首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several authors have suggested that there is an excess risk of hyperparathyroidism, adenomas or hyperplasia after exposure to ionizing radiation. There is still, however, some uncertainty about this association, because these diseases are often asymptomatic and escape clinical detection if not specially searched for. This study is based on a pooled Swedish cohort of 27,925 persons with skin hemangiomas. The majority received radiation treatment in infancy between 1920 and 1965 in Stockholm and Gothenburg. The mean age at treatment was 6 months and the median thyroid dose was 0.20 Gy (range 0-28.5 Gy). Record linkage with the Swedish Cancer Register for the period 1958-1997 gave 43 cases of parathyroid adenoma in the cohort. Analyses of excess relative risk (ERR) models were performed using Poisson regression methods. Clinical records were scrutinized to determine if the childhood radiation exposure was known (biased cases) at the time of diagnosis. Seven of the cases of parathyroid adenoma were classified as biased cases. The standardized incidence ratio (SIR) was 2.10 (95% confidence interval 1.52-2.82) when all cases were included and 1.76 (95% CI 1.23-2.43) with the biased cases excluded. A linear dose-response model with stratification for sex fitted the data best. The ERR per gray was 3.84 (95% CI 1.56-8.99) with all cases and 1.56 (95% CI 0.36-4.45) with the biased cases excluded. There was a significant difference in the ERR per gray between the two subcohorts, probably because of different diagnostic activity in the regions. Our findings confirm that there is a dose-response relationship for radiation-induced parathyroid adenomas.  相似文献   

2.
Irradiation of a mouse thymocyte fraction enriched by T-lymphocyte precursors changes the antigenic phenotype of cells toward the increase of their highly differentiated forms. Similar changes in membrane marker antigens are produced by chemical inductors of differentiation and thymotropin. The changes in the cell phenotype induced by the above agents are associated with both membrane and intragenome rearrangements. The results of the experiments on preventing the expression of some antigens by puromycin and the data on the level of spontaneous genome lesions in thymocyte fractions have prompted an assumption that destabilization of the genome upon irradiation increases DNA injury above some critical level which may serve a stimulus for "sorting out" the most radiosensitive thymocyte fraction.  相似文献   

3.
Although increasing evidence has suggested that the hMSH5 protein plays an important role in meiotic and mitotic DNA recombinational repair, its precise functions in recombination and DNA damage response are presently elusive. Here we show that the interaction between hMSH5 and c-Abl confers ionizing radiation (IR)-induced apoptotic response by promoting c-Abl activation and p73 accumulation, and these effects are greatly enhanced in cells expressing hMSH5P29S (i.e. the hMSH5 variant possessing a proline to serine change within the N-terminal (Px)5 dipeptide repeat). Our current study provides the first evidence that the (Px)5 dipeptide repeat plays an important role in modulating the interaction between hMSH5 and c-Abl and alteration of this dipeptide repeat in hMSH5P29S leads to increased IR sensitivity owing to enhanced caspase-3-mediated apoptosis. In addition, RNAi-mediated hMSH5 silencing leads to the reduction of apoptosis in IR-treated cells. In short, this study implicates a role for hMSH5 in DNA damage response involving c-Abl and p73, and suggests that mutations impairing this process could significantly affect normal cellular responses to anti-cancer treatments.  相似文献   

4.
Quantitative regularities of recovery of wild-type diploid yeast cells irradiated with gamma-rays (60Co) simultaneously with exposure to high temperatures were studied. It was shown that in conditions of such a combined action the constant of recovery did not depend on the temperature at which the irradiation was carried out. However, with an increase of acting temperature an augmentation in the portion of irreversible component was registered. The analysis of cell inactivation revealed that the augmentation of the irreversible component was accompanied by a continuous increase of cell killing without any postirradiation division after which cells are incapable of recovery. The reproductive death was mainly exerted after ionizing radiation applied alone while in conditions of simultaneous thermoradiation action the interphase killing (cell death without division) predominated. It is concluded on this base that the mechanism of synergistic interaction of ionizing radiation and hyperthermia may be related with cardinal change in mechanisms of cell killing.  相似文献   

5.
Some biochemical disorders in the animals' central nervous system mainly in brain have been analysed after the exposure to superlethal doses of ionizing radiation as well in a state of the so-called early transient incapacity. The metabolism of gamma-aminobutyric acid, ammonia, histamine, cyclic nucleotides, prostaglandins and other biologically active substances is compared. Their investigation as metabolic regulators and modulators for nerve tissue seems to be of particular importance for deciphering the molecular mechanisms of changes in the central nervous system functional state and for discovering the possibility of its maintaining at a given level of activity.  相似文献   

6.
Acute changes in the gene expression profile in mouse brain after exposure to ionizing radiation were studied using microarray analysis. RNA was isolated at 0.25, 1, 5 and 24 h after exposure to 20 Gy and at 5 h after exposure of the whole brain of adult mice to 2 or 10 Gy. RNA was hybridized onto 15K cDNA microarrays, and data were analyzed using GeneSpring and Significant Analysis of Microarray. Radiation modulated the expression of 128, 334, 325 and 155 genes and ESTs at 0.25, 1, 5 and 24 h after 20 Gy and 60 and 168 at 5 h after 2 and 10 Gy, respectively. The expression profiles showed dose- and time-dependent changes in both expression levels and numbers of differentially modulated genes and ESTs. Seventy-eight genes were modulated at two or more times. Differentially modulated genes were associated with 12 different classes of molecular function and 24 different biological pathways and showed time- and dose-dependent changes. The change in expression of four genes (Jak3, Dffb, Nsep1 and Terf1) after irradiation was validated using quantitative real-time PCR. Up-regulation of Jak3 was observed in another mouse strain. In mouse brain, there was an increase of Jak3 immunoreactivity after irradiation. In conclusion, changes in the gene profile in the brain after irradiation are complex and are dependent on time and dose, and genes with diverse functions and pathways are modulated.  相似文献   

7.
8.
9.
Shi Y  Zhang X  Tang X  Wang P  Wang H  Wang Y 《Radiation research》2012,177(1):124-128
Ionizing radiation stimulates miR-21 expression in different types of mammalian cells in culture. However, it remains unclear whether radiation could stimulate miR-21 expression in brain cells and tissue and, if so, how long the upregulation of miR-21 would be maintained after exposure to different types of radiation. To answer these questions, we examined the miR-21 levels in irradiated mouse hippocampal cells and brain tissue from mice at different times up to 1 year after whole-body exposure to 0.5 Gy of X rays [low linear energy transfer (LET)] or (56)Fe ions (high LET). The results showed that radiation stimulated miR-21 expression in mouse hippocampal cells and upregulation of EGFR, which is similar to that in human hepatocytes, as we reported previously. Interestingly, the miR-21 levels gradually increased within 1 year after irradiation, although there was no significant difference in the miR-21 low- and high-LET irradiated mice. The high expression of miR-21 in the brain was also associated with high expression of EGFR in irradiated mice; thus our data strongly support that EGFR and miR-21 are in a positive regulatory loop, because it is known that radiation stimulates miR-21 through the EGFR/Stat3 pathway and miR-21 activates the EGFR pathway. Since the brain is relatively resistant to radiation-induced histomorphological changes, our findings may provide a new way to explore radiation-induced pathological changes in the brain by investigating miR-21 and its multiple targets.  相似文献   

10.
11.
Ionizing radiation is an established risk factor for brain tumors, yet quantitative information on the long-term risk of different types of brain tumors is sparse. Our aims were to assess the risk of radiation-induced malignant brain tumors and benign meningiomas after childhood exposure and to investigate the role of potential modifiers of that risk. The study population included 10,834 individuals who were treated for tinea capitis with X rays in the 1950s and two matched nonirradiated groups, comprising population and sibling comparison groups. The mean estimated radiation dose to the brain was 1.5 Gy. Survival analysis using Poisson regression was performed to estimate the excess relative and absolute risks (ERR, EAR) for brain tumors. After a median follow-up of 40 years, an ERR/Gy of 4.63 and 1.98 (95% CI = 2.43-9.12 and 0.73-4.69) and an EAR/Gy per 10(4) PY of 0.48 and 0.31 (95% CI = 0.28-0.73 and 0.12-0.53) were observed for benign meningiomas and malignant brain tumors, respectively. The risk of both types of tumors was positively associated with dose. The estimated ERR/Gy for malignant brain tumors decreased with increasing age at irradiation from 3.56 to 0.47 (P = 0.037), while no trend with age was seen for benign meningiomas. The ERR for both types of tumor remains elevated at 30-plus years after exposure.  相似文献   

12.
The aim of this work was to study acute alterations of the enterohepatic recirculation (EHR) of bile acids 3 days after an 8-Gy radiation exposure in vivo in the rat by a washout technique. Using this technique in association with HPLC analysis, the EHR of the major individual bile acids was determined in control and irradiated animals. Ex vivo ileal taurocholate absorption was also studied in Ussing chambers. Major hepatic enzyme activities involved in bile acid synthesis were also measured. Measurements of bile acid intestinal content and intestinal absorption efficiency calculation from washout showed reduced intestinal absorption with significant differences from one bile acid to another: absorption of taurocholate and tauromuricholate was decreased, whereas absorption of the more hydrophobic taurochenodeoxycholate was increased, suggesting that intestinal passive diffusion was enhanced, whereas ileal active transport might be reduced. Basal hepatic secretion was increased only for taurocholate, in accordance with the marked increase of CYP8B1 activity in the liver. The results are clearly demonstrate that concomitantly with radiation-induced intestinal bile acid malabsorption, hepatic bile acid synthesis and secretion are also changed. A current working model for pathophysiological changes in enterohepatic recycling after irradiation is thus proposed.  相似文献   

13.
14.
15.
Radiation is energy transfer. When radiation has sufficient energy to remove an orbital electron from its atom, an ionized atom is formed, and radiation with the capacity to do this is called ionizing radiation. The primary effect of radiation is the induction of free radicals and Reactive Oxygen Species (ROS). All the molecules in every cell of the body are potential targets, but the final effect of radiation will be mainly of concern if the molecule impaired is a molecule critical for life. ROS are also generated as a result of the aerobic respiration (metabolic ROS) in much larger quantity than from the natural radiation background. During evolution, life has developed powerful control and repair mechanisms that greatly contribute to minimize the risks associated with the generation of free radicals and ROS. At low irradiation doses the probability of the risk is therefore proportional to the dose, and the ALARA (As Low As Reasonable Achievable) principle seems to be a valuable goal in radioprotection policies.  相似文献   

16.
A. V. Akleyev 《Biophysics》2010,55(1):128-141
Reviewed are radiobiological data on the emergence of tissue reactions that may determine the course and outcome of human chronic irradiation. The main mechanisms of the reaction of hemopoietic, immune, reproductive, endocrine, respiratory systems and skin to long-term and fractionated exposure to ionizing radiation are considered. The problem of developing a new approach to threshold dose estimation for chronic exposure effects is discussed.  相似文献   

17.
18.
19.
On the occasion of the first international workshop on systems radiation biology we review the role of cell renewal systems in maintaining the integrity of the mammalian organism after irradiation. First, 11 radiation emergencies characterized by chronic or protracted exposure of the human beings to ionizing irradiation were “revisited”. The data provide evidence to suggest that at a daily exposure of about 10–100 mSv, humans are capable of coping with the excess cell loss for weeks or even many months without hematopoietic organ failure. Below 10 mSv/day, the organisms show some cellular or subcellular indicators of response. At dose rates above 100 mSv/day, a progressive shortening of the life span of the irradiated organism is observed. To elucidate the mechanisms relevant to tolerance or failure, the Megakaryocyte–thrombocyte cell renewal system was investigated. A biomathematical model of this system was developed to simulate the development of thrombocyte concentration as a function of time after onset of chronic radiation exposure. The hematological data were taken from experimental chronic irradiation studies with dogs at the Argonne National Laboratory, USA. The results of thrombocyte response patterns are compatible with the notion of an “excess cell loss” (compared to the steady-state) in all proliferative cell compartments, including the stem cell pool. The “excess cell loss” is a function of the daily irradiation dose rate. Once the stem cell pool is approaching an exhaustion level, a “turbulence region” is reached. Then it takes a very little additional stress for the system to fail. We conclude that in mammalian radiation biology (including radiation medicine), it is important to understand the physiology and pathophysiology of cell renewal systems in order to allow predicting the development of radiation induced lesions.  相似文献   

20.
Ionizing radiation commonly used in the radiotherapy of brain tumours can cause adverse side effects to surrounding normal brain tissue. The most significant response of adult brain to radiation damage is induction of apoptosis. The adult mammalian subventricular zone (SVZ) of the brain lateral ventricles (LV) and their subsequent lateral ventricular extension, the rostral migratory stream (RMS), is one of the few areas, which retains the ability to generate new neurons and glial cells throughout life. Taking into account the fact, that ionizing radiation is one of the strongest exogenous factors affecting cell proliferation, the aim of the present study was to investigate the occurrence of radiation-induced apoptosis in this neurogenic region. Adult male Wistar rats were investigated 1, 5 or 10 days after single whole-body gamma irradiation with the dose of 3 Gy. Apoptotic cell death was determined by in situ labelling of DNA nick ends (TUNEL) and fluorescence microscopy evaluation of TUNEL-positive cells. Considerable increase of apoptotic TUNEL-positive cells was observed 24 hrs after irradiation in caudal parts of RMS; i.e. in the vertical arm and elbow of RMS. Initial increase was followed by strong reduction of apoptosis in the RMS and by secondary over-accumulation of apoptotic cells in the animals that survived ten days after exposure. Results showed, that the proliferating population of cells, arisen in SVZ are highly sensitive to radiation-induced apoptosis. This observation should have implications for clinical radiotherapy to avoid complications in therapeutic brain irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号