首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The injection of caffeine (100 mg/kg, i.p.) into male rats acutely increased brain levels of trytophan, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA). Blood levels of glucose, nonesterified fatty acids (NEFA) and insulin also increased, while those of the aromatic and branched-chain amino acids fell. Serum tryptophan levels either did not fall, or increased. Consequently, the serum ratio of trypthopahn to the sum of other large neutral amino acids (LNAA) increased. Less consistently noted were increases in serum free tryptophan levels. Brain tyrosine levels were not appreciably altered by caffeine, nor was the serum tyrosine ratio. In dose-response studies, 25 mg/kg of caffeine was the minimal effective dose needed to raise brain tryptophan, but only the 100 mg/kg dose elevated all three indoles in brain. In no experiments did caffeine, at any time or dose, alter brain levels of dopamine or norepinephrine. Caffeine thus probably raises brain tryptophan levels by causing insulin secretion, and thereby changing plasma amino acid levels to favor increased tryptophan uptake into brain. The rises in brain 5-HT and 5-HIAA may follow from the increase in brain tryptophan, although further data are required clearly to establish such a mechanism.  相似文献   

2.
T Eriksson  A Carlsson 《Life sciences》1988,42(17):1583-1589
The amino acids tyrosine and tryptophan are precursors of physiologically active amines in the central nervous system. To reach the brain they have to compete with other large neutral aminio acids (LNAA) for the normally saturated carrier by which these amino acids are transported into the brain. The beta-adrenergic agonist isoprenaline is demonstrated to cause an increase in the brain concentration of most LNAA without a concomitant decrease in any of them. This finding indicates that the transport of LNAA into the brain is regulated by a beta-adrenergic mechanism.  相似文献   

3.
The ingestion of large neutral amino acids (LNAA), notably tryptophan, tyrosine and the branched-chain amino acids (BCAA), modifies tryptophan and tyrosine uptake into brain and their conversion to serotonin and catecholamines, respectively. The particular effect reflects the competitive nature of the transporter for LNAA at the blood–brain barrier. For example, raising blood tryptophan or tyrosine levels raises their uptake into brain, while raising blood BCAA levels lowers tryptophan and tyrosine uptake; serotonin and catecholamine synthesis in brain parallel the tryptophan and tyrosine changes. By changing blood LNAA levels, the ingestion of particular proteins causes surprisingly large variations in brain tryptophan uptake and serotonin synthesis, with minimal effects on tyrosine uptake and catecholamine synthesis. Such variations elicit predictable effects on mood, cognition and hormone secretion (prolactin, cortisol). The ingestion of mixtures of LNAA, particularly BCAA, lowers brain tryptophan uptake and serotonin synthesis. Though argued to improve physical performance by reducing serotonin function, such effects are generally considered modest at best. However, BCAA ingestion also lowers tyrosine uptake, and dopamine synthesis in brain. Increasing dopamine function in brain improves performance, suggesting that BCAA may fail to increase performance because dopamine is reduced. Conceivably, BCAA administered with tyrosine could prevent the decline in dopamine, while still eliciting a drop in serotonin. Such an LNAA mixture might thus prove an effective enhancer of physical performance. The thoughtful development and application of dietary proteins and LNAA mixtures may thus produce treatments with predictable and useful functional effects.  相似文献   

4.
Sparse-fur mice which are deficient in ornithine transcarbamylase, the second-step enzyme in the urea cycle, were examined for hyperammonemia and its relationship with encephalopathy. We compared amino acid concentrations in the serum and brain of spf mice with those of control mice. Unlike hepatic encephalopathy we could not find marked amino acid changes in the serum of spf mice besides low levels of citrulline and arginine. But in the brain of spf mice, glutamine was increased strikingly during hyperammonemia, and a concomitant accumulation of large neutral amino acids such as tyrosine, phenylalanine, methionine, and histidine was observed. The accumulation of these large neutral amino acids in the brain was not influenced by 24-hr fasting which caused increases in branched chain amino acids in the serum. From these results, we conclude that the accumulation of the large neutral amino acid in the brain of hyperammonemic state is caused by uptake of ammonia in the brain and the subsequent accumulation of glutamine, but is not influenced by a decreased ratio of branched chain amino acids to aromatic amino acids in the serum.  相似文献   

5.
Rats were subjected to a severe bout of thiamine deficiency induced by daily pyrithiamine +a thiamine deficient diet, reversed by thiamine administration and allowed to recover. Pyrithiamine treated animals demonstrated impaired retention of a 24 h recall of passive avoidance. Regional brain concentration of norepinephrine, dopamine, serotonin, 3,4-dihydroxyphenylacetic acid, 5-hydroxyindoleacetic acid, GABA, glutamate, aspartate, glutamine, and glycine were determined after 2 and 9 weeks of nutritional recovery. A significant increase in NE content of cerebellum from the pyrithiamine treated animals was observed at both 2 and 9 week recovery periods. The concentrations of serotonin and its metabolite were signifciantly elevated in midbrain-thalamus and striatum. Significant reductions of GABA and glutamate were also observed in midbrain-thalamus. Amino acid levels in all other brain areas were unchanged from pair-fed controls. These results suggest regionally specific, chronic alterations in GABA, glutamate, serotonin, and norepinephrine activity following recovery from an acute bout of pyrithiamine-induced thiamine deficiency. The absence of a permanent reduction of cortical norepinephrine similar to that observed in an earlier study is discussed.  相似文献   

6.
Abstract— The intraperitoneal administration of 1-aminocyclopentane carboxylic acid, 1-aminocyclohex-ane carboxylic acid, l-aminocycloheptane carboxylic acid, 1-aminocyclooctane carboxylic acid, exo-2-aminobicyclo(2,2. l)heptane-2-carboxylic acid. endo-2-aminobicyclo(2,2.1)heptane-2-carboxylic acid. 2-aminobicyclo(2.2.2)octane-2-carboxylic acid and 2-aminobicyclo(3,2.l)octane-2-carboxylic acid to 18-day-old male rats selectively perturbed the levels of neutral amino acids in the cerebral cortex. While the effect of the above compounds was rather diversified and usually resulted in a reduction of amino acid levels. marked elevations of the levels of valine and isoleucine were also noted. 1-Aminocycloheptane and cyclooctane carboxylic acids were particularly noteworthy, in that they elicited a marked reduction of the levels of cortical phenylalanine.  相似文献   

7.
8.
The metabolism of amino acids in developing rat brain   总被引:9,自引:6,他引:3  
  相似文献   

9.
10.
Abstract— The concentrations of free amino acids and glycogen in the cerebral cortex of normal and deeply hypothermic (body temperature 18–20°C) rats were measured. The significant changes which accompanied the induction of hypothermia were a large reduction in glutamic acid concentration and moderate increases in the concentrations of glutamine and aspartic acid. The concentrations of γ-aminobutyric acid, N-acetylaspartic acid and glycogen did not change significantly.  相似文献   

11.
A high-performance liquid chromatographic method for measuring neutral amino acids in rat sera, brain tissues, and perfusates was developed by using o-phthalaldehyde sulfite as a pre-column derivatization reagent. With the present method, it was possible to separate the neutral amino acids within a single run in 25 min, while the acidic amino acids were eluted near or at the solvent front. The recovery was above 88.8% with a relative standard deviation (RSD) below 4.2%. The within- and between-day assay reproducibility for the determination of rat serum amino acids showed RSDs below 1.35 and 7.61%, respectively. In the present study, the neutral amino acids were assayed with high sensitivity, accuracy and good reproducibility in a relatively short time and on a small sample size.  相似文献   

12.
13.
Neurological dysfunction is common in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the neuropathology of this disorder are poorly known. In the present study we investigated the effect of acute hyperleucinemia on plasma and brain concentrations of amino acids. Fifteen-day-old rats were injected subcutaneously with 6 micromol L-leucine per gram body weight. Controls received saline in the same volumes. The animals were sacrificed 30--120 min after injection, blood was collected and their brain rapidly removed and homogenized. The amino acid concentrations were determined by HPLC using orthophtaldialdehyde for derivatization and fluorescence for detection. The results showed significant reductions of the large neutral amino acids (LNAA) L-phenylalanine, L-tyrosine, L-isoleucine, L-valine and L-methionine, as well as L-alanine, L-serine and L-histidine in plasma and of L-phenylalanine, L-isoleucine, L-valine and L-methionine in brain, as compared to controls. In vitro experiments using brain slices to study the influence of leucine on amino acid transport and protein synthesis were also carried out. L-Leucine strongly inhibited [14C]-L-phenylalanine transport into brain, as well as the incorporation of the [14C]-amino acid mixture, [14C]-L-phenylalanine and [14C]-L-lysine into the brain proteins. Although additional studies are necessary to evaluate the importance of these effects for MSUD, considering previous findings of reduced levels of LNAA in plasma and CSF of MSUD patients during crises, it may be speculated that a decrease of essential amino acids in brain may lead to reduction of protein and neurotransmiter synthesis in this disorder.  相似文献   

14.
Goerss AL  Wagner GC  Hill WL 《Life sciences》2000,67(11):1325-1329
The inverse relationship between serotonin and aggression was investigated in rats treated with aspartame, a sweetener thought to interfere with the synthesis of this neurotransmitter. Eleven adult, male Long-Evans rats received either aspartame (200-800 mg/kg, IP) or the vehicle prior to testing in a standard resident-intruder paradigm. Contrary to our hypothesis, aspartame significantly decreased aggression as shown by increased latencies to the first attack and decreased number of bites per session. Corresponding with the effects on aggression, aspartame significantly increased striatal levels of serotonin. It was concluded that high doses of aspartame reduced aggressive attack via a serotonergic mechanism while the lower dose was without effect on either variable.  相似文献   

15.
Summary The ability of polyamines and other cationic compounds including monoamines, amino acids, poly-L-arginine, poly-D-lysine and poly-L-lysine, to alter pyruvate dehydrogenase (PDH) activity in mitochondria from rat epididymal adipocytes was determined. PDH was assayed with the substrate [1-14C] pyruvate in the presence of 0.05 mM Ca2+ and Mg2+. Nine of the fourteen compounds tested at 0.1 mM caused a significant increase (procaine, 3-(-morpholinopropionyl) benzo[b]thiophene [VII], spermine, spermidine, putrescine, lysine and tryptophan) or decrease (poly-L-arginine, 3-(-piperidinopropionyl) benzo[b]thiophene) in PDH activity. None of these compounds nonenzymatically decarboxylated [1-14C] pyruvate to release 14CO2. NaF, a PDH phosphatase inhibitor, suppressed the stimulatory effects of those compounds tested: procaine, tryptophan, VII, spermine and spermidine. These results imply that these five compounds activate PDH activity through stimulation of the PDH phosphatase. When the Mg2+ concentration was increased from 0.05 to 4.5 mM, the stimulatory effect of spermine was increased, consistent with the finding by others that spermine lowers the Km of the enzyme for Mg2+. However, at Mg2+ concentrations greater than 0.3 mM, the stimulatory effect of VII was unaltered, procaine failed to alter PDH activity, lysine inhibited PDH activity, and poly-L-lysine stimulated PDH activity. Therefore, polyamines and other positively charged small molecules may be physiologic regulators of PDH activity.  相似文献   

16.
1. Amino acids, particularly glutamate, gamma-aminobutyrate, aspartate and glycine, were released from rat brain slices on incubation with protoveratrine (especially in a Ca(2+)-deficient medium) or with ouabain or in the absence of glucose. Release was partially or wholly suppressed by tetrodotoxin. 2. Tetrodotoxin did not affect the release of glutamine under various incubation conditions, nor did protoveratrine accelerate it. 3. Protoveratrine caused an increased rate of formation of glutamine in incubated brain slices. 4. Increased K(+) in the incubation medium caused release of gamma-aminobutyrate, the process being partly suppressed by tetrodotoxin. 5. Incubation of brain slices in a glucose-free medium led to increased production of aspartate and to diminished tissue contents of glutamates, glutamine and glycine. 6. Use of tetrodotoxin to suppress the release of amino acids from neurons in slices caused by the joint action of protoveratrine and ouabain (the latter being added to diminish reuptake of amino acids), it was shown that the major pools of glutamate, aspartate, glycine, serine and probably gamma-aminobutyrate are in the neurons. 7. The major pool of glutamine lies not in the neurons but in the glia. 8. The tricarboxylic cycle inhibitors, fluoroacetate and malonate, exerted different effects on amino acid contents in, and on amino acid release from, brain slices incubated in the presence of protoveratrine. Fluoroacetate (3mm) diminished the content of glutamine, increased that of glutamate and gamma-aminobutyrate and did not affect respiration. Malonate (2mm) diminished aspartate and gamma-aminobutyrate content, suppressed respiration and did not affect glutamine content. It is suggested that malonate acts mainly on the neurons, and that fluoroacetate acts mainly on the glia, at the concentrations quoted. 9. Glutamine was more effective than glutamate as a precursor of gamma-aminobutyrate. 10. It is suggested that glutamate released from neurons is partly taken up by glia and converted there into glutamine. This is returned to the neurons where it is hydrolysed and converted into glutamate and gamma-aminobutyrate.  相似文献   

17.
18.
In totally hepatectomized rats supported by infusion of glucose, the concentrations of many amino acids in plasma and brain rose progressively over time, while the brain levels of norepinephrine decreased. Infusion of a solution containing glucose, leucine, isoleucine, and valine after hepatectomy greatly reduced the accumulation of other essential amino acids in plasma and brain. However, the decrease in brain norepinephrine content was not significantly affected by this infusion, suggesting that high brain concentrations of monoamine precursor amino acids are not the primary cause of norepinephrine depletion after hepatectomy.  相似文献   

19.
We examined the specificity of tyrosine's ability to increase catecholamine excretion by rats. Tyrosine alone among amino acids tested caused major increases in tissue and serum tyrosine, as well as urinary catecholamine levels. Large neutral amino acids (tryptophan, valine or isoleucine) and representatives of other classes of amino acids (glutamate, alanine, lysine or arginine) were unable to mimic tyrosine's action.  相似文献   

20.
The in vitro release of endogenous norepinephrine (NE), dopamine (DA), serotonin (5-HT), GABA, glutamate (GLU), aspartate (ASP), glycine (GLY), taurine (TAU) and alanine (ALA) from superfused slices of cerebral cortex (CTX), striatum (STR), hippocampus (HIP), hypothalamus (HYPO), midbrain (MB), thalamus (THAL), nucleus accumbens (ACC), pons-medulla (PM) and spinal cord (SC) was studied. Under resting conditions or with 60 mM K+ in the absence of Ca2+, there was little or no release of NE, DA, 5-HT, GABA, GLU or ASP from any region. In most regions, there was a measurable resting release of ALA, GLY and TAU; of these three amino acids, only GLY in the PM and SC showed an increased release in the 60 mM K+ plus 2.5 mM Ca2+ medium. In 8 of the regions studied, the release of both GABA and GLU were stimulated by 60 mM K+ in the presence of 2.5 mM Ca2+. For the amino acids, no reliable data were obtained for release from the ACC because of its small size. The highest amount of K+-stimulated, Ca2+-dependent release of GABA was found with slices from the HYPO, THAL and MB while the highest amount of GLU was released from slices of STR, HIP and CTX. In those regions where reliable levels of K+-stimulated, Ca2+-dependent release of ASP were observed (STR, CTX, THAL), the amount of ASP was at least 5-fold lower than the values for GLU. A K+-stimulated, Ca2+-dependent release of NE, DA and 5-HT was observed for all 9 CNS regions studied. The highest release of (a) DA occurred from slices of CTX, STR and ACC; (b) NE was found in the HYPO and ACC; and (c) 5-HT occurred in the HYPO. The data (a) do not support a transmitter role for ALA and TAU in the CNS; (b) support a major transmitter function for GLY only in the PM and SC; and (c) support a transmitter role for GABA, GLU, NE, DA and 5-HT in the CNS regions examined (with the exception of GABA and GLU in the ACC where no data were obtained).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号