首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of adenosine agonist pretreatment on the seizure activity of caffeine was investigated in NIH Swiss mice. The seizure ED50 of caffeine alone was determined to be 223 mg/kg and this was reduced to 68 mg/kg following pretreatment with 0.30 mg/kg N-ethyl carboxamidoadenosine (NECA). Additionally, NECA dose-dependently increased the seizure potency of 100 mg/kg caffeine (a dose which is normally subconvulsant). A proconvulsant effect of NECA was also detected following intracerebroventricular administration of 2.5 ug NECA, however the same doses of N6-cyclohexyladenosine (CHA) and 2-chloroadenosine (2 C1-ADO) did not precipitate seizures. The data reveal proconvulsant actions of both peripherally and centrally administered NECA towards caffeine-induced seizures. Such actions need to be reconciled with the general anticonvulsant action of adenosine and adenosine agonists.  相似文献   

2.
Intracerebroventricular (ICV) administration of kyotorphin (L-Tyr-L-Arg) and cyclo (N-methyl-L-Tyr-L-Arg), its analog, produced significant dose-dependent hypothermic responses in mice at an ambient temperature of 24°C. The hypothermic action of kyotorphin was much greater than that of Met-enkephalin (Met-ENK) but less than that of cyclo NMTA. This action was slightly but not significantly reversed by intraperitoneally administered naloxone (8 mg/kg), an opioid receptor antagonist. Met-ENK utilized as a control peptide in this study also produced a dose-dependent hypothermia which was slightly antagonized by naloxone (8 mg/kg, IP). Thyrotropin releasing hormone (TRH) injected ICV produced hyperthermia dose-dependently. The hypothermia induced by kyotorphin, its cyclic analog and Met-ENK was prevented by a small dose of TRH (0.18 μg=0.5 nmol/animal) which by itself had little effect on body temperature. A TRH neuronal system in the brain may explain the mechanism of kyotorphin-induced hypothermia. However, there was little evidence of involvement of opioid receptors. The present study demonstrates a potent action of kyotorphin and its analog on thermoregulation.  相似文献   

3.
1. The purpose of this study was to examine the interaction between ambient temperature (Ta) and the effects of nickel chloride on the thermoregulatory system of the mouse. 2. Male mice of the BALB/c strain were injected with nickel chloride at dosages of 0, 0.1, 1.0, 2.5, 5.0 and 10.0 mg/kg intraperitoneally and placed in an environmental chamber set at a Ta of either 10, 20, 30 or 35 degrees C for 60 min. Colonic temperature was then measured after one hour of exposure at a given Ta. 3. The thermoregulatory effects of nickel chloride were highly dependent on Ta. Nickel chloride had no effect on body temperature at Ta's of 30 and 35 degrees C. 4. 10 mg/kg dosage of nickel chloride caused a significant reduction in colonic temperature at a Ta of 20 degrees C. At a Ta of 10 degrees C the 5 and 10 mg/kg dosages of nickel chloride caused a significant lowering of body temperature. 5. Using segmented linear regression techniques it was shown that the threshold dose of nickel chloride for causing hypothermia was 9.6 and 3.3 mg/kg at Ta's of 20 and 10 degrees C, respectively. 6. This study has shown that two stressors, low Ta and nickel chloride intoxication, when applied independently have no effect on body temperature; however, when applied simultaneously, they have a significant toxic effect on thermoregulation.  相似文献   

4.
Bacterial endotoxin produces sepsis associated with alterations in body temperature (fever or hypothermia). The intraperitoneal administration of bacterial endotoxin, lipopolysaccharide (LPS; 50 microg/mouse) led to a decrease in colonic temperature starting 1 hr after the injection. The hypothermic effect was accompanied by a significant increase in hypothalamic leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) levels. 5-lipoxygenase inhibitor, zileuton (200 and 400 mg/kg, po) administered 30 min before LPS challenge significantly prevented hypothermia. However, non-selective cyclooxygenase inhibitor, indomethacin (10, 20 mg/kg, po) did not reverse the hypothermic response. Further, pretreatment of mice with zileuton prevented LPS-stimulated increase in hypothalamic LTB4 levels and caused a relatively small increase in PGE2 levels. Indomethacin had no effect on LTB4 levels but it reduced PGE2 levels. These results suggest a possible involvement of leukotrienes in LPS-induced hypothermia and the potential protective role of 5-lipoxygenase inhibitors in endotoxemia.  相似文献   

5.
We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.  相似文献   

6.
Shlomo Yehuda  Abba J. Kastin   《Peptides》1980,1(3):243-248
Administration of several doses of MIF-I or alpha-MSH did not modify colonic temperature or the level of motor activity of rats in ambient temperatures of 4 degree or 20 degrees C. However, the thermoregulatory but not motor effects of the interaction between MIF-I or alpha-MSH with d-amphetamine were dependent upon ambient temperature. At 4 degree C, 1.0 mg/kg of both peptides enhanced the d-amphetamine-induced hypothermia, but at 20 degrees C both peptides blocked the hyperthermic effects of d-amphetamine. The hypothermic effect of chlorpromazine (CPZ) at 4 degree C and 20 degrees C was blocked by 1.0 mg/kg MIF-I but not by 1.0 mg/kg alpha-MSH. No linear dose response relationships between various doses of MIF-I or alpha-MSH and thermal responses were found. Administration of melanin or the use of hypophysectomized rats did not alter the significant interactions observed after peripheral injections.  相似文献   

7.
Angiotensin II-induced hypothermia in rats   总被引:1,自引:0,他引:1  
Systemic administration of angiotensin II (ANG II) (200 micrograms/kg sc) to the rat induced a hypothermic response that was characterized within 12 min by a reduction in the rate of O2 consumption, vasodilation of the tail, and a 1.3 degrees C fall in colonic temperature. Administration of ANG II in doses ranging from 10 to 200 micrograms/kg resulted in a decrease in colonic and an increase in tail skin temperature. Angiotensin I (ANG I) (200 micrograms/kg sc) induced a similar hypothermic response which was abolished by pretreatment with the ANG I-converting enzyme inhibitor, captopril (35 mg/kg ip). The interaction of ANG II with cholinergic and adrenergic pathways was evaluated to determine possible mechanisms. Treatment with ANG II (200 micrograms/kg sc) and propranolol, a beta-adrenoceptor antagonist (6 mg/kg ip), resulted in a greater depression of colonic temperature (Tco) than was observed with ANG II alone but did not affect the increase in tail skin temperature (Tsk) accompanying administration of ANG II. When ANG II was administered in combination with the beta-adrenergic agonist, isoproterenol (50 micrograms/kg ip), Tco remained at control levels, whereas an enhancement of the ANG II-induced increase in Tsk occurred. Administration of ANG II in combination with atropine sulfate (6 mg/kg ip), a muscarinic receptor antagonist which crosses the blood-brain barrier, significantly reduced the extent of the fall in Tco without affecting the increase in Tsk. The combined treatment of ANG II and the quaternary analogue, atropine methyl nitrate (3.25 mg/kg ip), which does not cross the blood-brain barrier, failed to affect the hypothermic responses to ANG II. These results suggest that the hypothermic responses to ANG II may be mediated through a central cholinergic pathway and possibly influenced by an adrenergic component. The inability of both adrenergic and cholinergic blockers to affect the vasodilatory response of the tail of the rat to administration of ANG II suggests that the mechanisms subserving heat production can be blocked independently of those subserving heat loss.  相似文献   

8.
Dogan MD  Ataoglu H  Akarsu ES 《Life sciences》2000,67(19):2319-2329
The effects of Escherichia coli O55:B5, O127:B8, and O111:B4 serotypes' lipopolysaccharides (LPS) on body temperature were investigated in rats. LPSs were injected intraperitoneally at doses of 2, 50, and 250 microg/kg. A multiphasic and no-dose dependent increase in rectal temperature was observed in response to E. coli O55:B5 LPS at all doses, and in response to E. coli O127:B8 LPS at 2 and 50 microg/kg doses. The highest dose of the latter caused a dual change in rectal temperature, in which hypothermia preceded fever. E. coli O111:B4 LPS was either pyrogenic or hypothermic at 2 and 250 microg/kg doses; respectively, whereas a dual response was observed when the 50 microg/kg dose was injected. Although dual responses were observed after administration of all LPSs at 50 microg/kg dose when the body temperature was recorded by biotelemetry, the hypothermia induced by E. coli O55:B5 LPS was significantly smaller. These data suggest that LPSs induce dose and serotype-specific variable changes on body temperature in rats. This variability may be related to the structure of LPSs. The data also indicate that LPS causes hypothermia with or without fever in rats.  相似文献   

9.
The effect of calcium 4'-phosphopantothenate (CPP) on acute toxicity of streptomycin and the decrease by the antibiotic of the muscle working capacity, "holes" reflex, body temperature and oxygen intake was studied on 258 albino mice weighing 22-26 g. Medical calcium pantothenate (CPA) was used for control purposes. CPP is an antagonist of streptomycin sulfate. In a dose of 1/10 or 1/5 of the LD50 injected intraperitoneally CPP lowered acute toxicity of streptomycin and prevented its effect in a dose of 0.11--1.1 g/kg injected subcutaneously on the muscle working capacity, "holes" reflex and body temperature. The spectrum index of the CPP antitoxic effect was equal to 22.5. By its acute toxicity CPP (LD50 1.18 +/- 0.07 g/kg) did not differ from CPA (LD50 1.25 +/- 0.08 g/kg). The efficacy of CPP, by its antitoxic spectrum, was 1.8 times higher than that of CPA. CPA lowered the streptomycin effect on the "holes" reflex and body temperature, while CPP prevented it. Both the drugs did not influence the decrease in the oxygen consumption induced by streptomycin.  相似文献   

10.
The effect of an adenosine analogue N6-L-(R-phenylisopropyl)adenosine (R-PIA) on respiration was studied in rabbit pups (1-8 days old). Respiration was monitored by a noninvasive barometric method during natural sleep. The adenosine analogue was given by an indwelling intraperitoneal catheter. R-PIA given in a dose of 0.1 mumol/kg (380 micrograms/kg) body wt caused a decrease of the ventilation. The respiratory decrease could be reversed or prevented by pretreatment with theophylline (10 mg/kg). R-PIA caused a considerably more pronounced effect in 1- to 3-day-old animals than in 8-day-old animals. This effect was seen both when the ambient temperature was held at 28 (P less than 0.01) and 32 degrees C (P less than 0.05). Determination of R-PIA receptors in whole brains of rabbit pups of various ages showed that R-PIA bound with higher affinity to membranes from newborn animals (Kd 0.53 nM) than older animals (Kd 0.7-1.26). Since adenosine is released during hypoxia, it may be involved in "hypoxic depression" of respiration in neonates and apnea of prematurity. This might also explain the potent therapeutic effect of the adenosine antagonist theophylline on recurrent apnea in preterm infants.  相似文献   

11.
In the present study, the effect of adenosine (A1 and A2 receptor agonist), caffeine (A2A receptor antagonist), theophylline (A2A receptor antagonist) and their combination was studied in anxiety related behaviours using elevated zero maze and elevated plus maze paradigms and compared their various behavioural profiles. Adenosine (10, 25, 50,100 mg/kg) significantly showed anxiolytic effect at all the doses, whereas caffeine (8, 15, 30, 60 mg/kg) and theophylline (30, 60 mg/kg) showed psychostimulatory action at lower doses and anxiogenic effect at higher doses. Pretreatment with caffeine (8, 15, 30 mg/kg) and theophylline (30 mg/kg) reversed the anxiolytic effect of adenosine. The study suggested the involvement of adenosinergic receptor system in anxiety related behaviours.  相似文献   

12.
Delta 9-Tetrahydrocannabinol (20 mg/kg i.p.) and propranolol (20 and 50 mg/kg i.p.) produced marked falls in the rectal temperatures of mice kept at an ambient temperature of 22 degrees C. Propranolol (50 mg/kg i.p.) also decreased the thermogenic activity of brown fat, as measured by a decrease in the level of [3H]GDP binding to mitochondria obtained from mouse interscapular brown adipose tissue. In contrast, delta 9-tetrahydrocannabinol (20 mg/kg i.p.) did not affect mitochondrial GDP binding even though the dose used was one shown previously to depress heat production. GDP binding was also unaffected by this cannabinoid in brown adipose tissue taken from mice that had been kept at 13 degrees C instead of 22 degrees C. In mice kept at 34 degrees C, isoprenaline (0.25 and 1.0 mg/kg s.c.) induced a marked rise in rectal temperature and increased the level of GDP binding to brown fat mitochondria. Propranolol (50 mg/kg i.p.) prevented the hyperthermic response to isoprenaline, the mice becoming hypothermic instead. Delta 9-Tetrahydrocannabinol (20 mg/kg i.p.) had no effect on isoprenaline-induced hyperthermia. We conclude from these data that there is no significant involvement of brown adipose tissue in the hypothermic response of mice to delta 9-tetrahydrocannabinol.  相似文献   

13.
A S Bloom  L F Tseng 《Peptides》1981,2(3):293-297
The effect of intracerebroventricular injection of beta-endorphin (beta-END) on body temperature of mice was studied at ambient temperatures (Ta) of 10 degrees, 20 degrees and 31 degrees C. Doses between 0.1 and 10.0 microgram/mouse were studied. The lower (less than 1 microgram) doses of beta-END produced a hyperthermia at all Ta's studied. The higher doses of beta-END produced hyper- or hypothermia depending on the Ta. The subcutaneous injection of naloxone (1 mg/kg) antagonized the high dose hypothermic effects, but not the hyperthermic effect of beta-END. These data suggest that there may be different receptors and/or sites of action for high and low doses of beta-END.  相似文献   

14.
S G Holtzman 《Life sciences》1991,49(21):1563-1570
CGS 15943 (0.1-10 mg/kg, IP) dose-dependently increased the locomotor activity of rats to the same extent as caffeine (1.0-100 mg/kg, IP) did and was approximately 26 times more potent than caffeine. N-Ethylcarboxamidoadenosine (0.001-0.01 mg/kg, SC), an analog of adenosine, dose-dependently decreased locomotor activity; this effect was antagonized surmountably by concurrent administration of CGS 15943. The apparent pA2 value for this interaction, 6.57, was approximately 1.5 log-units (28-fold) higher than the pA2 for caffeine-NECA reported previously. Rats consuming 70 mg/kg/day of caffeine via their drinking water were tolerant to the stimulation of locomotor activity induced by both caffeine and CGS 15943. These results suggest that caffeine and CGS 15943 increase locomotor activity by a common mechanism of action possibly involving adenosine receptors or a cellular element conformationally similar to adenosine receptors.  相似文献   

15.
Effect of caffeine-coconut products interactions on induction of drug-metabolizing enzyme in wistar albino rats was studied. Twenty rats were randomly divided into four groups: The control group (1) received via oral route a placebo (4.0ml of distilled water). Groups 2 to 4 were treated for a 14-day period with 50 mg/kg body weight of caffeine, 50 mg/kg body weight of caffeine and 50 mg/kg body weight of coconut water, and 50 mg/kg body weight of caffeine and 50 mg/kg body weight of coconut milk in 4.0ml of the vehicle via gastric intubation respectively. One day after the final exposure, the animals were anaestheticized by inhalation of an overdose of chloroform. The blood of each rat was collected by cardiac puncture while the liver of each rat was harvested and processed to examine several biochemical parameters, i.e., total protein and RNA levels, protein/RNA ratios, and activities of alanine and aspartate amino transferase (ALT and AST, respectively). The results showed that while ingestion of coconut milk and coconut water increased the values of protein and protein/RNA ratios, it decreased alanine and aspartate amino transferase (ALT and AST) activities. These effects, in turn, enhanced the induction of the metabolizing enzymes and a resultant faster clearance and elimination of the caffeine from the body, there by reducing the toxic effect on the liver.  相似文献   

16.
Caffeine which was administered per os to outbred mice either twice, 30 and 6 h before sacrifice or once, 30 h before sacrifice, at dose levels of 50, 75 or 100 mg/kg body weight only caused a weak induction of micronuclei at the highest dose. Again a level of 100 mg caffeine per kg body weight was required before a weak but not significant effect could be observed in the micronucleus test using a mutagen-sensitive inbred strain of mice. In Chinese hamsters caffeine doses of 45, 75, 150 or 300 mg/kg body weight either given once or twice per os at the same time schedule as used for the mice also caused a clear cut induction of micronuclei only at the highest dose level. In the SCE test with Chinese hamster again 300 mg of caffeine were necessary to obtain a mutagenic effect although this test is considered to be more sensitive to mutagenic damage than the micronucleus test. It can therefore be concluded that caffeine causes DNA damage only at dose levels in the LD50 range which is higher for hamsters than for mice.  相似文献   

17.
M S Dar  W R Wooles 《Life sciences》1986,39(16):1429-1437
The effect of chronic (10 days) administration of methylxanthines, caffeine, IBMX and theophylline on acute ethanol-induced motor incoordination has been investigated in the mice. In animals that received caffeine, 45 and 90 mg/kg/24 h, ethanol, 1.5 g/kg, produced motor incoordination significantly greater compared to that in the control groups. Significantly greater ethanol-induced motor incoordination was seen in animals fed IBMX, 30 and 60 mg/kg/24 h, compared to controls. Ethanol-induced increased motor incoordination in caffeine and IBMX-fed animals was also associated with significantly greater 3H-R-PIA binding in whole brains compared to tap water controls indicating an increase in brain adenosine binding sites. However neither motor incoordination nor 3H-R-PIA binding was altered in theophylline 75 and 150 mg/kg/24 h, fed animals. The increased motor incoordination associated with increased adenosine binding sites in the brains of caffeine and IBMX-fed animals suggests an involvement of central adenosine mechanisms in the motor incoordinating effect of ethanol and further supports our earlier suggestion for the role of adenosine in some of the central effects of ethanol.  相似文献   

18.
19.
The psychostimulant caffeine promotes behavioral effects such as hyperlocomotion, anxiety, and disruption of sleep by blockade of adenosine receptors. The availability of extracellular adenosine depends on its release by transporters or by the extracellular ATP catabolism performed by the ecto-nucleotidase pathway. This study verified the effect of caffeine on NTP-Dase 1 (ATP diphosphohydrolase) and 5-nucleotidase of synaptosomes from hippocampus and striatum of rats. Caffeine and theophylline tested in vitro were unable to modify nucleotide hydrolysis. Caffeine chronically administered in the drinking water at 0.3 g/L or 1 g/L for 14 days failed to affect nucleotide hydrolysis. However, acute administration of caffeine (30 mg/kg, ip) produced an enhancement of ATP (50%) and ADP (32%) hydrolysis in synaptosomes of hippocampus and striatum, respectively. This activation of ATP and ADP hydrolysis after acute treatment suggests a compensatory effect to increase adenosine levels and counteract the antagonist action of caffeine.  相似文献   

20.
Serotonin is involved in many physiological processes, including the regulation of sleep and body temperature. Administration into rats of low doses (25, 50 mg/kg) of the 5-HT precursor l-5-hydroxytryptophan (5-HTP) at the beginning of the dark period of the 12:12-h light-dark cycle initially increases wakefulness. Higher doses (75, 100 mg/kg) increase nonrapid eye movement (NREM) sleep. The initial enhancement of wakefulness after low-dose 5-HTP administration may be a direct action of 5-HT in brain or due to 5-HT-induced activation of other arousal-promoting systems. One candidate arousal-promoting system is corticotropin-releasing hormone (CRH) and the hypothalamic-pituitary-adrenal axis. Serotonergic activation by 5-HTP at the beginning of the dark period also induces hypothermia. Because sleep and body temperature are influenced by circadian factors, one aim of this study was to determine responses to 5-HTP when administered at a different circadian time, the beginning of the light period. Results obtained show that all doses of 5-HTP (25-100 mg/kg) administered at light onset initially increase wakefulness; NREM sleep increases only after a long delay, during the subsequent dark period. Serotonergic activation by 5-HTP at light onset induces hypothermia, the time course of which is biphasic after higher doses (75, 100 mg/kg). Intracerebroventricular pretreatment with the CRH receptor antagonist alpha-helical CRH does not alter the impact of 5-HTP on sleep-wake behavior but potentiates the hypothermic response to 50 mg/kg 5-HTP. These data suggest that serotonergic activation by peripheral administration of 5-HTP may modulate sleep-wake behavior by mechanisms in addition to direct actions in brain and that circadian systems are important determinants of the impact of serotonergic activation on sleep and body temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号