首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The radial fusiform cell files of the secondary phloem of conifers and dicots are composed of different cell types?–?fibres, parenchyma and sieve cells (in conifers), or sieve elements plus companion cells (in dicots). These cell types are arranged in characteristic, species-specific sequences along the radii of the files. The sequences are replicated in adjacent files and this leads to tangential bands of similar cell type. Moreover, the sequences are developed repetitively so that a sequence found in one year's growth increment of phloem is repeated in the next increment. In some species, many repetitions of the same sequence occur within one annual increment. A general hypothesis has been developed to account for the radial sequences of cell types. It is proposed that there is a gradient of a phloem-promoting morphogen, a series of morphogen thresholds for the determination of each phloem cell type, and a particular spatio-temporal pattern of periclinal cell division in the phloem domain of the vascular cambium that generates a corresponding pattern of cell displacement through the morphogen gradient in the immediately post-mitotic zone of cell determination. The feasibility of the hypothesis was supported by means of simulation which, using a constant set of initial conditions, could reproduce very nearly all the radial sequences of cell types found in the secondary phloem of a range of species of conifers and woody dicots. The tangential banding of the various cell types suggests that cell production and cell determination are events which occur synchronously across the radial files. The repeating blocks of cell types may constitute functional modules of phloem tissue, and the constituent cells probably have particular patterns of symplasmic connections and mechano-structural properties.  相似文献   

2.
The secondary vascular tissues (xylem and phloem) of woody plants originate from a vascular cambium and develop as radially oriented files of cells. The secondary phloem is composed of three or four cell types, which are organised into characteristic recurrent cellular sequences within the radial cell files of this tissue. There is a gradient of auxin (indole acetic acid) across both the cambium and the immediately postmitotic cells within the xylem and phloem domains, and it is believed that this morphogen, probably in concert with other morphogenic factors, is closely associated with the determination and differentiation of the different cells types in each tissue. A hypothesis is developed that, in conjunction with the positional values conferred by the graded radial distribution of morphogen, cell divisions at particular positions within the cambium are sufficient to determine not only each of the phloem cell types but also their recurrent pattern of differentiation within each radial cell file.  相似文献   

3.

There are two main types of arrangement of differentiated cells within the radial cell files of secondary phloem in conifer trees. In the C-type arrangement, characteristic of the Cupressaceae, fibre (F), parenchyma (P) and sieve (S) cells are arranged in recurrent groups, such as the “standard” cellular quartet (FSPS). In the P-type arrangement, characteristic of the Pinaceae, there are no fibres and one of the characteristic recurrent arrangements is the cellular sextet (PSSSSS). In addition, in both C-type and P-type arrangements, similar cell types are often organised into tangential bands. A simulation model, based on the theory of L-systems, was devised to account for the determination of these two types of regular and recurrent patterns of differentiated phloem cells. It was based on the supposition that, in the meristematic portion of the phloem domain, there are specific spatio-temporal patterns of periclinal cell division. When new cells are produced, those already present are displaced along the cell file, occupying a predictable number of cellular positions as a result of each round of cell division. Each cellular position is assumed to be associated with a specific value of a morphogen, such as the auxin, indole acetic acid, relevant for vascular differentiation. Using published quantitative data on the distribution auxin across the phloem, and assuming specific threshold values of auxin necessary for the determination of each cell type, it was found that sequences of F, S or P cells developed in accordance with the specific pattern of cell division and the related positional values of auxin experienced by the cells during their displacement through the immediately post-mitotic zone of cell determination. The model accounts not only for the typical C-type and P-type cellular arrangements, but also for certain variant arrangements. It provides a working example of the concepts of positional information and positional value for patterned differentiation within a developing plant tissue. There are similarities between the way groups of phloem cells develop and the differentiation of somites in the embryos of vertebrates.  相似文献   

4.
Cambial activity in white spruce stems in Alaska was observed during a 2-year period in 50–60-year-old natural stands. Mitotic index was used as a measure of the rate of periclinal division of fusiform cells in the cambial zone. Anticlinal divisions were relatively rare, averaging only one per 27S periclinal divisions in most stems. Mitotic index, at any given time, appeared uniform throughout the cambial zone of an internode, among internodes of the same tree, and even among trees growing at markedly different rates. Diurnal variation in mitotic index was observed. There were three distinct growing season periods: early, grand, and late. Early period activity was characterized by reactivation of periclinal division, erratic mitotic indices, and an approximate doubling of the number of cambial zone cells per radial file (NCZ). Production of the first new xylem and phloem elements marked the beginning of the grand period. Rate of cell production in the cambial zone remained about equal to derivative production for the next 45–50 days, when about 80 % of annual xylem and phloem increment occurred. There was a drop in NCZ at the beginning of the late period coincident with a decline in mitotic index, and NCZ soon dropped to the dormant level. Complete termination of cambial activity was gradual, extending through late August and perhaps into September.  相似文献   

5.
Mature stems of Sesuvium sesuvioides (Fenzl) Verdc. were found to be composed of successive rings of xylem alternating with phloem. Repeated periclinal divisions in the parenchyma outside the primary phloem gave rise to conjunctive tissue and the lateral meristem that differentiate into the vascular cambium on its inner side. After the formation of the vascular cambium, the lateral meristem external to it became indistinct as long as the cambium was functional. As the cambium ceased to divide, the lateral meristem again became apparent prior to the initiation of the next cambial ring. The cambium was exclusively composed of fusiform cambial cells with no rays. In the young saplings, the number of cambial cylinders in the axis varied from the apex to the base, indicating formation of several rings within the year. In each successive ring of the lateral meristem, small segments differentiated into the vascular cambium and gave rise to vessels, axial parenchyma, fibres and fibriform vessels towards the inside, and secondary phloem on the outer side. In the old stems, non‐functional phloem of the innermost rings was replaced by a new set of sieve tube elements formed by periclinal divisions in the cambial segments associated with the non‐functional phloem. In some places the cambial segments completely differentiate into derivatives leaving no cambial cells between the xylem and phloem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 548–555.  相似文献   

6.
Using simple arithmetical formulae, it is shown that, when the meristematic initial cells of a growing plant organ are arranged in a ring, the cellular dimensions predict the relative frequencies of anticlinal and periclinal divisions which these cells undergo. The pattern of cell file branching which appears during the course of development, and which is predicted by this mathematical model, is validated using data pertaining to the numbers and dimensions of initial cells within the secondary vascular cambium of hybrid aspen trees. Data pertaining to a second, simpler set of initial cells which comprises the outer cellular ring of the thallus of the alga Coleochaete orbicularis, and from which all the radial cell files of the circular disc-like thallus are descended, have also been used for model validation. Combining the mathematical approach to division frequencies with data of actual cell sizes permits inferences about the course of the increase of the number of cell files (generated by the anticlinal divisions) and the number of cells within each file (generated by the periclinal divisions) during the earlier stages of secondary tissue or thallus development, and also about how they will develop at future stages. The question whether or not cell division patterns conform to the geometry of the system in which the cells are embedded is also discussed.  相似文献   

7.
The cambium in black locust consists of several layers of cells at all times. Cambial reactivation (division) is preceded by a decrease in density of cambial cell protoplasts and cell wall thickening but not by cell enlargement. During the resumption of cambial activity, periclinal divisions occur throughout the cambial zone. Early divisions contribute largely to the phloem side. The period of greatest cambial activity coincides with early wood formation. Judged by numerous collections made during two seasons (October, 1960-October, 1962) the seasonal cycle of phloem development is as follows. Phloem differentiation begins in early April, ends in late September. The amount of phloem produced is quite variable (range: 1-10 bands of sieve elements per year). Cessation of function begins with the accumulation of definitive callose in the first-formed sieve elements and spreads to those more recently formed. By late November all but the last-formed sieve elements are collapsed. All sieve elements are collapsed by mid-winter and before the resumption of new phloem production in spring. Phloem differentiation precedes xylem differentiation by at least 1 week, and apparently functional sieve elements are present 3 weeks before new functional vessel elements. Xylem and phloem production ends simultaneously in most trees.  相似文献   

8.
Wilson , Brayton F. (U. California, Berkeley). Increase in cell wall surface area during enlargement of cambial derivatives in Abies eoncolor . Amer. Jour. Bot. 50(1): 95–102. Illus. 1963.— Dimensions of fusiform cells (tracheids and sieve cells) and ray cells were measured from samples of the 1960 xylem and phloem increment of 5 trees felled at monthly intervals from April through July, 1960. Calculations using these measurements gave the magnitude, direction and rate of increase in cell wall surface area during enlargement. Although 14 times more tracheids than sieve cells were produced, both cell types enlarged mostly in a radial direction (up to 400%) at the same rate (20–33 × 103μ2 wall surface area/day) to the same final size. Fusiform cambial cells doubled their wall area between successive periclinal divisions. Calculations showed that ⅞ of this increase was in the radial walls of the daughter cells at a rate comparable to that in enlarging tracheids and sieve cells; the other ⅞ was from cell plate formation at an estimated rate of 187–327 × 103μ2/day. Enlargement of derivatives in the radial direction largely determined the amount of increase in wall area. Besides radial enlargement, tracheids also elongated (up to 13%) and phloem cells enlarged tangentially (sieve cells up to 36%; pholem ray cells up to 60%). The relationships of enlarging tracheids and xylem ray cells are discussed, and it is suggested that slippage may occur between the developing walls.  相似文献   

9.
Circular patches of bark were surgically isolated on the sides of sugar maple (Acer saccharum Marsh.) trees at breast height at various times during the dormant and growing seasons. Subsequently, samples of wood and attached bark were taken from isolated and control sites to determine the effects of isolation of the bark on cambial activity and xylem and phloem development. In control sites cambial activity and xylem and phloem development occurred normally. Isolation of bark during the dormant season (in November, February, or March) prevented initiation of cambial activity and xylem and phloem development in isolated areas of half of the trees. Varying degrees of cambial activity (periclinal divisions) occurred in the remaining isolated areas, but normal cambial activity and xylem and phloem development were prevented. Isolation of bark after initiation of cambial activity and phloem differentiation, but prior to initiation of xylem differentiation, resulted in the formation of very narrow xylem and phloem increments with atypically short vessel members and sieve-tube members, respectively. The xylem increments consisted primarily of parenchyma cells. Isolation of bark after initiation of xylem differentiation resulted in curtailment of secondary wall formation in the last-formed part of many increments. The last-formed vessel members of all these xylem increments were atypically short. Similarly, the last formed sieve-tube members of corresponding phloem increments were atypically short. The atypically short cells in the xylem and phloem of isolated areas reflected the effect of isolation on the cambial region, viz., the subdivision of all fusiform cells into strands of cells. Ultimately, the strands of short fusiform cells lapsed into maturity, leaving only strands of parenchymatous elements between xylem and phloem.  相似文献   

10.
张泓  胡正海 《植物研究》1987,7(4):121-132
本文报道了药用植物商陆根中异常次生结构的发生和发育过程。商陆根的初生结构和早期的次生结构都是正常的。但是,后来在维管柱的外围以离心的顺序先后产生5-7轮异常形成层.第一轮异常形成层起源于次生韧皮薄壁细胞和射线细胞。后一轮异常形成层在前一轮异常形成层向外产生的薄壁结合组织中发生。各轮异常形成层都以正常的活动方式产生同心环状排列的异常维管束以及它们之间丰富的薄壁结合组织,从而使根变成肉质状。薄壁结合组织细胞以及异常维管束内的薄壁组织细胞中贮藏有淀粉粒。  相似文献   

11.
Phytolacca dioica L., an evergreen tree of the Phytolaccaceae, is one of the species of Phytolacca which shows anomalous secondary thickening in its stem. This mode of thickening has been regarded as successive cambial activity or alternatively, in some more recent interpretations, as thickening by unidirectional activity of a cambial zone. The stem thickening of P. dioica is of the former type. The cambium produces fascicular strands, showing centrifugal differentiation of xylem and centripetal differentiation of phloem on opposite sides of the cambial layer, and rays are produced between the fascicular areas. In both xylem and phloem the younger elements are closer to the cambium than the older elements. Succeeding cambia arise periodically by periclinal divisions in a layer of parenchyma cells two or three cells beyond the outermost intact phloem derived from the current cambium. Each cambium forms a few parenchyma cells on both sides before it forms derivatives which mature into lignified xylem elements or conductive elements of the phloem. The parenchyma thus formed toward the outside later becomes the site of the origin of the succeeding cambium. Only one or two layers of this phloem parenchyma go on to form the new cambium; the remaining cells accumulate between the outermost phloem and the cortex. P. weberbaueri shows stem structure similar to P. dioica. P. meziana, a shrub, shows normal stem structure.  相似文献   

12.
Uggla C  Magel E  Moritz T  Sundberg B 《Plant physiology》2001,125(4):2029-2039
In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development.  相似文献   

13.
Cambial structure and activity of Ficus rumphii Blume vary withthe changes in local climate. The cambial cells start swellingearly in April prior to the onset of periclinal divisions whichare most frequent in August. Cell division stops in October.During the growth season, initiation as well as cessation ofthe phloem production precedes that of xylem. A moderately hightemperature is correlated with the cambial reactivation. Onceinitiated, the activity continues at relatively low temperatures.Hot and dry environment favours the phloem production, whereashot and moderately humid conditions induce xylogenesis. Thesize and relative proportion of cambial initials also changewith season. Fusiform initials are shorter and broader duringthe rainy season (July–September) than for the rest ofthe year. Multiseriate and triseriate rays, as also the tallrays, outnumber the other types of rays throughout the year. Ficus rumphii, vascular cambium, phenology, climatic variation  相似文献   

14.
Observation was made on early ontogeny of vascular cambium in the developing root ofGinkgo biloba L. After completion of root elongation, the vascular meristem gradually acquires cambial characteristics. Strips of the periclinal division of cells in transverse section are observed on the inner side of phloem when the primary xylem and phloem in the stele have been established. The strips are united into a continuous layer between phloem and xylem. In tangenital section, the procambium shows a homogeneous structure, which is initially composed of short cells with transverse end walls and subsequently, of long cells with tapering ends. Then, the procambium is organized into two systems of cells; axial strands of short cells with transverse end walls resulting from the sporadic transverse divisions of long cells, and long cells with tapering ends. Still later, the short cells are divided frequently in a trasverse plane exhibiting one or a few cells in width and several decades of cells in height, while the long cells are elongated. The frequency of transverse divisions of the short cells decreases in subsequent stages. Eventually, the short cells in axial strands are vertically separated from one another by the elongation of neighboring long cells and by the decrease in the frequency of transverse divisions of short cells themselves. Cambial initials occur in two forms; ray initials a few cells in height and one cell in width derived from the short cells, and fusiform initials with tapering ends derived from the long cells.  相似文献   

15.
BACKGROUND AND AIMS The effect of heating and cooling on cambial activity and cell differentiation in part of the stem of Norway spruce (Picea abies) was investigated. METHODS: A heating experiment (23-25 degrees C) was carried out in spring, before normal reactivation of the cambium, and cooling (9-11 degrees C) at the height of cambial activity in summer. The cambium, xylem and phloem were investigated by means of light- and transmission electron microscopy and UV-microspectrophotometry in tissues sampled from living trees. KEY RESULTS: Localized heating for 10 d initiated cambial divisions on the phloem side and after 20 d also on the xylem side. In a control tree, regular cambial activity started after 30 d. In the heat-treated sample, up to 15 earlywood cells undergoing differentiation were found to be present. The response of the cambium to stem cooling was less pronounced, and no anatomical differences were detected between the control and cool-treated samples after 10 or 20 d. After 30 d, latewood started to form in the sample exposed to cooling. In addition, almost no radially expanding tracheids were observed and the cambium consisted of only five layers of cells. Low temperatures reduced cambial activity, as indicated by the decreased proportion of latewood. On the phloem side, no alterations were observed among cool-treated and non-treated samples. CONCLUSIONS: Heating and cooling can influence cambial activity and cell differentiation in Norway spruce. However, at the ultrastructural and topochemical levels, no changes were observed in the pattern of secondary cell-wall formation and lignification or in lignin structure, respectively.  相似文献   

16.
S. Pramod  Priti B. Patel  Karumanchi S. Rao 《Flora》2013,208(10-12):549-555
The effect of exogenous ethephon on cambial activity, xylem production and ray population in young shoots of Leucaena leucocephala was investigated anatomically. The application of ethephon showed a diphasic effect on cambial activity and xylogenesis in a dose dependent manner. Lower concentration of ethephon enhanced cambial activity while high concentrations reduced cambial cell divisions and daughter-cell differentiation. High ethephon concentration also resulted in shorter vessel elements, thick walled fibers and phenolic accumulation in ray cells and vessel elements, whereas low concentration allowed elongation of fibers and vessel elements. The density of rays increased significantly with increase in ethylene concentration. The evaluation of longitudinal sections of cambial zone in ethephon treated plants showed high frequency of transformation of fusiform initials into ray initials through divisions and segmentation, resulting in high ray frequency in both xylem and phloem. The present study demonstrates that ethylene plays an important role in regulating secondary vascular tissue composition by reducing the population of fusiform initials in the cambium.  相似文献   

17.
Aspects of anatomical development were correlated with internodal growth in tomato plants, variety ‘Yellow Plum,’ grown for more than 3 months. Internodal length was measured weekly in control plants and those harvested for anatomical study. Gross structure indicated progressive development with increasing age. Primary xylem and phloem first mature in distinct strands and the strands are joined laterally by procambium to form a continuous vascular cylinder. Primary phloem occurs on the outer periphery of the procambium between the early-formed vascular strands. Successive periclinal divisions in the procambium during internode elongation give rise to pronounced radial seriations of the cells. Procambial derivatives are included in the cylinder of thick-walled, lignified vascular cells that become prominent after elongation ceases. Secondary xylem is of greater radial width in the stem sectors which include protoxylem. During early secondary growth, vessels develop in the secondary xylem only in these sectors. Nucleate fibers and rays constitute the remainder of the secondary xylem. The rays exhibit an organization noted in other plants of reduced growth habit. Some of these interpretations do not agree with those described for tomato in earlier studies, and they are discussed in relation to pertinent aspects of development.  相似文献   

18.
Park J  Hwang H  Shim H  Im K  Auh CK  Lee S  Davis KR 《Molecules and cells》2004,17(1):117-124
Arabidopsis Sei-O ecotype was found to be hypersusceptible to the BCTV-Logan strain in that it developed very severe symptoms, including severely deformed inflorescences with the callus-like structure, and accumulated high level of viral DNA. Microscopic studies of the BCTV-induced cell divisions demonstrated that the activation of cell divisions was preceded by the phloem disruption and the callus-like structure seemed to be originated from the cortex nearby disrupted phloem. We have further defined the callus-like structure formed by BCTV infection using molecular and histochemical analyses. Results indicate that BCTV infection causes the phloem disruption, following by cell enlargement and elongation in cortex and even epidermis. Finally, BCTV induced symptomatic secondary growth in cortex by de novo anticlinal and periclinal cell divisions. Expression of cdc2 and saur from BCTV-infected Arabidopsis correlates with symptom development. These results suggest a critical role of auxin in symptom development in the interactions between Arabidopsis and BCTV.  相似文献   

19.
Wounding of trees by debarking during the vegetative period sometimes results in the formation of callus tissue which develops over the entire wound surface or on parts of it. This light and transmission electron microscopy study of living lime trees found that the formation of such a surface callus is subdivided into three stages. During the first stage, numerous cell divisions take place in regions where differentiating xylem remains at the wound surface after debarking. This young callus tissue consists of isodiametric parenchymatous cells. Cambium cells, sometimes also remaining at the wound surface, collapse and do not contribute to callus formation. During the second stage, cells in the callus undergo differentiation by forming a wound periderm with phellem, phellogen and phelloderm. In the third stage, a cambial zone develops between the wound periderm and the xylem tissue laid down prior to wounding. This process is initiated by anticlinal and periclinal divisions of a few callus cells only. Later this process extends tangentially to form a continuous belt of wound cambium. Subsequently, this cambium produces both wound xylem and wound phloem and thus contributes to further thickening.  相似文献   

20.
Cambium samples of Thuja occidentalis L. were collected at five different times, covering spring reactivation and early and late resting period, and used for sucrose determinations. Fragments of the different cell types - xylem ray, cambial initials, sieve-elements including phloem parenchyma cells, phloem ray - were dissected from freeze-dried radial sections and analyzed individually. Results show large differences in sucrose concentrations in the different cell types of the cambial layer. In addition, each cell type also shows seasonal fluctuations in sucrose content, whose amplitudes and patterns of variation appear specific for the particular cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号