首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Phospholipid-sensitive Ca2+-dependent protein kinases partially purified from the rat cerebral cortex, pig spleen, and bovine heart were shown to be inhibited, to varying degrees, by several antipsychotic drugs including trifluoperazine, chlorpromazine, fluphenazine, haloperidol, and chlorprothixene and by the local anesthetic dibucaine. None of these drugs were found to have any significant effect on cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Kinetic analysis suggests that the primary effect of the drugs is mediated through a competitive inhibition of enzyme activation by interacting with phosphlipid.  相似文献   

2.
The cellular and molecular effects of forskolin, a direct, nonhormonal activator of adenylate cyclase, were assessed on the enzyme secretory process in dispersed rat pancreatic acinar cells. Forskolin stimulated adenylate cyclase activity in the absence of guanyl nucleotide. It promoted a rapid and marked increase in cellular accumulation of cyclic AMP alone or in combination with vasoactive intestinal peptide (VIP) but was itself a weak pancreatic agonist and did not increase the secretory response to VIP or other cyclic AMP dependent agonists. Somatostatin was a partial antagonist of forskolin stimulated cyclic AMP synthesis and forskolin plus cholecystokinin-octapeptide (CCK-OP) induced amylase release. Forskolin potentiated amylase secretion in response to calcium-dependent agonists such as CCK-OP, carbachol and A-23187, but did not affect the ability of CCK-OP and (or) carbachol to mobilize 45Ca from isotope preloaded cells; forskolin alone did not stimulate 45Ca release. In calcium-poor media, the secretory response to forskolin and CCK-OP was reduced in a both absolute and relative manner. The data suggests that calcium plays the primary role as intracellular mediator of enzyme secretion and that the role of cyclic AMP may be to modulate the efficiency of calcium utilization.  相似文献   

3.
Summary The Ca2+-activated nonselective cation channel in mouse pancreatic acini has been studied with the help of patch-clamp single-channel current recording in both the cell-attached conformation and in excised inside-out membrane patches. In intact resting mouse pancreatic acinar cells no unitary activity was observed. Adding saponin to the bath solution to disrupt the plasma membrane (apart from the isolated patch membrane from which current recording was made) evoked unitary inward current steps when the free ionized Ca2+ concentration in the bath ([Ca2+] i ) was 5×10–8 m or above. When an electrically isolated patch membrane was excised and the internal aspects of the plasma membrane were exposed to the bath solution, channel activation could be obtained when [Ca2+] i was 10–7 m or above. However, with the passage of time the total inward current declined and about 1 min after excision no unitary current steps could be observed. At this stage Ca2+ in micromolar concentration was needed to open the channels and several hundred micromoles of Ca2+ per liter were required for maximal channel activation. Our results indicate that the Ca2+-activated nonselective cation channel is more sensitive to internal Ca2+ than hitherto understood and that it may therefore play a role under physiological conditions in intact cells.  相似文献   

4.
5.
The comparative effects of insulin and ethanolamine on 14CO2 production and lipid synthesis from [U-14C]-D-glucose in isolated rat adipocytes were studied. Ethanolamine (10 mM) increased 14CO2 production (glucose oxidation) about 5-fold and lipogenesis about 3-fold as compared to the control. Ethanolamine was more efficient than 25 microU/ml insulin regarding both parameters, but it was less efficient than 200 microU/ml insulin in glucose oxidation, and equally potent in lipogenesis. The combination of ethanolamine and insulin was more active than insulin alone. The mechanisms of ethanolamine action include facilitation of glucose transport and increase of pyruvate dehydrogenase activity.  相似文献   

6.
Membrane recycling in pancreatic acinar cells involves endocytic vesicle formation at the apical cell surface and rapid membrane traffic to the Golgi complex. During this process a small amount of extracellular content is taken up from the acinar lumen. In order to determine whether secretory proteins already released into the pancreatic acinar lumen are reinternalized during membrane retrieval, 3H-labeled amylase or 125I-labeled secretory proteins were reinfused through the pancreatic duct until the lumina were reached. Tissue samples from various time points were prepared for light and electron microscope autoradiography. The observations showed that [3H]amylase and, to a lesser extent, the 125I-labeled secretory proteins were internalized at the apical cell surface and rapidly (within 2-5 min) transferred to the Golgi cisternae and the condensing vacuoles; only a minor proportion of silver grains was observed over lysosomes. In addition, at later time points, mature secretion granules close to the Golgi complex became labeled. The results indicate that exocytosis in the rat exocrine pancreas does not operate at 100% efficiency; part of the exported amylase and part of the total secretion product are reinternalized concomitantly with the endocytic removal of plasma membrane and are copackaged together with newly synthesized secretory proteins.  相似文献   

7.
Chemical modification of amino groups in matrix porin solubilized and purified from outer membranes of Escherichia coli in beta- octylglucoside was performed with eosin isothiocyanate and citraconic anhydride. At pH 7 8.5, the former reagent labeled a single amino group in the native protein, while more extensive derivatization was observed with increasing pH or upon denaturation. Citraconic anhydride modified approximately 12-14 residues in native porin and 15-16 of the total of 19 amino groups in the denatured state. Fluorescamine, another amine- specific reagent of intermediate size, derivatized 3 and 16 residues in the native and denatured states, respectively. These results indicate that reactive probes of various sizes may serve as indicators for the surface accessibility of reactive residues in matrix porin. The increased derivatization of lysyl residues at high pH (or in phosphate buffer) suggests the method's sensitivity to different conformational states of the protein. The extent of tyrosine modification (1-2 residues in the native, and approximately 22 in the denatured porin) depended on the state of protein folding, even with reagents of small size. The approach of using various probes with differing properties and specificities thus appears useful for the determination of membrane protein asymmetry, pore topology, and conformational states of transmembrane proteins.  相似文献   

8.
The development of acute pancreatitis (AP) is triggered by acinar events, but the subsequent extra-acinar events, particularly a distinct immune response, appear to determine its severity. Cytokines modulate this immune response and are derived not only from immunocytes but also from pancreatic acinar cells. We studied whether pancreatic acinar cells were also capable of responding to cytokines. The JAK/STAT-pathway represents the main effector for many cytokines. Therefore, expression and regulation of JAK and STAT proteins were investigated in rat pancreatic acinar cells. Western blotting showed expression of JAK1, JAK2, Tyk2, and STAT1, STAT2, STAT3, STAT5, STAT6. In addition, STAT1 was reversibly tyrosine-phosphorylated upon the procedure of acinar cell isolation. In contrast, STAT3-phosphorylation occurred spontaneously after pancreas removal and was not reversible within 8 h. STAT1 phosphorylation was also observed upon treatment with IFN-gamma but not upon EGF, TNF-alpha or IL-6, and inhibited by the JAK2-inhibitor AG-490. Immunohistochemistry revealed cytoplasmic expression of unphosphorylated STAT1 in untreated acinar cells and nuclear translocation of phosphorylated STAT1 following IFN-gamma-treatment. Interestingly, although CCK leads to the activation of multiple stress pathways in pancreatic acinar cells, we found no influence of CCK on phosphorylation of STAT1, STAT3, or STAT5 in the pancreas. In conclusion, our data provide further evidence that pancreatic acinar cells are able to interact with immune cells. Besides stimulating immune cells via cytokine secretion, acinar cells are in turn capable of responding to IFN-gamma via JAK2 and STAT1 which may have an impact on the development of AP.  相似文献   

9.
We examined phospholipid/calcium-dependent protein kinase (protein kinase C) activity and amylase secretion in isolated pancreatic acinar cells, when exposed to caerulein or carbachol. Upon stimulation with 10(-10) M caerulein or 10(-6) M carbachol cytosolic protein kinase C activity was increased in accordance with amylase secretion. Effect of carbachol on increase in membrane-associated protein kinase C activity was maximal at 10(-6) M where the rate of amylase secretion was highest. On the other hand, caerulein showed the maximal secretion of amylase at 10(-9) M, but the activity of the protein kinase C associated with membranes increased progressively with increasing concentration of caerulein. These results indicate different profiles of redistribution of protein kinase C upon stimulation of pancreatic acinar cells with carbachol or caerulein, and they were discussed in terms of amylase secretion.  相似文献   

10.
We have compared the properties of a rat aorta-derived protein kinase C substrate (p75) with those of 80 kDa kinase C substrates from rat brain (MARCKS) and rabbit aorta (p80). Rat aortic p75 appeared to be closely related to rat brain MARCKS on the basis of: solubility in perchloric acid and trichloroacetic acid, heat stability, isoelectric point (pI 4.2), overall V8 protease phosphopeptide map, and immunocrossreactivity with an antibody directed against the N-terminal domain of MARCKS. However, p75 could be distinguished from rat brain MARCKS and from the rabbit aorta-derived p80 on the basis of its consistently more rapid electrophoretic mobility in SDS-containing gels, and in terms of a unique proteolytic phosphopeptide found in MARCKS but not in aortic p75. We conclude that p75 probably belongs to the family of protein kinase C substrates represented by MARCKS, and that differences in post-translational processing (glycosylation) or mRNA processing may account for the unique properties of the p75 protein in rat aortic tissue.Abbreviations p75 75,000 Da protein - MARCKS Myristoylated Alanine-Rich C Kinase Substrate  相似文献   

11.
Although ethanol abuse is the most common cause of pancreatitis, the mechanism of alcohol's effect on the pancreas is not well understood. Previously, we demonstrated that in vitro ethanol treatment of pancreatic acinar cells augmented the CCK-8-induced activation of NF-kappaB, a key signaling system involved in the inflammatory response of pancreatitis. In the present study, we determine the role for individual PKC isoforms in the sensitizing effect of ethanol on NF-kappaB activation. Dispersed rat pancreatic acini were treated with and without ethanol and then stimulated with CCK-8; 100 nM CCK-8 caused both NF-kappaB and PKC-delta, -epsilon, and -zeta activation, whereas 0.1 nM CCK-8 did not increase PKC-epsilon, PKC-zeta, or NF-kappaB activity. CCK-8 (0.1 nM) did activate PKC-delta. PKC-epsilon activator alone did not cause NF-kappaB activation; however, together with 0.1 nM CCK-8, it caused NF-kappaB activation. Ethanol activated PKC-epsilon without affecting other PKC isoforms or NF-kappaB activity. Of note, stimulation of acini with ethanol and 0.1 nM CCK-8 resulted in the activation of PKC-delta, PKC-epsilon, and NF-kappaB. The NF-kappaB activation to 0.1 nM CCK-8 in ethanol-pretreated acini was inhibited by both PKC-delta inhibitor and PKC-epsilon inhibitor. Taken together, these results demonstrate the different modes of activation of PKC isoforms and NF-kappaB in acini stimulated with ethanol, high-dose CCK-8, and low-dose CCK-8, and furthermore suggest that activation of both PKC-epsilon and -delta is required for NF-kappaB activation. These results suggest that ethanol enhances the CCK-8-induced NF-kappaB activation at least in part through its effects on PKC-epsilon.  相似文献   

12.
Mammalian spermatozoa have been shown to possess cAMP-dependent protein kinase (A-PK) and endogenous substrate proteins for this enzyme. A study of the kinase system was undertaken to determine changes that may be associated with sperm maturation by comparing immature testicular with mature cauda epididymal and ejaculated spermatozoa. Absolute activity levels of A-PK, stimulated over a concentration range of 10?9 to 10?5 M, was significantly greater in testicular than ejaculated spermatozoa. At an optimal cAMP concentration (10?6M), testicular spermatozoa had significantly greater amounts of cAMP-dependent protein kinase activity than did cauda or ejaculated spermatozoa. Electrophoretic analysis and autoradiography of NP-40-soluble protein extracts revealed the presence of two substrate proteins (Mr = 62,000 and 44,000) in all three types of spermatozoa. In addition, a phosphoprotein (Mr = 20,000) was detected in mature cauda and ejaculated but not immature testicular spermatozoa. The phosphorylation of these substrate proteins was both dose and time dependent. Examination of cyclic AMP phosphodiesterase activity revealed significantly higher levels in testicular than ejaculated spermatozoa. These results indicate marked alterations in cAMP-modulated protein phosphorylation and dephosphorylation systems in ram spermatozoa during epididymal maturation.  相似文献   

13.
14.
15.
16.
17.
18.
Phospholipid-sensitive Ca2+-dependent protein kinase (PL-Ca-PK) was found to be present at a high level in human neutrophils, with its activity localized in the particulate fraction. In contrast, cyclic AMP-dependent protein kinase (A-PK) and cyclic GMP-dependent protein kinase (G-PK), present at lower levels compared to PL-Ca-PK, were localized in the cytosolic fraction. Phosphorylation of several endogenous proteins (mol. wts. 89,000, 38,000, 34,000, 17,000 and 15,000), also localized in the particulate fraction, was stimulated specifically by a combination of phosphatidylserine and Ca2+, whereas no substrate proteins were observed for the calmodulin-sensitive Ca2+-dependent protein kinase system under the same incubation conditions. Although no substrate proteins for G-PK were detected, one substrate (mol. wt. 19,000) for A-PK was observed. Phosphorylation of substrates for PL-Ca-PK, but not that for A-PK and for enzymes independent of Ca2+ or cyclic AMP, was inhibited by a variety of agents, including trifluoperazine, W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide], adriamycin, palmitoylcarnitine, and melittin. The present findings suggest that the phospholipidCa2+-stimulated protein phosphorylation system may be important in the membrane associated functions of human neutrophils.  相似文献   

19.
Development of secretagogue response in rat pancreatic acinar cells   总被引:4,自引:0,他引:4  
Two to 3 days prior to birth, acinar cells of the rat pancreas acquire morphologic and biochemical characteristics of the adult gland. To determine if differentiation of the secretory apparatus coincides temporally with the capacity of the cell to respond to secretory stimuli, lobules of embryonic, neonatal, and adult rat pancreas were compared for their ability to respond to secretagogues presumed to act directly via hormone receptors [caerulein and carbamylcholine (carbachol)] or indirectly (cyclic nucleotide analogs and the Ca2+ ionophore A23187). Of all agents tested, only dibutyryl cAMP elicited discharge of secretory proteins at day 20 in utero and preceded hormone stimulation by 1 day. A23187 elicited discharge by Day 21 in utero; its action was near adult levels in contrast to hormonal stimuli whose effect was maximal only at birth. All secretagogues required Ca2+ and energy to induce discharge. Pulse-chase autoradiography of lobules from Day 20 embryonic glands indicated that the acinar cells were capable of transporting [3H]leucine-labeled proteins to zymogen granules at rates roughly equivalent to those in adult glands. SDS gel electrophoretograms confirmed that the bulk of 14C-amino acid incorporation into proteins at a given age was primarily into exportable proteins. The results indicate that acinar cells synthesize and package secretory proteins into zymogen granules about 2 days before they are capable of responding to hormonal stimuli and to intracellular effectors.  相似文献   

20.
Syntaxins are cytoplasmically oriented integral membrane soluble NEM-sensitive factor receptors (SNAREs; soluble NEM-sensitive factor attachment protein receptors) thought to serve as targets for the assembly of protein complexes important in regulating membrane fusion. The SNARE hypothesis predicts that the fidelity of vesicle traffic is controlled in part by the correct recognition of vesicle SNAREs with their cognate target SNARE partner. Here, we show that in the exocrine acinar cell of the pancreas, multiple syntaxin isoforms are expressed and that they appear to reside in distinct membrane compartments. Syntaxin 2 is restricted to the apical plasma membrane whereas syntaxin 4 is found most abundantly on the basolateral membranes. Surprisingly, syntaxin 3 was found to be localized to a vesicular compartment, the zymogen granule membrane. In addition, we show that these proteins are capable of specific interaction with vesicle SNARE proteins. Their nonoverlapping locations support the general principle of the SNARE hypothesis and provide new insights into the mechanisms of polarized secretion in epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号