首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation in the env (V3 region) and gag (p17 region) genes of genomic RNA of human immunodeficiency virus type 1 was studied in three mother-child pairs. One infant was human immunodeficiency virus type 1 RNA positive at birth (pair 114), one became positive 6 weeks after birth (pair 127), and one became positive 30 months after birth (pair 564). The first two children were born to seropositive mothers, and the last child was infected by breast-feeding following seroconversion of the mother after delivery. In both V3 and p17gag, intrasample variability was much higher in the maternal samples, including the first seropositive sample of the seroconverted mother, than in the infants' samples. Variability was less in p17gag than in V3, except in the postnatally infected child. In all three cases, infection of the child was established by variants representing a minority of the cell-free virus population in the maternal samples. For the two infants born to seropositive mothers, V3 sequences were more similar to the sequence populations of maternal samples collected during pregnancy than to those of samples collected at delivery or thereafter. However, in pair 114 a V3 variant identical to the child's virus was also detected in the sample collected at delivery. In contrast to the V3 region, p17gag sequences of maternal samples of the first trimester of pregnancy and at delivery had comparable resemblance to the child's sequences in pair 114, while in pair 127, similarity to sequences of the sample collected at delivery was higher than that to sequences of the sample from early in pregnancy. In the last pair, V3 and p17gag sequences from a maternal sample collected 18 months prior to the first RNA-positive sample of the child resembled the infant's sequences as much as the sample collected close to the presumed time of infection. Taken together, the evolutionary characteristics for genomic RNA env and gag genes did not point to a particular time of mother-to-child transmission.  相似文献   

2.
Although several virologic and immunologic factors associated with an increased risk of perinatal human immunodeficiency virus type 1 (HIV-1) transmission have been described, the mechanism of mother-to-child transmission is still unclear. More specifically, the question of whether selective pressures influence the transmission remains unanswered. The aim of this study was to assess the genetic diversity of the transmitted virus after in utero transmission and after peripartum transmission and to compare the viral heterogeneity in the child with the viral heterogeneity in the mother. To allow a very accurate characterization of the viral heterogeneity in a single sample, limiting-dilution sequencing of a 1016-bp fragment of the env gene was performed. Thirteen children were tested, including 6 with in utero infections and 7 with peripartum infections. Samples were taken the day after birth and at the ages of 6 and 14 weeks. A homogeneous virus population was seen in six (46.2%) infants, of whom two were infected in utero and four were infected peripartum. A more heterogeneous virus population was detected in seven infants (53.8%), four infected in utero and three infected peripartum. The phylogenetic trees of the mother-child pairs presented a whole range of different tree topologies and showed infection of the child by one or more maternal variants. In conclusion, after HIV-1 transmission from mother to child a heterogeneous virus population was detected in approximately one-half of the children examined. Heterogeneous virus populations were found after peripartum infection as well as after in utero infection. Phylogenetic tree topologies argue against selection processes as the major mechanism driving mother-to-child transmission but support the hypothesis that virus variability is mainly driven by the inoculum level and/or exposure time.  相似文献   

3.
HIV-1 variants transmitted to infants are often resistant to maternal neutralizing antibodies (NAbs), suggesting that they have escaped maternal NAb pressure. To define the molecular basis of NAb escape that contributes to selection of transmitted variants, we analyzed 5 viruses from 2 mother-to-child transmission pairs, in which the infant virus, but not the maternal virus, was resistant to neutralization by maternal plasma near transmission. We generated chimeric viruses between maternal and infant envelope clones obtained near transmission and examined neutralization by maternal plasma. The molecular determinants of NAb escape were distinct, even when comparing two maternal variants to the transmitted infant virus within one pair, in which insertions in V4 of gp120 and substitutions in HR2 of gp41 conferred neutralization resistance. In another pair, deletions and substitutions in V1 to V3 conferred resistance, but neither V1/V2 nor V3 alone was sufficient. Although the sequence determinants of escape were distinct, all of them involved modifications of potential N-linked glycosylation sites. None of the regions that mediated escape were major linear targets of maternal NAbs because corresponding peptides failed to compete for neutralization. Instead, these regions disrupted multiple distal epitopes targeted by HIV-1-specific monoclonal antibodies, suggesting that escape from maternal NAbs occurred through conformational masking of distal epitopes. This strategy likely allows HIV-1 to utilize relatively limited changes in the envelope to preserve the ability to infect a new host while simultaneously evading multiple NAb specificities present in maternal plasma.  相似文献   

4.
Subtype C human immunodeficiency virus type 1 (HIV-1C) continues to cause the majority of new cases of mother-to-child transmission (MTCT), and yet there are limited data on HIV-1C transmission. We amplified env from plasma RNA for 19 HIV-1C MTCT pairs, 10 transmitting in utero (IU) and 9 transmitting intrapartum (IP). There was a strong genetic bottleneck between all mother-infant pairs, with a majority of transmission events involving the transmission of a single virus. env genes of viruses transmitted to infants IP, but not IU, encoded Env proteins that were shorter and had fewer putative N-linked glycosylation sites in the V1-V5 region than matched maternal sequences. Viruses pseudotyped with env clones representative of each maternal and infant population were tested for neutralization sensitivity. The 50% inhibitory concentration of autologous serum was similar against both transmitted (infant) and nontransmitted (maternal) viruses in a paired analysis. Mother and infant Env proteins were also similar in sensitivity to soluble CD4, to a panel of monoclonal antibodies, and to heterologous HIV-1C sera. In addition, there was no difference in the breadth or potency of neutralizing antibodies between sera from 50 nontransmitting and 23 IU and 23 IP transmitting HIV-1C-infected women against four Env proteins from heterologous viruses. Thus, while a strong genetic bottleneck was detected during MCTC, with viruses of shorter and fewer glycosylation sites in env present in IP transmission, our data do not support this bottleneck being driven by selective resistance to antibodies.  相似文献   

5.
The human immunodeficiency virus type 1 (HIV-1) sequences from variable region 3 (V3) of the envelope gene were analyzed from seven infected mother-infant pairs following perinatal transmission. The V3 region sequences directly derived from the DNA of the uncultured peripheral blood mononuclear cells from infected mothers displayed a heterogeneous population. In contrast, the infants' sequences were less diverse than those of their mothers. In addition, the sequences from the younger infants' peripheral blood mononuclear cell DNA were more homogeneous than the older infants' sequences. All infants' sequences were different but displayed patterns similar to those seen in their mothers. In the mother-infant pair sequences analyzed, a minor genotype or subtype found in the mothers predominated in their infants. The conserved N-linked glycosylation site proximal to the first cysteine of the V3 loop was absent only in one infant's sequence set and in some variants of two other infants' sequences. Furthermore, the HIV-1 sequences of the epidemiologically linked mother-infant pairs were closer than the sequences of epidemiologically unlinked individuals, suggesting that the sequence comparison of mother-infant pairs done in order to identify genetic variants transmitted from mother to infant could be performed even in older infants. There was no evidence for transmission of a major genotype or multiple genotypes from mother to infant. In conclusion, a minor genotype of maternal virus is transmitted to the infants, and this finding could be useful in developing strategies to prevent maternal transmission of HIV-1 by means of perinatal interventions.  相似文献   

6.
We have examined the viral selection that may occur during transmission by studying the env gene sequences from four cases of mother-to-child transmission of human immunodeficiency virus type 1. The V3 region sequences were directly amplified from both plasma viral RNA and peripheral blood mononuclear cells containing proviral DNA from mothers at delivery and at the time of diagnosis for children. Transmission occurred perinatally in three cases. The similarity of the viral sequences in each infant sample contrasted with the heterogeneous viral populations in the mothers. Phylogenetic analysis indicated the transmission of one or a few closely related maternal minor virus variants. In contrast, the child virus population in the fourth case was as heterogeneous as that of his mother, and phylogenetic analysis strongly suggested the transmission of multiple maternal variants. This case of multiple transmission was confirmed by analyzing sequences obtained at three times after delivery. Strains with sequences corresponding to the syncytium-inducing phenotype were also transmitted in this fourth case, and this was associated with the rapid development of disease in the child. There was no evidence for transmission of particular viral variants from mother to infant. We have thus described a particular case of vertical human immunodeficiency virus type 1 transmission with the transmission of multiple maternal variants to the infant and a rapid, fatal outcome in the child.  相似文献   

7.
To gain deeper insight into the epidemiology of HIV-1 transmission in South-East Austria we performed a retrospective analysis of 259 HIV-1 partial pol sequences obtained from unique individuals newly diagnosed with HIV infection in South-East Austria from 2008 through 2014. After quality filtering, putative transmission linkages were inferred when two sequences were ≤1.5% genetically different. Multiple linkages were resolved into putative transmission clusters. Further phylogenetic analyses were performed using BEAST v1.8.1. Finally, we investigated putative links between the 259 sequences from South-East Austria and all publicly available HIV polymerase sequences in the Los Alamos National Laboratory HIV sequence database. We found that 45.6% (118/259) of the sampled sequences were genetically linked with at least one other sequence from South-East Austria forming putative transmission clusters. Clustering individuals were more likely to be men who have sex with men (MSM; p<0.001), infected with subtype B (p<0.001) or subtype F (p = 0.02). Among clustered males who reported only heterosexual (HSX) sex as an HIV risk, 47% clustered closely with MSM (either as pairs or within larger MSM clusters). One hundred and seven of the 259 sequences (41.3%) from South-East Austria had at least one putative inferred linkage with sequences from a total of 69 other countries. In conclusion, analysis of HIV-1 sequences from newly diagnosed individuals residing in South-East Austria revealed a high degree of national and international clustering mainly within MSM. Interestingly, we found that a high number of heterosexual males clustered within MSM networks, suggesting either linkage between risk groups or misrepresentation of sexual risk behaviors by subjects.  相似文献   

8.
Most human immunodeficiency virus type 1 (HIV-1) transmissions in sub-Saharan Africa are believed to occur between married adults who are discordant for their HIV-1 infection status; however, no studies to date have investigated the molecular epidemiology of such transmission events. Here we report the genetic characterization of HIV-1 strains from 149 transmission pairs that were identified prospectively in a cohort of discordant couples in Lusaka, Zambia. Subgenomic gag, gp120, gp41, and/or long terminal repeat regions were amplified by PCR analysis of uncultured blood samples from both partners and sequenced without interim cloning. Pairwise genetic distances were calculated for the regions analyzed and compared to those of subtype-specific reference sequences as well as local controls. Sequence relationships were also examined by phylogenetic tree analysis. By these approaches, epidemiological linkage was established for the majority of transmission pairs. Viruses from 129 of the 149 couples (87%) were very closely related and clustered together in phylogenetic trees in a statistically highly significant manner. In contrast, viruses from 20 of the 149 couples (13%) were only distantly related in two independent genomic regions, thus ruling out transmission between the two partners. The great majority (95%) of transmitted viruses were of subtype C origin, although representatives of subtypes A, D, G, and J were also identified. There was no evidence for extensive transmission networks within the cohort, although two phylogenetic subclusters of viruses infecting two couples each were identified. Taken together, these data indicate that molecular epidemiological analyses of presumed transmission pairs are both feasible and required to determine behavioral, virological, and immunological correlates of heterosexual transmission in sub-Saharan Africa with a high level of accuracy.  相似文献   

9.
To address whether sequences of viral gag and env quasispecies collected during the early post-acute period can be utilized to determine multiplicity of transmitted HIV's, recently developed approaches for analysis of viral evolution in acute HIV-1 infection [1,2] were applied. Specifically, phylogenetic reconstruction, inter- and intra-patient distribution of maximum and mean genetic distances, analysis of Poisson fitness, shape of highlighter plots, recombination analysis, and estimation of time to the most recent common ancestor (tMRCA) were utilized for resolving multiplicity of HIV-1 transmission in a set of viral quasispecies collected within 50 days post-seroconversion (p/s) in 25 HIV-infected individuals with estimated time of seroconversion. The decision on multiplicity of HIV infection was made based on the model's fit with, or failure to explain, the observed extent of viral sequence heterogeneity. The initial analysis was based on phylogeny, inter-patient distribution of maximum and mean distances, and Poisson fitness, and was able to resolve multiplicity of HIV transmission in 20 of 25 (80%) cases. Additional analysis involved distribution of individual viral distances, highlighter plots, recombination analysis, and estimation of tMRCA, and resolved 4 of the 5 remaining cases. Overall, transmission of a single viral variant was identified in 16 of 25 (64%) cases, and transmission of multiple variants was evident in 8 of 25 (32%) cases. In one case multiplicity of HIV-1 transmission could not be determined. In primary HIV-1 subtype C infection, samples collected within 50 days p/s and analyzed by a single-genome amplification/sequencing technique can provide reliable identification of transmission multiplicity in 24 of 25 (96%) cases. Observed transmission frequency of a single viral variant and multiple viral variants were within the ranges of 64% to 68%, and 32% to 36%, respectively.  相似文献   

10.
The development of viral diversity during the course of human immunodeficiency virus type 1 (HIV-1) infection may significantly influence viral pathogenesis. The paradigm for HIV-1 evolution is based primarily on studies of male cohorts in which individuals were presumably infected with a single virus variant of subtype B HIV-1. In this study, we evaluated virus evolution based on sequence information of the V1, V2, and V3 portions of HIV-1 clade A envelope genes obtained from peripheral blood and cervical secretions of three women with genetically heterogeneous viral populations near seroconversion. At the first sample following seroconversion, the number of nonsynonymous substitutions per potential nonsynonymous site (dn) significantly exceeded substitutions at potential synonymous sites (ds) in plasma viral sequences from all individuals. Generally, values of dn remained higher than values of ds as sequences from blood or mucosa evolved. Mutations affected each of the three variable regions of the envelope gene differently; insertions and deletions dominated changes in V1, substitutions involving charged amino acids occurred in V2, and sequential replacement of amino acids over time at a small subset of positions distinguished V3. The relationship among envelope nucleotide sequences obtained from peripheral blood mononuclear cells, plasma, and cervical secretions was evaluated for each individual by both phylogenetic and phenetic analyses. In all subjects, sequences from within each tissue compartment were more closely related to each other than to sequences from other tissues (phylogenetic tissue compartmentalization). At time points after seroconversion in two individuals, there was also greater genetic identity among sequences from the same tissue compartment than among sequences from different tissue compartments (phenetic tissue compartmentalization). Over time, temporal phylogenetic and phenetic structure was detectable in mucosal and plasma viral samples from all three women, suggesting a continual process of migration of one or a few infected cells into each compartment followed by localized expansion and evolution of that population.  相似文献   

11.

Background

Mother-to-child transmission of HIV-1 remains a significant problem in the resource-constrained settings where anti-retroviral therapy is still not widely available. Understanding the earliest events during HIV-1 transmission and characterizing the newly transmitted or founder virus is central to intervention efforts. In this study, we analyzed the viral env quasispecies of six mother-infant transmission pairs (MIPs) and characterized the genetic features of envelope glycoprotein that could influence HIV-1 subtype C perinatal transmission.

Methodology and Findings

The V1-V5 region of env was amplified from 6 MIPs baseline samples and 334 DNA sequences in total were analyzed. A comparison of the viral population derived from the mother and infant revealed a severe genetic bottleneck occurring during perinatal transmission, which was characterized by low sequence diversity in the infant. Phylogenetic analysis indicates that most likely in all our infant subjects a single founder virus was responsible for establishing infection. Furthermore, the newly transmitted viruses from the infant had significantly fewer potential N-linked glycosylation sites in Env V1-V5 region and showed a propensity to encode shorter variable loops compared to the nontransmitted viruses. In addition, a similar intensity of selection was seen between mothers and infants with a higher rate of synonymous (dS) compared to nonsynonymous (dN) substitutions evident (dN/dS<1).

Conclusions

Our results indicate that a strong genetic bottleneck occurs during perinatal transmission of HIV-1 subtype C. This is evident through population diversity and phylogenetic patterns where a single viral variant appears to be responsible for infection in the infants. As a result the newly transmitted viruses are less diverse and harbored significantly less glycosylated envelope. This suggests that viruses with the restricted glycosylation in envelope glycoprotein appeared to be preferentially transmitted during HIV-1 subtype C perinatal transmission. In addition, our findings also indicated that purifying selection appears to predominate in shaping the early intrahost evolution of HIV-1 subtype C envelope sequences.  相似文献   

12.
In order to determine if viral selection occurs during mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1), we used a direct solid-phase sequencing method to sequence the p17 matrix protein-encoding regions of viral isolates from 12 HIV-1-infected mother-and-child pairs, 4 infected infants, 4 transmitting mothers, and 22 nontransmitting mothers and compared the sequences. The blood samples were collected during the delivery period for the mothers and during the first month of life for most of the children. The p17 nucleic sequences were distributed among several clades corresponding to the HIV-1 A, B, and G subtypes. At the amino acid level, no significant differences within the known p17 functional regions were observed among the subtypes. Statistical analyses could be performed with the B subtype. Within the major p17 antibody binding site, a constant KIEEEQN motif (amino acids 103 to 109) was found in all mother-and-child isolates from the B subtype. On the other hand, 9 of 17 nontransmitting mother isolates were variable in this 103 to 109 region. Thus, this motif was significantly associated with the transmitting status (chi square, P = 0.0034). A valine residue at position 104 was significantly associated with the nontransmitting phenotype (chi square, P = 0.014), suggesting that it has a protective role during vertical transmission. The C-terminal end of p17 was globally conserved among nontransmitting mother isolates (chi square, P = 0.0037). These results might improve the understanding of the pathogenesis of HIV-1 vertical transmission and might allow the screening of seropositive mothers by a rapid molecular or peptide test.  相似文献   

13.
To determine newly identified lentiviruses, termed simian immunodeficiency virus (SIV)cpz97CG4 and SIVcpz97CG6, from two wild-captured juvenile brother chimpanzees in the Republic of Congo, subgenomic pol (integrase, 288 bp), 5'tat/rev-env Cl (including vpu, 354 bp) and env (C2-C4, 544 bp) gene fragments were amplified and sequenced. The analysis revealed significantly discordant phylogenetic positions of SIVcpz97CG in each genomic region. In the trees derived from partial env sequences (V3), both SIVcpz strains clustered in human immunodeficiency virus type 1 (HIV-1) subtype A. However, in the trees derived from partial pol (integrase) and 5'tat/rev-env C1 (including vpu) sequences, they clustered independently from any of the known HIV-1 subtypes. Especially, in the 5'tat/rev-vpu tree, they branched before the root of HIV-1 group M. These findings suggest that these Congolese SIVcpz genomes are mosaic, probably due to a recombinational event in the recent past, and it provides evidence for a rather recently occurring cross-species transmission between humans and chimpanzees.  相似文献   

14.
CD8+ T lymphocyte responses play an important role in controlling HIV-1 replication but escape from CD8+ T cell surveillance may limit the effectiveness of these responses. Mother-to-child transmission of CD8+ T cell escape variants may particularly affect CD8+ T cell recognition of infant HIV-1 epitopes. In this study, amino acid sequence variation in HIV-1 gag and nef was examined in five untreated mother-infant pairs to evaluate the potential role of CD8+ T cell responses in the evolution of the viral quasispecies. Several CD8+ T cell escape variants were detected in maternal plasma. Evaluation of infant plasma viruses at 1-3 mo documented heterogeneity of gag and nef gene sequences and mother-to-child transmission of CD8+ T cell escape variants. Infant HLA haplotype and viral fitness appeared to determine the stability of the escape mutants in the infant over time. Changes in CD8+ T cell epitope sequences were detected in infants' sequential plasma specimens, suggesting that infants are capable of generating virus-specific CD8+ T cell responses that exert selective pressures in vivo. Altogether, these studies document that HIV-1-specific CD8+ T cell responses contribute to the evolution of the viral quasispecies in HIV-1-infected women and their infants and may have important implications for vaccine design.  相似文献   

15.
Wang Q  Boles RG 《Mitochondrion》2006,6(1):37-42
Due to maternal inheritance, lack of recombination and a high polymorphic density, the mtDNA control region hypervariable (HV) regions are well suited for forensic identification using a maternal relative as the known sample. This analysis can be performed in hair, however, heteroplasmy in this tissue is not rare and can result in an apparent sequence mismatch that complicates this application. There is little data comparing mother and child mtDNA-CR heteroplasmic proportions in hair. In this study, we assayed four hairs per individual in 26 mother-child pairs by TTGE for heteroplasmy across HV1. Single nucleotide heteroplasmy was detected in seven families, and in four families at least two hairs were heteroplasmic. In each of the latter families, sequencing and PCR-RFLP confirmed single nucleotide heteroplasmy in proportions of the variant ranging from < or =10 to > or =90% in the mothers, with far less variability in their children. Sequencing alone would have revealed apparent homoplasmic differences at one nucleotide in these families, possibly resulting in an 'inconclusive' verdict for relatedness of child and mother. However, mother-child heteroplasmic variability did not exceed intra-individual variability in the mothers alone.  相似文献   

16.
HIV infections are initiated by a limited number of variants that diverge into a diverse quasispecies swarm. During in utero mother-to-child transmission (IU MTCT), transmitted viral variants must pass through multiple unique environments, and our previously published data suggest a nonstochastic model of transmission. As an alternative to a stochastic model of viral transmission, we hypothesize that viral selection in the placental environment influences the character of the viral quasispecies when HIV-1 is transmitted in utero. To test this hypothesis, we used single-template amplification to isolate HIV-1 envelope gene (env) sequences from both peripheral plasma and the placentas of eight nontransmitting (NT) and nine IU-transmitting participants. Statistically significant compartmentalization between peripheral and placental HIV-1 env was detected in one of the eight NT cases and six of the nine IU MTCT cases. In addition, viral sequences isolated from IU MTCT placental tissue showed variation in env V1 loop lengths compared to matched maternal sequences, while NT placental env sequences did not. Finally, comparison of env sequences from NT and IU MTCT participants indicated statistically significant differences in Kyte-Doolittle hydropathy in the signal peptide, C2, V3, and C3 regions. Our working hypothesis is that the hydropathy differences in Env associated with IU MTCT alter viral cellular tropism or affinity, allowing HIV-1 to efficiently infect placentally localized cells.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) sequences were generated from blood and from brain tissue obtained by stereotactic biopsy from six patients undergoing a diagnostic neurosurgical procedure. Proviral DNA was directly amplified by nested PCR, and 8 to 36 clones from each sample were sequenced. Phylogenetic analysis of intrapatient envelope V3-V5 region HIV-1 DNA sequence sets revealed that brain viral sequences were clustered relative to the blood viral sequences, suggestive of tissue-specific compartmentalization of the virus in four of the six cases. In the other two cases, the blood and brain virus sequences were intermingled in the phylogenetic analyses, suggesting trafficking of virus between the two tissues. Slide-based PCR-driven in situ hybridization of two of the patients' brain biopsy samples confirmed our interpretation of the intrapatient phylogenetic analyses. Interpatient V3 region brain-derived sequence distances were significantly less than blood-derived sequence distances. Relative to the tip of the loop, the set of brain-derived viral sequences had a tendency towards negative or neutral charge compared with the set of blood-derived viral sequences. Entropy calculations were used as a measure of the variability at each position in alignments of blood and brain viral sequences. A relatively conserved set of positions were found, with a significantly lower entropy in the brain-than in the blood-derived viral sequences. These sites constitute a brain "signature pattern," or a noncontiguous set of amino acids in the V3 region conserved in viral sequences derived from brain tissue. This brain-derived signature pattern was also well preserved among isolates previously characterized in vitro as macrophage tropic. Macrophage-monocyte tropism may be the biological constraint that results in the conservation of the viral brain signature pattern.  相似文献   

18.
19.
In the present study the epidemic of human immunodeficiency virus type 1 (HIV-1) subtype B in Slovenia during the 10-year period was investigated using phylogenetic analysis of pol gene sequences. 119 pol sequences generated on samples dated from January 1996 to December 2005 were retrieved from the database of Slovenian HIV/AIDS Reference Laboratory. The phylogenetic analysis revealed 14 potentially significant transmission clusters (bootstrap value > or = 98%), comprising 34 HIV-1 strains. The vast majority of clustered individuals were men (91%), and of them, 79% were men who have sex with men. Factors significantly associated with clustering were: recent infection (HIV-1 infection during or after year 2003), diagnosis of primary HIV-1 infection, higher CD4 cell count and acquiring HIV-1 infection in Slovenia. Recent subtype B HIV-1 infections are the important driving force of current HIV-1 epidemic in Slovenia.  相似文献   

20.
To characterize polymorphisms of the subtype A protease in the former Soviet Union, proviral DNA samples were obtained, with informed consent, from 119 human immunodeficiency virus type 1 (HIV-1)-positive untreated injecting drug users (IDUs) from 16 regions. All individuals studied have never been treated with antiretroviral drugs. The isolates were defined as IDU-A (n = 115) and CRF03_AB (n = 4) by using gag/env HMA/sequencing. The pro region was analyzed by using sequencing and original HIV-ProteaseChip hybridization technology. The mean of pairwise nucleotide distance between 27 pro sequences (23 IDU-A and 4 CRF03_AB) was low (1.38 +/- 0.79; range, 0.00 to 3.23). All sequences contained no primary resistance mutations. However, 13 of 23 (56.5%) subtype A isolates bore the V77I substitution known as the secondary protease mutation. V77I was associated with two synonymous substitutions in triplets 31 and 78, suggesting that all V77I-bearing viruses evolved from a single source in 1997. Hybridization analysis showed that 55 of 115 (47.8%) HIV-1 isolates contained V77I, but this variant was not found in any of 31 DNA samples taken from regions, where the HIV-1 epidemic among IDUs started earlier 1997, as well as in any of four CRF03_AB isolates. The results of analysis of 12 additional samples derived from epidemiologically linked subjects showed that in all four epidemiological clusters the genotype of the donor and the recipients was the same irrespective of the route of transmission. This finding demonstrates the transmission of the V77I mutant variant, which is spreading rapidly within the circulating viral pool in Russia and Kazakhstan. The continued molecular epidemiological and virological monitoring of HIV-1 worldwide thus remains of great importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号