granules indicates the endogenous character of ANF in the adrenal medulla and suggests the potential usefulness of cultured adrenal chromaffin cells for investigating the synthesis, maturation and secretion of atrial peptides.  相似文献   

12.
Chromogranin A Synthesis and Secretion in Chromaffin Cells   总被引:3,自引:1,他引:2  
A sensitive and selective radioimmunoassay for chromogranin A (Chrg A) has been developed to quantitate content, release, and biosynthesis of this secretory protein in neuroendocrine tissues. An antiserum raised against Chrg A from bovine adrenal medulla was found to detect predominantly only the Mr 70-75 kilodalton Chrg A in its native form, allowing the use of this antiserum as a quantitatively specific probe for Chrg A in cell-free extracts of the adrenal medulla and chromaffin cells. Chrg A comprises about 10% of the total protein of the chromaffin cell. It is released in parallel with Met-enkephalin and catecholamines from the bovine chromaffin cell in primary culture in response to nicotine and nicotinic cholinergic agonists. From 14 to 22% of total Chrg A is released from the cell during a 15-min exposure to a maximally stimulatory dose of nicotine (10-100 microM). Chrg A release on nicotinic stimulation is blocked by D-600 and hexamethonium to the same extent as Met-enkephalin and catecholamine release. The parallel time course and percent release of Chrg A and Met-enkephalin indicate that these secretory polypeptides are contained in, and released from, functionally identical cellular compartments. Chrg A and Met-enkephalin pentapeptide sequences are present in the chromaffin cell at a ratio of about 2:1, although Chrg A is far more abundant on a mass basis. Chrg A and Met-enkephalin biosynthesis appear to be differentially regulated within the chromaffin cell, since chronic treatment of cells with nicotine and forskolin causes an elevation of Met-enkephalin pentapeptide without a concomitant elevation of intracellular levels of Chrg A.  相似文献   

13.
Summary The adrenal medulla appears to exert a regulatory influence on adrenocortical steroidogenesis. We have therefore studied the morphology of rat, porcine and bovine adrenals in order to characterize the contact zones of adrenomedullary and adrenocortical tissues. The distribution of chromaffin cells located within the adrenal cortex and of cortical cells located within the adrenal medulla was investigated. Chromaffin cells were characterized by immunostaining for synaptophysin and chromogranin A, both being considered specific for neuroendocrine cells. Cortical cells were characterized by immunostaining for 17-hydroxylase, an enzyme of the steroid pathway. Cellular contacts of chromaffin cells and cortical cells were examined at the electron microscopical level. In rat and porcine adrenals, rays of chromaffin cells, small cell clusters and single chromaffin cells or small invaginations from the medulla could be detected in all three zones of the cortex. Chromaffin cells often spread in the subcapsular space of the zona glomerulosa. In porcine and bovine adrenals, 17-hydroxylase immunoreactive cells were localized within the medulla. Single cortical cells and small accumulations of cells were spread throughout this region. At the ultrastructural level, the chromaffin cells located within the cortex in pig and rat adrenals formed close cellular contacts with cortical cells in all three zones. Our morphological data provide evidence for a possible paracrine role of chromaffin cells; this may be important for the neuroregulation of the adrenal cortex.  相似文献   

14.
Summary VIP-like immunoreactivity was revealed in a few chromaffin cells, medullary ganglion cells and a plexus of varicose nerve fibers in the superficial cortex and single varicose fibers in the juxtamedullary cortex and the medulla of the rat adrenal gland. VIP-like immunoreactive chromaffin cells were polygonal in shape without any distinct cytoplasmic processes and they appeared solitarily. Their cytoplasm contained abundant granular vesicles having a round core and the immunoreactive material was localized to the granular core. VIP-immunoreactive ganglion cells were multipolar and had large intracytoplasmic vacuoles. The immunoreactive material was localized not only in a few granular vesicles but also diffusely throughout the axoplasm. VIP-immunoreactive varicose nerve fibers in the superficial cortex were characterized by abundant small clear vesicles and some large granular vesicles, while those in the juxtamedullary cortex and medulla and the ganglionic processes were characterized by abundant large clear vesicles, as well as the same vesicular elements as contained in the nerves in the superficial cortex. The immunoreactive material was localized on the granular cores and diffusely in the axoplasm in both nerves. Based on the similarity and difference in the composition of the vesicles contained in individual nerves, it is likely that the VIP-immunoreactive nerve fibers in the medulla and the juxtamedullary cortex are derived from the medullary VIP-ganglion cells, while those in the superficial cortex are of extrinsic origin. The immunoreactive nerve fibers in both the cortex and the medulla were often in direct contact with cortical cells and chromaffin cells, where no membrane specializations were formed. The immunoreactive nerve fibers were sometimes associated with the smooth muscle cells and pericytes of small blood vessels in the superficial cortex. In addition they were often seen in close apposition to the fenestrated endothelial cells in the cortex and the medulla, only a common basal lamina intervening. Several possible mechanisms by which VIP may exert its effect in the adrenal gland are discussed.  相似文献   

15.
Stimulation of primary bovine adrenal chromaffin cells by carbachol produced a 6-fold increase in cell surface coated pits within 30 s. This coat appeared not to be recruited from a preformed pool at the plasma membrane, but from some pool transparent to electron microscopy. The number of coated pits appeared to decrease rapidly after 1 to 2 min stimulation, but processing for electron microscopy using tannic acid to enhance contrast indicated that both coated pits and closed coated vesicles were increased relative to unstimulated cells for up to 30 min. Analyses of purified adrenal medulla coated vesicles showed a lipid composition close to that expected for cell surface membrane, but there were only trace levels of plasma membrane marker enzymes. Coated vesicles contained significant amounts of both membrane and content proteins characteristic of the chromaffin granule, suggesting that medulla coated vesicles preferentially carry secretion granule proteins. The kinetics of stimulus-dependent formation of coated membrane in the cortical zone of chromaffin cells is closely similar to that observed for secretion granule membrane retrieval.  相似文献   

16.
Immunoreactive dynorphin (ir-Dyn), immunoreactive leucine-enkephalin (ir-Leu-Enk) and various other neuropeptides were measured in acid extracts of bovine adrenal medulla and isolated adrenal chromaffin cells. Their respective levels ranged as follows: Leu-Enk greater than Dyn greater than bombesin greater than vasoactive intestinal peptide (VIP) greater than neurotensin greater than substance P. Comparisons of the total catecholamine levels with the levels of Leu-Enk in both extracts gave ratios in the same order of magnitude (2600, tissue extract and 5000, cell extract). However, the catecholamine/Dyn ratio in the tissue extract (138 000) was much higher than that found in the cell extract (20 180), suggesting a possible selective degradation of Dyn in tissue extract as compared with cell extract or an induction of Dyn biosynthesis in cells which have been isolated from their natural microenvironment. Immunofluorescence staining of isolated chromaffin cell sections revealed the presence of ir-Dyn in 5 to 10% of the total cell population. To localize ir-Dyn in regard to Leu-Enk and catecholamines, adrenal chromaffin cells were separated into three populations (I, II, and III) on a stepwise bovine serum albumin (BSA) gradient. Relative high levels of ir-Dyn were measured in cell layer I (4 pmol/10(6) cells), a cell population enriched in noradrenaline. However, ir-Leu-Enk was more concentrated in cell layers II and III (5.3 and 8.3 pmol/10(6) cells), two populations enriched in adrenaline. Isolation and high pressure liquid chromatography (HPLC) analysis of adrenomedullary Dyn indicated the presence of at least five molecular forms corresponding to Dyn-(1-11), Dyn-(1-12), Dyn-(1-13), Ala-containing-Dyn-(1-13) and a nonidentified molecule eluting closely to Dyn-(1-13). These data indicate that adrenal ir-Dyn and ir-Leu-Enk have distinct cellular distributions. In addition, the identification of Dyn fragments in bovine adrenal medulla indicates that these short peptides may be considered as natural active forms of Dyn.  相似文献   

17.
Calelectrin, a calcium-dependent membrane-binding protein of subunit molecular weight 32,000 has been isolated from the electric organ of Torpedo, and shown to occur in cholinergic neurones and in bovine adrenal medulla. In this study a monospecific antiserum against the Torpedo protein has been used to study the localization of calelectrin in the rat adrenal gland. The cortex was not stained, whereas in the medulla the cytoplasm of the chromaffin cells was stained in a particulate manner. An identical staining pattern was obtained with an antiserum against the chromaffin granule enzyme dopamine beta-hydroxylase, although the two antisera did not cross-react with the same antigen. The purified protein aggregates bovine chromaffin granule membranes and cholinergic synaptic vesicles and also self aggregates in a calcium-dependent manner. Negative staining results demonstrate that calcium induces a transformation of the purified protein from circular structures 30-80 nm in diameter into a highly aggregated structure. Calelectrin may have a structural or regulatory role in the intracellular organization of secretory cells.  相似文献   

18.
M Dumont  R Day  S Lemaire 《Life sciences》1983,32(3):287-294
The distribution of immunoreactive-dynorphin (ir-Dyn) in isolated subpopulations of bovine adrenal chromaffin cells was examined and compared with that of adrenaline (A), noradrenaline (NA) and ir-Leucine-Enkephalin (ir-Leu-Enk). Using a stepwise bovine serum albumin (BSA) gradient, various populations of catecholamine-storing cells were separated and designated as cell layers I, II and III. Cell layer I contained more NA than A; cell layer II contained slightly more A than NA whereas cell layer III was highly enriched in A. The original cell preparation contained 2.9 times more ir-Leu-Enk than ir-Dyn (4.7 and 1.6 pmoles per 10(6) cells, respectively). After separation of the cells on BSA gradient, ir-Dyn was mainly detected in cell layer I (4.0 pmoles/10(6) cells) whereas ir-Leu-Enk was concentrated in cell layer III (8.3 pmoles/10(6) cells). Both peptides were secreted in response to acetylcholine (5 x 10(-5) M), but the amount secreted was in accordance with the cell content in each peptide. After subcellular fractionation of the adrenal medulla, the neuropeptides were found in close association with catecholamines in the secretory granules. These results indicate that bovine adrenal chromaffin cells can be isolated according to their specific content in A, NA and opioid peptides and are consistent with the hypothesis of distinct biosynthetic pathways for Dyn and the Enk.  相似文献   

19.
H Nawata  T Yanase  K Higuchi  K Kato  H Ibayashi 《Life sciences》1985,36(20):1957-1966
The bovine adrenal medulla was investigated regarding the presence of glucocorticoid binding protein and the increases in ornithine decarboxylase (ODC) activity and epinephrine and norepinephrine by dexamethasone. Scatchard analysis of specific cytosol [3H] dexamethasone-binding study indicated a single class of high affinity (kd, 35 +/- 5 nM) and limited binding sites (150 +/- 26 fmoles/mg protein). Competition studies of various steroids indicated a high affinity for dexamethasone and hydrocortisone. Sedimentation in sucrose density gradients revealed a 7.3 S binding peak in the cytosol. Dexamethasone caused an increase in ornithine decarboxylase (ODC) activity within 1 to 2 hours after which the norepinephrine and epinephrine contents increased 16 hours after the peak of ODC activity in a dose dependent manner of dexamethasone in bovine adrenal medullary chromaffin cells in primary monolayer culture. These data suggest that the bovine adrenal medulla is a target organ of glucocorticoid hormone and that norepinephrine and epinephrine syntheses are regulated by a glucocorticoid receptor-mediated mechanism.  相似文献   

20.
Summary Chromaffin cells from the monkey adrenal medulla were maintained in vitro in the presence of nerve growth factor (NGF) and the neuronal properties of these cells were assessed. Single-cell preparations were obtained by collagenase-trypsin treatment of the minced adrenal medulla tissue. Cells assumed a glandular to epithelioid morphology after twenty-four hours of culture. Twelve percent of these cells were shown to extend neurites spontaneously after five days. NGF-stimulated neuritic outgrowth from most cells after five days of culture and these neurites remained for at least three weeks. Cells exhibited intense histofluorescence for catecholamines even after three weeks in vitro in the presence of NGF and positive staining for tyrosine hydroxylase and dopamine beta hydroxylase could be detected by immunocytochemistry. Moreover, the chromaffin cells were shown to bind tetanus toxin, which is a specific marker for neurons. Tetanus toxin labelling was not dependent upon the presence of neurites on these cells. Transmission electron microscopy indicated that cultured cells contained numerous dense-core vesicles similar to noncultured medulla cells. Many of the neurites possessed the morphological features of axons; long varicose processes resembling noradrenergic fibers were identified by catecholamine histofluorescence and tyrosine hydroxylase immunocytochemistry. Microtubular arrays, in an axonal-like organization pattern, were seen ultrastructurally along with the presence of many dense-core vesicles. These data support the potential of adult primate chromaffin cells as a source of sympathetic neuronal tissue for neural transplantation.Supported in part by a Grant from the Alzheimer's Disease and Related Disorders Association, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号