首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J L Izzo  D A Thompson  D Horwitz 《Life sciences》1985,37(11):1033-1038
We investigated the utility of deaminated norepinephrine (NE) metabolites in the study of human sympathetic nervous pathophysiology. Plasma levels of the NE metabolite dihydroxyphenylglycol (DHPG) appear to be related to intraneuronal NE stores. Plasma DHPG increases when sympathetic nervous activity or circulating NE increase and decreases when neuronal NE is depleted or neuronal NE reuptake is blocked. Changes in plasma dihydroxymandelic acid (DOMA) related less closely to changes in plasma NE. The coupling of measurements of plasma NE with its deaminated metabolites and DHPG may improve understanding of human NE metabolism and neuronal NE reuptake.  相似文献   

2.
Several modifications of an HPLC—electrochemical assay method for plasma levels of norepinephrine (NE), epinephrine (EPI), dopamine (DA), dihydroxyphenylglycol (DHPG), dihydroxyphenylalanine (DOPA) and dihydroxyphenylacetic acid (DOPAC) that improve the accuracy and reliability of DHPG, DOPA, and DOPAC measurements are described. In batch alumina extractions, increasing the amount of alumina decreased analytical recoveries of DHPG, DOPA, and especially DOPAC, and increasing the strength of the eluting acid increased recoveries of these catechols, without affecting recoveries of the amines NE, EPI and DA. Refrigeration (4°C) until injection stabilized DOPAC in aqueous solution and therefore improved the reproducibility of plasma DOPAC measurements. Circulation of chilled water (15°C) around the column using a water jacket decreased variability in retention times of the catechols and thereby facilitated identification of peaks, while enhancing separation of DHPG from the solvent front. Use of 6-fluoro-DOPA and 6-fluoro-DOPAC as internal standards did not improve inter-assay reliability. We recommend that in assays of plasma catechols including DOPAC, small (5 mg), precisely measured amounts of alumina be used, with a relatively strong eluting solution (e.g. 0.04 M phosphoric acid—0.2 M acetic acid, 20:80, v/v), and that the samples be refrigerated until injection, with column temperature held constant at less than 20°C.  相似文献   

3.
Abstract: Plasma and CSF concentrations of endogenous l -DOPA, catecholamines, and metabolites of monoamines were assayed in a patient with atypical phenylketonuria due to absent dihydropteridine reductase (DHPR), before and during treatment with folinic acid, Sinemet, and 5-hydroxytryptophan. The patient had low but detectable levels of l -DOPA, 3,4-dihydroxyphenylacetic acid (DOPAC), and 3,4-dihydroxyphenylglycol (DHPG) in plasma and low but detectable levels of these compounds and of homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in CSF, with approximately normal plasma and CSF levels of norepinephrine [noradrenaline (NA)]. Folinic acid treatment approximately doubled plasma levels of l -DOPA, NA, DOPAC, and DHPG, compared with values during dietary phenylalanine restriction alone. Detection of l -DOPA, catecholamines, and monoamine metabolites in this patient indicates that monoamine synthesis in humans does not absolutely require DHPR. The results are consistent with the existence of an alternative biochemical pathway, with folinic acid treatment augmenting activity along this pathway. Low plasma levels of l -DOPA, DOPAC, and DHPG may reflect decreased catecholamine synthesis and turnover in sympathetic nerves, with compensatory increases in exocytotic release normalizing plasma NA levels.  相似文献   

4.
Gas chromatography-mass spectrometry (GC-MS) was used to measure 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in cerebrospinal fluid from humans and monkeys and in rat caudate nuclei. DOPAC was found to be present mainly in conjugated form. In human lumbar CSF the average concentration of total DOPAC before probenecid treatment was 1.48 ± 0.31 ng/ml; after probenecid it increased to 15.06 ± 3.17 ng/ml. This increase was mainly due to conjugated DOPAC but increases in free DOPAC also occurred. There is a relatively greater accumulation of DOPAC than of HVA, suggesting that in human CSF conjugated DOPAC may have a faster turnover rate than HVA. In monkey, ventricular CSF contained higher concentrations of DOPAC and HVA than did lumbar CSF.In rat brain, treatment with probenecid caused increases in DOPAC, HVA and their conjugates.These results suggest that DOPAC is conjugated in brain and that both compounds are removed from brain and CSF by a probenecid-sensitive acid transport system in the same manner as is HVA.  相似文献   

5.
A sensitive high-performance liquid chromatography method with electrochemical detection for measuring monoamine oxidase B activity in blood platelets is described. Dopamine is used as substrate and is incubated with isolated platelets and aldehyde dehydrogenase to convert dihydroxyphenylacetaldehyde to dihydroxyphenylacetic acid (DOPAC). The acid and the added internal standard hydrocaffeic acid are separated from dopamine and the incubation mixture by extraction with 5 ml of ethyl acetate-toluene (5:1, v/v). The organic phase is evaporated under nitrogen stream and the residue dissolved in 0.1 M critic acid. Dihydroxyphenylacetic acid and the internal standard dihydrocaffeic acid are then separated on the Eurosphere 100-C18 5 μm column. The mobile phase used was a mixture of sodium acetate, citric acid, and acetonitrile at pH 2.5. The standard curve was linear from 125 pg to 10 ng. Absolute recovery of DOPAC was 85±3.8% and of hydrocaffeic acid 87±4.1%. The method presented is sensitive (detection limit 8.0 pg of DOPAC injected) and reproducible (coefficient of variation 0.4-1%) with good accuracy (94–98%).  相似文献   

6.
In conscious animals, handling and immobilization increase plasma levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). This study examined plasma concentrations of endogenous compounds related to catecholamine synthesis and metabolism during and after exposure to these stressors in conscious rats. Plasma levels of 3,4-dihydroxyphenylalanine (DOPA), NE, EPI, and dopamine (DA), the deaminated catechol metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC), and their O-methylated derivatives methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured using liquid chromatography with electrochemical detection at 1, 3, 5, 20, 60, and 120 min of immobilization. By 1 min of immobilization, plasma NE and EPI levels had already reached peak values, and plasma levels of DOPA, DHPG, DOPAC, and MHPG were increased significantly from baseline, whereas plasma DA and HVA levels were unchanged. During the remainder of the immobilization period, the increased levels of DOPA, NE, and EPI were maintained, whereas levels of the metabolites progressively increased. In animals immobilized briefly (5 min), elevated concentrations of the metabolites persisted after release from the restraint, whereas DOPA and catecholamine levels returned to baseline. Gentle handling for 1 min also significantly increased plasma levels of DOPA, NE, EPI, and the NE metabolites DHPG and MHPG, without increasing levels of DA or HVA. The results show that in conscious rats, immobilization or even gentle handling rapidly increases plasma levels of catecholamines, the catecholamine precursor DOPA, and metabolites of NE and DA, indicating rapid increases in the synthesis, release, reuptake, and metabolism of catecholamines.  相似文献   

7.
We determined levels of monoamines and their metabolites in 2 hypothalami dissected from the right and left hemibrains of 15 females during the right-left alternating ovulatory cycle of Anolis carolinensis. Tissue contents of the following were measured using HPLC and electrochemical (coulometric) detection: dopamine (DA) and its metabolite 2,4-dihydroxyphenylacetic acid (DOPAC), norepinephrine (NE) and its metabolites 3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxyphenylglycol (DHPG), and serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). An asymmetry ratio (AR) was determined by subtracting hypothalamic content (pM/mg) on the larger ovary (LO) side from that on the smaller ovary (SO) side, divided by the sum of the 2 sides (AR = SO - LO/SO+LO). The Ar of MHPG and DHPG both decreased as the largest follicle in the LO grew during the cycle, from greater than 0 (content higher on the SO side) at the beginning of the cycle to less than 0 (content higher on the LO side). The average content of MHPG in the 2 sides significantly increased during the cycle. There were no significant asymmetric changes in hypothalamic DA or DOPAC. The average content of DA increased during the cycle, whereas the content of DOPAC, as well as DOPAC/DA, did not change. The average content of 5-HT increased, and the average metabolite ratio of 5-HIAA/5-HT decreased during the cycle without significant asymmetries. The metabolite ratios of NE and DA, but not 5-HT, were asymmetric on the same side in a given female.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
E Watson  B Travis  S Wilk 《Life sciences》1974,15(12):2167-2178
Simultaneous determination of the major metabolites of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in rat striatum has been achieved by gas-liquid chromatography. Striatal tissue from one rat was homogenized in IN HCl and one-tenth of the sample extracted with ethyl ether. After evaporation of the ether, the residue was reacted with a combination of 1-chloro-1,1,3,3,3-pentafluor-2-propanol and pentafluoropropionic anhydride followed by reaction with pentafluoropropionic anhydride. The derivatives were chromatographed on a 3% JXR column and quantitated using electron capture detection. The propionic homologs of DOPAC and HVA served as internal standards. The steady state levels of DOPAC and HVA were found to be 0.90 μg/gm±0.21 S.D. (N=12) and 0.66 μg/gm±0.16 S.D. (N=12) respectively.  相似文献   

9.
Background Menkes disease is an X-linked recessive neurodevelopmental disorder resulting from mutation in a copper-transporting ATPase gene. Menkes disease can be detected by relatively high concentrations of dopamine (DA) and its metabolites compared to norepinephrine (NE) and its metabolites, presumably because dopamine-beta-hydroxylase (DBH) requires copper as a co-factor. The relative diagnostic efficiencies of levels of catechol analytes, alone or in combination, in neonates at genetic risk of Menkes disease have been unknown. Methods Plasma from 44 at-risk neonates less than 30 days old were assayed for DA, NE, and other catechols. Of the 44, 19 were diagnosed subsequently with Menkes disease, and 25 were unaffected. Results Compared to unaffected at-risk infants, those with Menkes disease had high plasma DA (< 10−6) and low NE (P < 10−6) levels. Considered alone, neither DA nor NE levels had perfect sensitivity, whereas the ratio of DA:NE was higher in all affected than in all unaffected subjects (P = 2 × 10−8). Analogously, levels of the DA metabolite, dihydroxyphenylacetic acid (DOPAC), and the NE metabolite, dihydroxyphenylglycol (DHPG), were imperfectly sensitive, whereas the DOPAC:DHPG ratio was higher in all affected than in all unaffected subjects (P = 2 × 10−4). Plasma dihydroxyphenylalanine (DOPA) and the ratio of epinephrine (EPI):NE levels were higher in affected than in unaffected neonates (P = 0.0015; P = 0.013). Conclusions Plasma DA:NE and DOPAC:DHPG ratios are remarkably sensitive and specific for diagnosing Menkes disease in at-risk newborns. Affected newborns also have elevated DOPA and EPI:NE ratios, which decreased DBH activity alone cannot explain.  相似文献   

10.
The neurotoxicity of manganese (Mn) is well known, however, the neurochemical effect caused by this metal is less well investigated. In this study, urinary homovanillic acid (HVA) and vanillymandelic acid (VMA), two end products of catecholamine metabolism, were measured in 39 workers chronically exposed to Mn in a manganese smelting plant. The average duration of Mn exposure was 17.4 yr. Nineteen nonexposed workers were also studied. Concentrations of Mn in serum (MnS) and in urine (MnU) were measured by Zeeman graphite furnace atomic absorption spectrophotometry (ZAAS), and HVA and VMA determined by high performance liquid chromatography (HPLC). For Mn-exposed workers, the concentration of MnS was nearly 2.8 times (1.61 ± 0.16 mg/L vs 0.56 ± 0.16 mg/L) and MnU about 4.5 times higher (7.62 ± 0.17 mg/L vs 1.69 ± 0.16 mg/L) than the nonexposed. Although the geometric mean concentration of HVA in exposed workers was similar to that of the nonexposed (3.09 ± 1.39 mg/g ere. vs 2.99 ± 1.40 mg/g cre.), the VMA concentration was significantly higher (3.02 ± 1.43 mg/g cre. vs 2.49 ± 1.58 mg/g cre.,p = 0.033). Multiple regression analysis showed that although there were no correlations between any of these parameters with the duration of exposure to Mn, both HVA and VMA showed significant correlations with increase in MnS and MnU. These data provide evidence that exposure to Mn was associated with measurable increase in catecholamine metabolites. This finding is compatible with recent observations in laboratory animals that Mn interferes with neurochemical metabolism.  相似文献   

11.
Two procedures using liquid chromatography with electrochemical detection are described for the determination of dopamine (DA) and its two acidic metabolites, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC), in subregions of rat striatum and nucleus accumbens. A strong cation-exchange column was used for DA analysis and a C1 reversed-phase column was used for the analysis of the metabolites. Effects of pH, temperature and percentage of methanol on the retention time of HVA and DOPAC were studied. Levels of these compounds in the subregions of rat striatum and nucleus accumbens are reported.  相似文献   

12.
Because central noradrenaline neuronal activity is tonically inhibited by noradrenaline (NA) itself via an action at prejunctional alpha 2-adrenoceptors, it was hypothesised that the blockade of central NA synthesis following acute dopamine-beta -hydroxylase (DBH) inhibition might primarily deplete prejunctional NA levels and result in an increase in central NA neuronal activity through reduced NA autoinhibition. This hypothesis was tested in the rat following the acute administration of the DBH inhibitors diethyldithiocarbamate (DDC) and cysteamine (CSH). Computerised gas chromatography/mass spectrometry was used to precisely measure the hypothalamic levels of NA and dopamine (DA) together with those of their primary neuronal metabolites dihydroxyphenylethyleneglycol (DHPG) and dihydroxyphenylacetic acid (DOPAC), respectively. Both DDC (at 4 h) and CSH (at 30 min.) caused approximately a 50% reduction of hypothalamic NA concentrations. However this was associated with marked and highly significant increases in hypothalamic DHPG levels (by 50-100%) and in the hypothalamic ratio DHPG/NA. Also, when measured after CSH, the hypothalamic levels of the DHPG metabolite 3-methoxy-4-hydroxyphenylethyleneglycol were highly significantly increased. Consistent with increased DA neuronal activity, both DBH inhibitors raised DA and DOPAC levels and also the ratio DOPAC/DA in the hypothalami of treated rats and markedly suppressed serum prolactin levels (all p less than 0.01). The rise in hypothalamic concentrations of DHPG indicates that an increase in hypothalamic NA neuronal activity occurs following DBH inhibition. Significant elevations of blood glucose, corticosterone and ACTH were also observed after DBH inhibition. As we have previously demonstrated that increased central NA activity is associated with elevations of blood glucose, corticosterone and ACTH, these data provide further evidence for a functional increase in central NA activity caused by acute DBH inhibition. It is proposed that the increase in hypothalamic NA activity after DBH inhibition results from a primary depletion of the prejunctional alpha 2-active autoregulatory pool of NA.  相似文献   

13.
Formation of nitric oxide, an endothelium-derived relaxing factor, can be inhibited by administration of N-nitro-L-arginine methylesther (L-NAME). In the present study, the activity of the sympathoadrenal system in rats with blood pressure (BP) elevation induced by L-NAME was investigated. L-NAME was administered in a dose of 50 mg/kg, i.p. every 12 h for 4 days. Blood samples were collected via chronically inserted arterial catheters in conscious, freely moving rats at rest and during immobilization stress. Plasma epinephrine (EPI), norepinephrine (NE), and dopamine (DA), as well as catecholamine metabolites dihydroxyphenylglycol (DHPG) and dihydroxyphenylacetic acid (DOPAC) were measured by HPLC method. In L-NAME treated animals, which showed a significant increase in BP, plasma EPI levels were markedly elevated both before and during stress. Plasma NE levels were not significantly increased, however, DHPG levels, which indicate NE turnover and reuptake, were highly elevated. Plasma DA levels were not changed after L-NAME administration but DA metabolite DOPAC showed a significant elevation both under basal conditions and during stress. Thus, the present results indicate that the prolonged blockade of nitric oxide synthesis that causes arterial hypertension is associated with an activation of the sympathoadrenal system.  相似文献   

14.
3,4-Dihydroxyphenylacetic acid (DOPAC) can be easily assayed by high-performance liquid chromatography (HPLC) with electrochemical detection at the same time as norepinephrine (NE), epinephrine (E), and dopamine (DA). The latter catecholamines are stable in perchloric acid extracts for over 6 h at 4°C in the dark whereas DOPAC levels drop rapidly by more than 50% in 6 h at 4°C in the dark. This study investigated the effects of reducing agents [ascorbic acid, dithiothreitol (DTT), reduced glutathione with or without a metal chelating agent (diethylenetriaminepentaacetic acid or ethylenediaminetetraacetic acid)] on DOPAC. Extracted with alumina using 0.65 mmol/1 DTT prior to HPLC and electrochemical detection, DOPAC remained stable in the perchloric acid extract for 2 h at 4°C in the dark.  相似文献   

15.
We designed a rapid, simple and sensitive method for the determination of norepinephrine (NE) and its metabolites by reversed-phase high-performance liquid chromatography (HPLC) with electrochemical detection. NE, 3,4-dihydroxymandelic acid (DOMA), and 3,4-dihydroxyphenylglycol (DOPEG) were adsorbed on alumina and eluted with 0.2 N HCl. From the remaining solution, normetanephrine and 3-methoxy-4-hydroxyphenylglycol (MOPEG) were extracted with ethyl acetate in the presence of both borate buffer and K2HPO4. Vanillylmandelic acid was extracted with ethyl acetate after acidification of the solution with concentrated HCl. The combined ethyl acetate phase was evaporated and the residue was dissolved in 0.1 N HCl. A 50 μl aliquot of each eluate or solution was injected onto the HPLC. Detection limits ranged from 300 pg to 1 ng per initial sampla. We used this method to determine substances in the medium following incubation of the rat vas deferens. Approximately 110 and 80 ng/g/10 min of DOPEG and MOPEG, respectively, were present under normal conditions. The electrical stimulation of tissues from the rat vas deferens led to increases in the levels of NE, DOPEG, DOMA and MOPEG. Normetanephrine and vanillylmandelic acid were not detected in the medium. This is probably the first documentation of the endogenous levels of NE and all its metabolites in medium containing tissue of the sympathetic nervous system.  相似文献   

16.
Cyclic voltammetric and chronoamperometric data are consistent with a process in which 3,4-dihydroxymandelic acid (DOMA) is oxidized initially in a two-electron step to its corresponding o-benzoquinone. This species is unstable and undergoes the rate-determining loss of CO2 (k = 1.6 s-1 at pH 6 and 25 degrees C) to give an unobserved p-benzoquinone methide intermediate that rapidly isomerizes to 3,4-dihydroxybenzaldehyde (DOBAL), DOBAL is also electroactive at the applied potential and is oxidized in a two-electron step to 4-formyl-1,2-benzoquinone. Subsequent reactions of 4-formyl-1,2-benzoquinone include the oxidation of unreacted DOMA and the hydration of its aldehyde functional group. Oxidation of DOMA directly to its p-benzoquinone methide apparently does not occur. Derivatives of mandelic acid (e.g., 4-hydroxymandelic acid) that are expected to give only their corresponding p-benzoquinone methides upon oxidation afford redox behavior that differs distinctly from that for DOMA.  相似文献   

17.
The amperometric detection of neurotransmitters metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC) was achieved at a tyrosinase-chitosan composite film-modified glassy carbon (GC) electrode. The optimal conditions for the preparation of the biosensor were established. This bio-composite film was characterized by scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectra, suggesting that chitosan covalently connected to chitosan chains. Electrochemical characterization of the bio-hybrid membrane-covered electrodes were also performed in 0.05 M phosphate buffer solution (pH 6.52) containing neurotransmitters or their derivatives by using cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and amperometry. This simply-prepared protein-polysaccharide hybrid film provides a microenvironment friendly for enzyme loading. The sensor was operated at -0.15 V with a short response time. The current linearly increased with the increasing concentration of DOPAC over the concentration of 6 nM-0.2 mM. The lower detection limit for DOPAC is 3 nM (S/N=3). The sensitivity of the sensor is 40 microA mM(-1). A physiological level of neurotransmitters and their derivatives including dopamine, l-dopa, adrenaline, noradrenaline and homovanillic acid as well as ascorbic acid, uric acid and acetaminophen do not affect the determination of DOPAC.  相似文献   

18.
Simultaneous radioimmunoassay of testosterone and dihydrotestosterone   总被引:1,自引:0,他引:1  
A radioimmunoassay, which simultaneously measures both testosterone (T) and dihydrotestosterone (DHT) in the same serum sample, is presented. Celite column chromatography is employed to separate T from DHT, and these two steroids from other potentially cross-reacting and interfering steroids. The normal values for men, women in the follicular phase, women in the luteal phase, ovariectomized and adrenal ectomized women, post-menopausal women and ovariectomized women for T are 5, 140 ± 1190 pg/ml, 307 ± 97 pg/ml, 285 ± 46 pg/ml, undetectable (<5 pg/ml), 262 ±47 pg/ml and 199 ±44 pg/ml; and for DHT 470 ± 165 pg/ml, 160 ±45 pg/ml, 147 ±44 pg/ml, undetectable (<5 pg/ml), 168 ± 27 pg/ml, 94 ± 15 pg/ml. The maximum sensitivity of the method was 10 pg/ml for T and 14.3 pg/ml for DHT when 1 ml was extracted. The blank in most assays was undetectable, but rarely exceeded 10 pg.  相似文献   

19.
The metabolism of 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG), one of the most promising new anti-herpes virus compounds, in HeLa cells infected with herpes simplex virus type 1 was compared with that in the uninfected HeLa cells. In the virus-infected cells, the uptake of DHPG was enhanced and the major metabolites were found to be the mono-, di-, and triphosphate derivatives. The formation of these metabolites was dependent on the extracellular concentration of DHPG (0.5 to 5.0 microM). Virus-induced thymidine kinase was capable of phosphorylating DHPG to its monophosphate which could be further phosphorylated to the di- and triphosphate derivatives by the host cellular enzymes. Incorporation of the DHPG into DNA was observed in virus-infected cells. In contrast with 9-(2-hydroxyethoxymethyl)guanine, DHPG seemed not to serve as a chain terminator, but to be incorporated internally into DNA strands.  相似文献   

20.
The dopamine (DA) precursor l-dihydroxyphenylalanine (L-DOPA) and metabolites dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-methoxytyramine may serve as substrates for prostaglandin H synthase (PHS)-catalyzed bioactivation to free radical intermediates. We used CHO-K1 cells expressing human (h) PHS-1 or hPHS-2 to investigate hPHS isozyme-dependent oxidative damage and cytotoxicity. hPHS-1- and hPHS-2-expressing cells incubated with DA, L-DOPA, DOPAC, or HVA exhibited increased cytotoxicity compared to untransfected cells, and cytotoxicity was increased further by exogenous arachidonic acid (AA), which increased hPHS activity. Preincubation with catalase, which detoxifies reactive oxygen species, or acetylsalicylic acid, an inhibitor of hPHS-1 and -2, reduced the cytotoxicity caused by DA, L-DOPA, DOPAC, and HVA in hPHS-1 and -2 cells both with and without AA. Protein oxidation was increased in hPHS-1 and -2 cells exposed to DA or L-DOPA and further increased by AA addition. DNA oxidation was enhanced earlier and at lower substrate concentrations than protein oxidation in both hPHS-1 and -2 cells by DA, L-DOPA, DOPAC, and HVA and further enhanced by AA addition. hPHS-2 cells seemed more susceptible than hPHS-1 cells, whereas untransfected CHO-K1 cells were less susceptible. Thus, isozyme-specific, hPHS-dependent oxidative damage and cytotoxicity caused by neurotransmitters, their precursors, and their metabolites may contribute to neurodegeneration associated with aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号