首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Myelin from the peripheral nervous system has been shown to contain two basic protein components and an electrophoretically slower-moving major protein, the 'J' band. The 'J' band protein cannot be selectively removed by aqueous or organic solvents and does not correspond to proteolipid or acidic protein. Histochemical stains applied to peripheral nervous systems myelin proteins separated by polyacrylamide electrophoresis indicate that 'J' band protein is analogous with the neurokeratin of the nerve sheath. Trypanophilia observed histochemically in unfixed myelin is principally due to basic proteins. With prolonged tryptic digestion 'J' band protein is degraded. Thus, previous classifications of myelin proteins based on trypsin sensitivity have been modified. All peripheral nervous system myelin proteins should be regarded as trypsin-sensitive, the basic protein being relatively more and the 'J' band protein relatively less susceptible.  相似文献   

2.
—A specific radioimmunoassay (RIA) for myelin basic protein is described which is sensitive to 10−9 g of basic protein. The amount of basic protein detected in isolated myelin by the RIA and by SDS-gel electrophoresis and spectrophotometric quantitation agree to within experimental error. In contrast to isolated myelin, the major portion of the basic protein in fresh tissue is not accessible to its antibody. It is shielded from its antibody in a complex which is disrupted by heat, organic solvents, and various detergents. Maximum antibody binding was obtained with tissue heated to 100°C for 10 min. It is possible to calculate that the RIA quantitatively detects basic protein in boiled tissue. Boiled adult rat brain contains approximately 2·5 μg of basic protein/mg wet wt of cerebral cortex. The antibody to basic protein has no capacity to bind non-neural tissues.  相似文献   

3.
EFFECT OF PROTEOLYTIC ATTACK ON THE STRUCTURE OF CNS MYELIN MEMBRANE   总被引:6,自引:1,他引:5  
Rat CNS myelin particles have been incubated with trypin and acetyltrypsin under conditions which ensured a selective and substantial removal of the basic proteins leaving acidic Wolfgram and proteolipid proteins. Some trypsin became associated with the basic protein denuded pellet while no attachment of acetyltrypsin was observed. The removal of basic proteins ‘solubilized’ some myelin and produced a lighter ‘fluff’ layer on top of the myelin pellet, but this amounted to no more than 10 per cent of the total myelin lamellae. Electron microscopy indicated a more dense-straining interperiod line in a small percentage of lamellae which otherwise remained normal. Selective extraction of complex lipids with solvents of increasing polarity, nuclear magnetic resonance spectra and X-ray diffraction patterns showed no significant changes on removing basic proteins from myelin. The results are interpreted as suggesting that the basic proteins are not uniformly distributed in myelin but preferentially located in the outside layers of the myelin sheath and that they play little part in stabilizing the bulk of the myelin membrane structure.  相似文献   

4.
Because of the implication of myelin basic protein in some neurological diseases its in vivo structure is of particular interest. The protein is usually isolated using organic solvents and acid solutions and has previously been shown to contain little alpha-helical or beta-structure; but it is not known how the extraction methods influence the structure. Following recent observations that deoxycholate generally causes minimal structural perturbation when used to dissolve membrane proteins, this detergent has been used to extract the basic protein from bovine myelin. The protein contained in deoxycholate washes of myelin has been purified by gel chromatography and its secondary structure examined by circular dichroism spectroscopy. This protein and conventionally prepared bovine and human basic protein to which 1% deoxycholate has been added appear to have the same structure: they contain 8-14% more helical structure than the chloroform/methanol-extracted protein in pH 4.8 acetate buffer or in pH 9.15 Tris buffer. This conformational change is unaffected by addition of 0.25 M NaCl. The helical content will approach the upper limit if, as is expected, these ordered segments are short. It is suggested that basic protein may adopt this more ordered structure in myelin and possess activity not apparent in its water-soluble unordered conformation. Retention of its encephalitogenic activity following severe treatment may result from an ability to rapidly refold to the original conformation rather than from this activity being inherent in the unordered form.  相似文献   

5.
Conformational studies of myelin basic protein (MBP) in solution generally have used protein purified in organic solvents and acid. The use of such conditions raises the possibility that the secondary structure reported for the basic protein represents a denatured state. Therefore we have purified this protein by using a procedure that avoids denaturants. Bovine myelin was extracted with 0.2 M-CaCl2 and the protein was purified from the supernatant by chromatography on Sephadex G-75. The conformation of the basic protein was characterized by using c.d. and 1H-n.m.r. spectroscopy. In solution, it appeared to be predominantly randomly coiled, with only small segments of persistent structure. However, in the presence of myristoyl lysophosphatidylcholine the secondary structure of MBP became more ordered, and sedimentation-velocity experiments showed that MBP aggregated. Comparison of our results with published data indicates that Ca2+-extracted basic protein behaves similarly to the protein purified by traditional methods with respect to its ordered conformation in solution in the absence and in the presence of lipid and with respect to its self-association. Thus its thermodynamically stable structure in aqueous solution appears to be a highly flexible coil.  相似文献   

6.
The peptide portion of the lipopeptide isolated from bovine myelin basic protein contained glycine, lysine, and serine in a 2:1:1 molar ratio as determined by amino acid analysis. The N-terminus of the peptide was determined to be glycine. The tetrapeptide Gly53-Ser-Gly-Lys56 was the only segment of myelin basic protein that matched the above two characteristics. This tetrapeptide is highly conserved among the myelin basic proteins sequenced so far. After the selective degradation of the lipopeptide, phosphoserine was identified in the acid hydrolysate, thus indicating that Ser-54 of myelin basic protein in bovine brain is the site of attachment of polyphosphoinositide. Interestingly, serine-54 of myelin basic protein can be phosphorylated by the endogenous protein kinase myelin. However, myelin basic protein phosphorylated by the catalytic subunit of an exogenous soluble protein kinase failed to produce radioactively labeled lipopeptide. Hence the endogenous enzymes of myelin are thought to be involved in the formation of the covalent linkage between polyphosphoinositide and myelin basic protein. The conservation in sequence suggests a possible important structural role for the "phospholipidation" of myelin basic protein.  相似文献   

7.
The partial specific volume and adiabatic compressibility of proteins reflect the hydration properties of the solvent-exposed protein surface, as well as changes in conformational states. Reverse micelles, or water-in-oil microemulsions, are protein-sized, optically-clear microassemblies in which hydration can be experimentally controlled. We explore, by densimetry and ultrasound velocimetry, three basic proteins: cytochrome c, lysozyme, and myelin basic protein in reverse micelles made of sodium bis (2-ethylhexyl) sulfosuccinate, water, and isooctane and in aqueous solvents. For comparison, we use beta-lactoglobulin (pI = 5.1) as a reference protein. We examine the partial specific volume and adiabatic compressibility of the proteins at increasing levels of micellar hydration. For the lowest water content compatible with complete solubilization, all proteins display their highest compressibility values, independent of their amino acid sequence and charge. These values lie within the range of empirical intrinsic protein compressibility estimates. In addition, we obtain volumetric data for the transition of myelin basic protein from its initially unfolded state in water free of denaturants, to a folded, compact conformation within the water-controlled microenvironment of reverse micelles. These results disclose yet another aspect of the protein structural properties observed in membrane-mimetic molecular assemblies.  相似文献   

8.
A multilayered complex forms when a solution of myelin basic protein is added to single-bilayer vesicles formed by sonicating myelin lipids. Vesicles and multilayers have been studied by electron microscopy, biochemical analysis, and X-ray diffraction. Freeze-fracture electron microscopy shows well-separated vesicles before myelin basic protein is added, but afterward there are aggregated, possibly multilayered, vesicles and extensive planar multilayers. The vesicles aggregate and fuse within seconds after the protein is added, and the multilayers form within minutes. No intra-bilayer particles are seen, with or without the protein. Some myelin basic protein, but no lipid, remains in the supernatant after the protein is added and the complex sedimented for X-ray diffraction. A rather variable proportion of the protein is bound. X-ray diffraction patterns show that the vesicles are stable in the absence of myelin basic protein, even under high g-forces. After the protein is added, however, lipid/myelin basic protein multilayers predominate over single-bilayer vesicles. The protein is in every space between lipid bilayers. Thus the vesicles are torn open by strong interaction with myelin basic protein. The inter-bilayer spaces in the multilayers are comparable to the cytoplasmic spaces in central nervous system myelins . The diffraction indicates the same lipid bilayer thickness in vesicles and multilayers, to within 1 A. By comparing electron-density profiles of vesicles and multilayers, most of the myelin basic protein is located in the inter-bilayer space while up to one-third may be inserted between lipid headgroups. When cytochrome c is added in place of myelin basic protein, multilayers also form. In this case the protein is located entirely outside the unchanged bilayer. Comparison of the various profiles emphasizes the close and extensive apposition of myelin basic protein to the lipid bilayer. Numerous bonds may form between myelin basic protein and lipids. Cholesterol may enhance binding by opening gaps between diacyl-lipid headgroups.  相似文献   

9.
Electron microscopic immunocytochemical studies were carried out to localize myelin basic protein and myelin proteolipid protein during the active period of myelination in the developing rat brain using antisera to purified rat brain myelin proteolipid protein and large basic protein. The anti-large basic protein serum was shown by the immunoblot technique to cross-react with all five forms of basic protein present in the myelin of 8-day-old rat brain. Basic protein was localized diffusely in oligodendrocytes and their processes at very early stages in myelination. The immunostaining for basic protein was not specifically associated with any subcellular structures or organelles. The ultrastructural localization of basic protein suggests that it may be involved in fusion of the cytoplasmic faces of the oligodendrocyte processes during compaction of myelin. Immunoreactivity in the oligodendrocyte and myelin due to proteolipid protein appeared at a later stage of myelination than did that due to basic protein. Staining for proteolipid protein in the oligodendrocyte was restricted to the membranes of the rough endoplasmic reticulum, the Golgi apparatus, and apparent Golgi vesicles. The early, uncompacted periaxonal wrappings of oligodendrocyte processes were well stained with antiserum to large basic protein whereas staining for proteolipid protein was visible only after the compaction of myelin sheaths had begun. Our evidence indicates that basic protein and proteolipid protein are processed differently by the oligodendrocytes with regard to their subcellular localization and their time of appearance in the developing myelin sheath.  相似文献   

10.
11.
We have applied a double tagging system in order to study whether purified myelin basic protein is able to adhere to normal human peripheral T lymphocytes without the need to purify cells. Evaluation of myelin basic protein adherence to peripheral blood mononuclear cells was determined with biotinylated myelin basic protein and fluoresceinated avidin, and lymphocyte population was identified by the corresponding phycoerythrinated monoclonal antibody. The observed adherence of myelin basic protein to T lymphocytes was found to depend on protein conformation.  相似文献   

12.
Developmental regulation of myelin basic protein expression in mouse brain   总被引:25,自引:0,他引:25  
Developmental regulation of myelin basic protein expression in mouse brain has been examined by comparing the myelin basic protein coding potential of mRNA in vitro with the accumulation of myelin basic protein-related polypeptides in vivo. In vitro translation of mRNA isolated from mouse brain generated eight myelin basic protein-related polypeptides with apparent molecular weights of 34K, 30K, 29K, 26K, 21.5K, 18.5K, 17K, and 14K. A similar set of eight myelin basic protein-related polypeptides with corresponding molecular weights was identified in vivo when total brain proteins were analyzed by immunoblotting. Each of the myelin basic protein-related polypeptides shows a characteristic developmental profile in terms of mRNA level and rate of accumulation implying a complex developmental program of myelin basic protein gene expression with regulation and modulation at several different biosynthetic levels.  相似文献   

13.
P Schulz  T F Cruz  M A Moscarello 《Biochemistry》1988,27(20):7793-7799
Fractions containing myelin of varying degrees of compaction were prepared from human white matter. Protein kinase activity in these fractions was measured by using both endogenous and exogenous myelin basic protein (MBP) as substrates. In both cases, less compact myelin fractions possessed higher levels of protein kinase activity than the compact myelin fraction. In addition, the specific activity of phosphorylated basic protein was greater in the loosely compacted fractions than in compact multilamellar myelin. When basic protein in compact myelin or the myelin fractions was phosphorylated by the endogenous kinase, approximately 70% of the [32P]phosphate was incorporated at a single site, identified as Ser-102. The remaining 30% was found in three other minor sites. Electron microscopy of less compact myelin showed it was composed of fewer lamellae which correlated with a relative decrease in the proportion of cationic charge isomers (microheteromers) when MBP was subjected to gel electrophoresis at alkaline pH. The shift in charge microheterogeneity of basic protein to the less cationic isomers in the less compact myelin fractions correlated with an increase in protein kinase activity and a greater specific activity of phosphorylated basic protein.  相似文献   

14.
Abstract— In cerebral myelin from man, ox, rabbit, guinea pig and chicken, the amounts of proteolipid protein, basic protein and the fraction of further protein components were found to be present in a fixed ratio of 5·0: 3·5: 2·0 by weight. The molecular weights of 25,000 and 35,000 as obtained for the basic protein and proteolipid protein might indicate that cerebral myelin contains one molecule of basic protein per molecule of proteolipid protein. This fixed ratio of protein components was found to be changed in myelin from the PNS and in cerebral myelin from rat and carp, with their exceptional basic proteins. Using the polyacrylamide-gel electrophoresis it was possible to demonstrate that a homogeneous structural protein (the Folch-Lees proteolipid protein) constitutes about 50 percent of the total amount of myelin proteins in all species studied. An attempt was made to correlate myelin protein and lipid patterns from various species.  相似文献   

15.
Summary The ability of native and chemically modified myelin basic protein to induce fusion of chicken erythrocytes and to interact with lipids in monolayers at the air-water interface and liposomes was studied. Chemical modifications of myelin basic protein were performed by acetylation and succinylation: the positive charges of the native protein were blocked to an extent of about 90–95%.Cellular aggregation and fusion of erythrocytes into multinucleated cells was induced by the native myelin basic protein. This effect was diminished for both acetylated and succinylated myelin basic protein. Native myelin basic protein penetrated appreciably in sulphatide-containing lipid monolayers while lower penetration occurred in monolayers of neutral lipids. Contrary to this, both chemically modified myelin basic proteins did not show any selectivity to penetrate into interfaces of neutral or negatively charged lipids. The intrinsic fluorescence of the native and chemically modified myelin basic proteins upon interacting with liposomes constituted by dipalmitoylphosphatidycholine, glycosphingolipids, egg phosphatidic acid or dipalmitoylphosphatidyl glycerol was studied. The interaction with liposomes of anionic lipids is accompanied by a blue shift of the maximum of the native protein emission fluorescence spectrum from 346 nm to 335 nm; no shift was observed with liposomes containing neutral lipids. The acetylated and succinylated myelin basic proteins did not show changes of their emission spectra upon interacting with any of the lipids studied. The results obtained in monolayers and the fluorescence shifts indicate a lack of correlation between the ability of the modified proteins to penetrate lipid interfaces and the microenvironment sensed by the tryptophan-containing domain.Abbreviations MBP myelin basic protein - DPPC dipalmitoyl phosphatidylcholine - DPPG dipalmitoyl phosphatidylglycerol - PA phosphatidic acid  相似文献   

16.
Rat brain proteins able to react with anti-myelin basic protein antiserum, raised under conditions to induce experimental allergic encephalomyelitis in rabbits, were examined by immunoblot methods after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Apart from the four forms of myelin basic protein present in rat brain, the antiserum detected other proteins of higher molecular weight. Subcellular fractionation shows that these high-molecular-weight proteins are relatively concentrated in a synaptosome-enriched fraction compared to a myelin fraction. A major protein fraction immunorelated to myelin basic protein migrated in the gels as a doublet with apparent molecular weights of approximately 80K and 86K; these proteins were tentatively identified as synapsin Ia and Ib. A purified synapsin preparation analyzed by immunoblot after two-dimensional gel electrophoresis also reacted with anti-myelin basic protein antisera. When the serum was purified by affinity chromatography on a myelin basic protein-conjugated Sepharose column the nonadsorbed material lost this activity whereas the eluted antibodies reacted with myelin basic protein and synapsin. In addition, sequence amino acid comparison of decapeptides showed some homology between these two proteins. A possible implication of immunological agents against myelin basic protein cross-reacting with extra-myelin proteins in the process of experimental allergic encephalomyelitis is considered.  相似文献   

17.
The wide-spread use of and demand for myelin basic protein for immunologic studies has prompted us to re-examine the details of its isolation from CNS tissue of various species. The procedure described in this communication for the isolation and purification of myelin basic protein does not require column chromatography and is therefore suitable for large scale preparation of a reasonably pure product with simple laboratory equipment. If certain precautions are taken, the yield and quality of the product are reproducible. Certain contaminants which may accompany myelin basic protein during purification by procedures currently in use are pointed out, and their possible influence on the immunologic behavior of myelin basic protein is discussed. Suitable electrophoretic techniques for the detection of these contaminants as well as details for their removal from the myelin basic protein are described.  相似文献   

18.
A technique has been outlined for identification of myelin basic proteins in mixtures of CNS proteins. Myelin basic proteins can be recognized easily by high cathodic mobility at low pH, a unique electrophoretic pattern exhibited at high pH and a characteristic colour when complexed with Amido black. The major protein extracted at pH 3·0 from either brain or spinal cord is myelin basic protein. In the low pH electrophoretic pattern of these extracts it is the most conspicuous component and the component migrating farthest cathodically; it does not appear in comparable electrophoretic patterns of liver extracts. Guinea pig myelin basic protein appears as a single dense blue-green band in low pH electrophoretic patterns, in contrast to the other proteins which are stained greyish-blue or greyish-purple by Amido black. The pattern of rat myelin basic protein is similar except that it consists of a pair of dense blue-green bands. A third characteristic which facilitates the identification of myelin basic proteins in mixtures is a considerable cathodic mobility and electrophoretic heterogeneity at pH 10·6. Most other basic CNS proteins barely penetrate the gel at this pH. We have also examined in detail the behaviour of two other components of pH 3·0 extracts which migrate close to myelin basic protein at low pH. Both are present in pH 3·0 extracts of liver and brain but not of spinal cord, and both stain grey instead of blue-green, a characteristic which readily distinguishes them from myelin basic protein. Neither of these components affects the characteristic pattern of microheterogeneity observed in high pH electrophoretograms of myelin basic proteins. One of these components has been purified and tentatively identified as lysine-rich histone F1.  相似文献   

19.
Cyclic AMP-stimulated phosphorylation of membrane proteins in central-nervous-system myelin was investigated, with rabbit brain myelin. Subfractionation of a myelin membrane preparation by sucrose-density-gradient centrifugation produced a rapidly sedimenting population of membrane vesicles containing 5'-nucleotidase and acetylcholinesterase, a light membrane fraction containing myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphodiesterase, and an intermediate membrane fraction containing the highest specific activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase and a small proportion of myelin basic protein. Cyclic AMP stimulation of protein phosphorylation was confined to a protein of Mr 49 700, which co-electrophoresed with the upper component of the Wolfgram protein doublet. Cyclic AMP did not affect the phosphorylation of myelin basic protein. Cyclic AMP-stimulated phosphorylation of this protein followed 2',3'-cyclic nucleotide 3'-phosphodiesterase activity on subcellular fractionation and was correspondingly high in the intermediate or 'myelin-like' fraction on sucrose-density-gradient centrifugation.  相似文献   

20.
Phosphoprotein phosphatase (phosphoprotein phosphohydrolase EC 3.1.3.16) activity for myelin basic protein was found to be present in the myelin fraction of rat brain. The enzyme activity was in a latent form and solubilized by 0.2% Triton X-100 treatment with about 50% increase of activity. The cytosol fraction from bovine brain also had phosphoprotein phosphatase activity for myelin basic protein, which was resolved into at least two peaks of activity on DEAE-cellulose column chromatography. Myelin basic protein was the best substrate for both the solubilized myelin fraction and the cytosol enzymes among the substrate proteins tested. The Km values of the solubilized myelin fraction were 4.2 muM for myelin basic protein, 7.4 muM for arginine-rich histone, 8.0 muM for histone mixture and 14.3 muM for protamine, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号