首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The invivo of four psychomotor stimulants (d-amphetamine, β-phenylethylamine, cocaine and methylphenidate) were determined on: 1) the rate of dopamine (DA) synthesis, as measured by the accumulation of dihydroxyphenylalanine (DOPA) after aromatic L-amino acid decarboxylase inhibition, in the striatum (terminals of nigrostriatal neurons) and in the nucleus accumbens and olfactory tubercle (terminals of mesolimbic neurons) and 2) the efflux of the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) into cerebroventricular perfusates of conscious, freely-moving rats. d-Amphetamine and β-phenylethylamine produced biphasic responses with lower doses of each drug increasing both the efflux of DOPAC and the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect or actually decreased the efflux of DOPAC and also decreased the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect only decreased the efflux of DOPAC and the rate of DA synthesis in the striatum. The effects of the drugs on the rate of DA synthesis in the nucleus accumbens and olfactory tubercle were similar to, but less pronounced than those seen in the striatum. These results are consistent with the following suggestions: 1) low doses of d-amphetamine and β-phenylethylamine facilitate the neuronal release of DA while higher doses of both drugs facilitate release and inhibit neuronal reuptake of the amine, and 2) cocaine and methylphenidate preferentially block the neuronal reuptake of DA.  相似文献   

2.
L Annunziato  K E Moore 《Life sciences》1978,22(22):2037-2041
The α-methyltyrosine-induced decline of dopamine was increased in the median eminence of rats at 16 but not at 2 hours after the start of intraventricular injections of 0.2–2 μg of rat prolactin. Intraventricular injections of prolactin did not alter the α-methyltyrosine-induced decline of dopamine in the striatum or olfactory tubercle. These results suggest that prolactin in the cerebrospinal fluid can selectively increase the activity of tuberoinfundibular dopaminergic neurons.  相似文献   

3.
Haloperidol or saline was administered to rats daily for 1, 8, 15 or 22 days. During haloperidol, but not saline administration, changes in plasma homovanillic acid (HVA) concentrations were correlated with changes in nucleus accumbens HVA. Haloperidol administration also had a significant effect on the intercorrelation of dopamine (DA) concentrations and indices of DA turnover across multiple brain areas. In particular, intercorrelations of HVA concentrations among DA terminal brain areas (i.e. striatum, nucleus accumbens, and olfactory tubercle) occurred only during haloperidol treatment.  相似文献   

4.
Rats received 7 daily injections with baclofen (40 mg/kg), GBL (750 mg/kg) or HA-966 (100 mg/kg). Dopamine (DA) was measured in the striatum and olfactory tubercle (OT) of rats, sacrificed 0.5 h or 1 h after the last injection. Marked tolerance and cross-tolerance for the DA-elevating effect of these drugs was seen in the striatum, but not in OT. When on day 7 a unilateral lesion of the nigrostriatal pathway was made, also some tolerance to the DA increase in the striatum on the lesioned side was seen in HA-966-pretreated rats, but it was small compared to the tolerance after an additional drug administration in non-lesioned animals. A low dose of apomorphine (0.25 mg/kg, i.p.) had no effect on DA, dihydroxyphenylacetic acid DOPAC) or homovanillic acid (HVA) levels in the lesioned striata, whether the rats had been pretreated for 6 days with HA-966 or not. However, this dose of apomorphine had a significantly more lowering effect on striatal DOPAC and HVA levels on the unlesioned side of HA-966 pretreated rats. The results show that tolerance develops to the increase of DA synthesis, which is possibly receptor-mediated. This tolerance develops more readily in the striatum than in the olfactory tubercle.  相似文献   

5.
Regulation of DOPA Decarboxylase Activity in Brain of Living Rat   总被引:4,自引:1,他引:3  
Abstract: To test the hypothesis that l -DOPA decarboxylase (DDC) is a regulated enzyme in the synthesis of dopamine (DA), we developed a model of the cerebral uptake and metabolism of [3H]DOPA. The unidirectional blood-brain clearance of [3H]DOPA ( K D1) was 0.049 ml g−1 min−1. The relative DDC activity ( k D3) was 0.26 min−1 in striatum, 0.04 min−1 in hypothalamus, and 0.02 min−1 in hippocampus. In striatum, 3,4-[3H]dihydroxyphenylacetic acid ([3H]DOPAC) was formed from [3H]DA with a rate constant of 0.013 min−1, [3H]homovanillic acid ([3H]HVA) was formed from [3H]DOPAC at a rate constant of 0.020 min−1, and [3H]HVA was eliminated from brain at a rate constant of 0.037 min−1. Together, these rate constants predicted the ratios of endogenous DOPAC and HVA to DA in rat striatum. Pargyline, an inhibitor of DA catabolism, substantially reduced the contrast between striatum and cortex, in comparison with the contrast seen in autoradiograms of control rats. At 30 min and at 4 h after pargyline, k D3 was reduced by 50% in striatum and olfactory tubercle but was unaffected in hypothalamus, indicating that DDC activity is reduced in specific brain regions after monoamine oxidase inhibition. Thus, DDC activity may be a regulated step in the synthesis of DA.  相似文献   

6.
The activities of periventricular-hypophysial dopaminergic (DA) neurons were compared in male and female rats by measuring dopamine synthesis (accumulation of 3,4-dihydroxyphenylalanine [DOPA] after inhibition of L-aromatic amino acid decarboxylase) and metabolism (concentrations of 3,4-dihydroxyphenylacetic acid [DOPAC]) in terminals of these neurons in the intermediate lobe of the pituitary. For comparison, the synthesis and metabolism of dopamine in the neural lobe of the pituitary and median eminence were also determined. The concentrations of DOPAC and accumulation of DOPA were higher in females than in males in both the intermediate lobe and median eminence, revealing a sexual difference in the basal activity of periventricular-hypophysial and tuberoinfundibular DA neurons. In contrast, there were no differences between male and female rats in activity of DA neurons terminating in the neural lobe. One week following gonadectomy, DOPA accumulation in the median eminence was decreased in females and increased in males, but remained unchanged in the intermediate lobe. These results indicate that sexual differences in the activity of periventricular-hypophysial DA neurons terminating in the intermediate lobe are not dependent upon the presence of circulating gonadal steroids, and in this respect, these neurons differ from tuberoinfundibular DA neurons.  相似文献   

7.
Modulation of striatal enkephalinergic neurons by antipsychotic drugs   总被引:6,自引:0,他引:6  
In this paper we review the detailed mechanisms underlying the modulation of enkephalinergic neurons by dopaminergic neurons in rat striatum. Several lines of evidence, which showed that striatal levels of [Met5]enkephalin (ME) increase after the nigrostriatal dopaminergic pathway was interrupted by hemitransection or direct administration of 6-hydroxydopamine to the substantia nigra, or after repeated injections of either reserpine or haloperidol, suggest that dopamine (DA) plays an important role in regulating the metabolism of ME-containing neurons in the striatum. The increase in ME content after repeated injections of haloperidol was found in areas heavily innervated by DA neurons such as striatum or nucleus accumbens but not in hypothalamus, brain stem, and hippocampus. Further studies suggest that striatal cholinergic interneurons may partially mediate the action of haloperidol on enkephalinergic neurons. Several studies have been carried out to determine whether the elevation of striatal ME content after haloperidol treatment was caused by an increase in the synthesis or by a decrease in the utilization of ME. The rate of decline of striatal ME content in haloperidol-treated rats was steeper than that of controls after intraventricular injection of cycloheximide, which indicated that haloperidol accelerates the turnover of ME. This hypothesis was confirmed by our recent findings that the level of mRNA coding for preproenkephalin A, determined by cell-free translation and blot hybridization with cDNA clones, is increased after repeated injections of haloperidol.  相似文献   

8.
The role of dopamine (DA) input on the activity of glutamate neurons was investigated on rat striatal and cortical tissue using the measurement of sodium-dependent high affinity glutamate uptake (HAGU) as an index. Incubation of the tissue in the presence of DA, apomorphine or bromocriptine produced marked inhibition of 3H-glutamate uptake from rat striatal homogenates. No change occurred with samples from the frontal cortex. Dopaminergic inhibition of HAGU in striatal homogenates was shown to be reversed in the presence of haloperidol or domperidone which act by blocking dopaminergic receptor sites. These results are consistent with the existence of an inhibitory control of the neuronal activity of the glutamatergic neurons in the striatum by the nigro-striatal dopaminergic input. The effects could be due to the activation of D2-like DA receptors located at pre-synaptic levels on cortico-striatal glutamatergic nerve endings.  相似文献   

9.
K.T. Demarest  K.E. Moore 《Life sciences》1981,28(12):1345-1351
Subcutaneous injections of morphine to male rats reduced dopamine(DA) turnover (α-methyltyrosine-induced decline of DA concentrations) in the median eminence, and increased DA turnover in the striatum. Selective destruction of central 5-hydroxytryptamine(5HT)-neurons with intracerebroventricular injections of 5,7-dihydroxytryptamine, or the administration of metergoline, a putative 5HT antagonist, blocked the inhibitory effects of morphine on DA turnover in the median eminence. In the same experiments disruption of 5HT neurotransmission processes caused a similar but less dramatic antagonism of the stimulatory actions of morphine on DA turnover in the striatum. Thus, 5HT neurons play a role in mediating the effects of morphine on tuberoinfundibular and possibly on nigrostriatal DA neurons.  相似文献   

10.
Hiroshi Watanabe 《Life sciences》1985,37(24):2319-2325
To investigate mechanisms of behavioral enhancement produced by repeated doses of amphetamines, the effects of apomorphine on 3,4-dihydroxyphenylacetic acid (DOPAC) and dopamine (DA) levels were examined in various brain regions of the rat on the 4th day of withdrawal after repeated administration of saline or methamphetamine (3 mg/kg, s.c.) twice daily for 14 days. Apomorphine (0.1 and 1.0 mg/kg, i.p.) produced a dose-dependent decrease in DOPAC levels and no effect on DA levels in the olfactory tubercle, nucleus accumbens, striatum, frontal and cingulate cortices of saline-treated animals. A decrease in DOPAC levels produced by a low dose of apomorphine was attenuated selectively in the olfactory tubercle and nucleus accumbens of methamphetamine-treated animals. A high dose of apomorphine produced a significant decrease in DOPAC levels in both regions. No such attenuation was obtained in the striatum and the frontal and cingulate cortices.These results suggest that subchronic methamphetamine may induce development of hyposensitivity of presynaptic DA receptors in the mesolimbic regions, which contribute to the behavioral enhancement produced by the drug.  相似文献   

11.
12.
It has been recently shown that salsolinol (SAL) is present in the hypothalamic neuroendocrine dopaminergic (NEDA) system and appears to be a selective and potent stimulator of prolactin (PRL) secretion in the rat. Furthermore, the lack of interference of SAL with 3H-spiperone binding in the striatum and the anterior lobe (AL) of the pituitary gland has been also demonstrated. These data clearly indicate that SAL does not act at the dopamine (DA) D(2) receptors, and suggest that SAL supposedly has a binding site through which the secretion of PRL may be affected. Therefore, binding of 3H-SAL to different regions of the central nervous system (CNS) has been investigated. Specific and saturable binding has been detected in the striatum, cortex, median eminence and in the hypothalamus as well as in the AL and the neuro-intermediate lobe (NIL) of the pituitary gland. K(D) values of the bindings were in the nanomolar range in all tissue tested. 3H-SAL displacing activity of several agonists and antagonists of known DA receptors have also been tested. It has been found that DA and in a lesser extent, apomorphine could displace 3H-SAL, but other DA receptor specific ligands have not been able to affect it. Furthermore, several pharmacologically active compounds, selected on the basis of their influence on DA synthesis, transport mechanisms and signal transduction, have also been tested. Neither mazindol (a selective DA transporter inhibitor) nor clonidine (an alpha(2)-adrenoreceptor agonist) could alter SAL binding. At the same time, L-dopa, carbidopa, benserazide and alpha-methyldopa were able to displace 3H-SAL. The possible changes in SAL binding due to physiological and pharmacological stimuli, like suckling stimulus and reserpine pretreatment (that blocks vesicular monoamine transport in DA terminals), respectively, have also been investigated. In the NIL of the pituitary gland and in the median eminence of the hypothalamus the binding decreased following 10 min of suckling stimulus compared to the binding detected in the same tissues obtained from mothers separated from their pups for 4h and not allowed to be suckled. At the same time, there were no changes in the binding at the AL and striatum. Following reserpine pretreatment that has completely prevented PRL releasing effect of SAL, the binding was significantly augmented. These results support our assumption that SAL should have specific binding sites through which it can affect PRL secretion. Furthermore, it clearly suggests that it may regulate DAergic neurotransmission of NEDA neurons by an altered intracellular or intraterminal synthesis and/or distribution of hypophysiotropic DA.  相似文献   

13.
The effects of neurotensin on the activity of hypothalamic tuberoinfundibular and periventricular-hypophysial dopaminergic (DA) neurons, and on the secretion of pituitary hormones that are tonically regulated by these neurons (i.e. prolactin and alpha-melanocyte-stimulating hormone [alpha MSH], respectively) were examined in estrogen-primed ovariectomized rats. The activity of tuberoinfundibular and periventricular-hypophysial DA neurons was estimated by measuring concentrations of the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the terminals of these neurons in the median eminence and intermediate lobe of the posterior pituitary, respectively. Intracerebroventricular administration of neurotensin caused a dose- and time-related increase in DOPAC concentrations in both the median eminence and intermediate lobe, and a concurrent decrease in plasma levels of prolactin and alpha MSH. These results suggest that neurotensin-induced inhibition of secretion of prolactin and alpha MSH from the pituitary may be due to the stimulatory action of this neuropeptide on the release of dopamine from tuberoinfundibular and periventricular-hypophysial neurons.  相似文献   

14.
Lergotrile (0.5 mg/kg, i.p.) lowered blood pressure significantly in spontaneously hypertensive rats. This effect was antagonized by pretreatment with haloperidol, pimozide, or domperidone. In normotensive rats, administration of haloperidol or domperidone rapidly increased serum prolactin levels. Haloperidol also increased striatal levels of dihydroxyphenylacetic acid and homovanillic acid; however, domperidone did not, which confirms that this latter blocker probably acts primarily as a peripheral dopamine antagonist. Taken together, these data suggest that lergotrile lowers blood pressure in hypertensive rats mainly by stimulating peripheral dopamine receptors.  相似文献   

15.
Using radioenzymatic assay procedures, we have measured picomolar amounts of endogenous norepinephrine (NE) and dopamine (DA) released in vitro. The release of NE and DA in response to KCl stimulation was examined in 6 brain regions: cortex, hippocampus, hypothalamus, striatum, combined accumbens-olfactory tubercle, and substantia nigra. NE release was detectable in all regions except striatum. Amounts of NE released by 55mM KCl (expressed as % control) were: cortex (313%), hippocampus (227%), hypothalamus (225%), accumbens-tubercle (278%), s. nigra (155%). KCl stimulated release of DA was detected in 3 regions: striatum (414%), accumbenstubercle (282%), and hypothalamus (312%). DA was measurable in filtrates from the s. nigra but levels in control and KCl stimulated samples were equal. Release of NE and DA was also measured in 12 brain regions after incubation of tissue in vitro with 10?4M d-amphetamine sulfate. d-Amphetamine stimulated NE outflow when compared to controls in all regions examined. DA outflow was markedly increased in most regions, especially striatum (287%), hypothalamus (387%) and accumbens-tubercle (670%). d-Amphetamine doubled endogenous DA outflow from the s. nigra.  相似文献   

16.
Dopamine (DA) is synthesized and released not only from the terminals of the nigrostriatal dopaminergic neuronal pathway, but also from the dendrites in the substantia nigra. We have investigated the regulation of the DA turnover, the DA synthesis rate, and the DA release in the substantia nigra pars compacts (SNpc) and pars reticulata (SNpr) in vivo. As a measure of DA turnover, we have assessed the concentrations of 3,4-dihydroxyphenylacetic acid and homovanillic acid. As a measure of the DA synthesis rate, we have determined the 3,4-dihydroxyphenylalanine accumulation after inhibition of aromatic L-amino acid decarboxylase by 3-hydroxybenzylhydrazine. As a measure of DA release, we have investigated the disappearance rate of DA after inhibition of its synthesis by alpha-methyl-p-tyrosine and the 3-methoxytyramine accumulation following monoamine oxidase inhibition by pargyline. Both the DA turnover and the DA synthesis rate increased following treatment with the DA receptor antagonist haloperidol and decreased following treatment with the DA receptor agonist apomorphine in the SNpc and in the SNpr, but the effects of the drugs were less pronounced than in the striatum. gamma-Butyrolactone treatment, which suppresses the firing of the dopaminergic neurons, increased the DA synthesis rate in the striatum (165%), but had no such effect in the SNpc or SNpr. Haloperidol, apomorphine, and gamma-butyrolactone increased, decreased, and abolished, respectively, the DA release in the striatum, but the drugs had no or only slight effects on the alpha-methyl-p-tyrosine-induced DA disappearance and on the pargyline-induced 3-methoxytyramine accumulation in the SNpc or SNpr. Taken together, these results indicate that the DA synthesis rate, but not the DA release, are influenced by DA receptor activity and neuronal firing in the SNpc and SNpr. This is in contrast to the situation in the striatum, where both the DA synthesis rate and the DA release are under such control.  相似文献   

17.
We have earlier shown that d-lysergic acid diethylamide, LSD and its 2-bromo derivative, BOL like the dopamine (DA) antagonists haloperidol increased the rate of the in vivo tyrosine hydroxylation in the striatum measured as the accumulation of DOPA after decarboxylase inhibition.Now we have found that several agents structurally similar to LSD increase the in vivo tyrosine hydroxylation in the striatum. Psilocybin (50 mg/kg i.p.) and N,N-dimethyltryptamine (50 mg/kg i.p.) caused a short-lasting increase of DOPA accumulation, while mescaline (10 – 100 mg/kg i.p.) did not increase the DOPA accumulation. A marked increase of DOPA accumulation was observed after the 5-hydroxytryptamine (5-HT) antagonist cyproheptadine. The effects of LSD and structurally related drugs on the DOPA accumulation in the striatum appear to be mediated via DA antagonism at receptor level. However, these agents may control the DOPA accumulation via other receptors than DA receptors e.g. 5-HT receptors. A control of DOPA accumulation via receptors other than DA receptors appears to be predominant after treatment with N,N-dimethyltryptamine or psilocybin.  相似文献   

18.
This study was undertaken to analyze if the effects of subchronic alternating cadmium exposure on pituitary hormone secretion are mediated by changes in dopamine turnover in an age dependent way or are directly correlated to cadmium accumulation at the hypothalamic-pituitary axis. Male rats were treated sc. from day 30 to 60 (prepubertal period) or from day 60 to 90 (adult age) of life, with cadmium chloride (CdCl2) at a dose of 0.5 and 1.0 mg kg–1 bw, every 4th day in an alternate schedule, starting with the smaller dose. Dopamine (DA) turnover, expressed as the ratio of acid 3,3-dihidroxifenil acetic (DOPAC)/DA in various hypothalamic areas, the plasma levels of prolactin, growth hormone (GH) and adrenocorticotropic hormone (ACTH), and cadmium accumulation in the hypothalamus and pituitary were studied. Prepubertal cadmium exposure decreased DA content in all hypothalamic areas studied, although its turnover was not modified. A decrease in plasma ACTH levels with no changes in plasma prolactin and GH levels were found. Cadmium did not accumulate in pituitary while it increased in the hypothalamus. Metal exposure during adulthood decreased DA content in mediobasal and posterior hypothalamus, and its turnover in posterior hypothalamus and median eminence. It decreased plasma prolactin and ACTH levels but not those of GH. Cadmium concentration increased in both hypothalamus and pituitary. These results suggest that cadmium exposure produces age dependent changes on the secretory mechanisms of the pituitary hormones studied, related to the selective accumulation of the metal at both hypothalamic and hypophyseal level changes. However the effects of the metal are not mediated by dopamine.  相似文献   

19.
J A Nielsen  C A Johnston 《Life sciences》1982,31(25):2847-2856
Assays capable of measuring picomole quantities of dopamine (DA), 5-hydroxytryptamine (5-HT), several of their precursors and metabolites concurrently within 25 minutes were developed utilizing high performance liquid chromatography with electrochemical detection (LCEC). Several parameters of the LCEC were altered in order to separate the compounds while maintaining a short assay time. The final LCEC systems demonstrated biological utility in that the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the 5-HT metabolite 5-hydroxy-3-indoleacetic acid (5-HIAA) were detected in rat cerebrospinal fluid; in addition to these compounds, DA and 5-HT were measurable in the striatum, hypothalamus and median eminence of the rat brain. Pargyline decreased the concentrations of DOPAC, HVA and 5-HIAA and increased the 5-HT concentration in all three brain regions, and increased the DA concentration in the striatum. Probenecid increased all three acid metabolite concentrations in the hypothalamus and median eminence, while only the HVA and 5-HIAA concentrations were increased in the striatum. The DA and 5-HT concentrations were unaltered. The LCEC methods described in this paper should be useful in elucidating the mechanisms and roles of 5-HT and DA neurons in experimental paradigms of biological interest.  相似文献   

20.
Effect of spontaneous ingestion of ethanol on brain dopamine metabolism   总被引:3,自引:0,他引:3  
The effect of ethanol, either administered by gavage or voluntarily ingested, on brain dopamine (DA) metabolism was studied in alcohol-preferring and alcohol non-preferring rats. In alcohol non-preferring rats ethanol administration (2 g/kg) increased 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and reduced DA levels in the caudate nucleus and olfactory tubercle but was ineffective in the medial prefrontal cortex. In alcohol-preferring rats ethanol effect was greater than in non-preferring animals and ethanol influenced DA metabolism also in the medial prefrontal cortex. The effect of voluntary ethanol ingestion was studied in alcohol-preferring rats trained to consume their daily fluid intake within 2 hrs. Voluntary ingestion of ethanol (3.1 +/- 0.7 g/kg in 1 hr) increased DA metabolites and reduced DA levels in the caudate nucleus, olfactory tubercle and medial prefrontal cortex. The results suggest that voluntary ethanol ingestion increases the release of DA from nigro-striatal and meso-limbic DA neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号