首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydroxamate siderophore receptor FhuA is a TonB-dependent outer membrane protein of Escherichia coli composed of a C-terminal 22-stranded beta-barrel occluded by an N-terminal globular cork domain. During siderophore transport into the periplasm, the FhuA cork domain has been proposed to undergo conformational changes that allow transport through the barrel lumen; alternatively, the cork may be completely displaced from the barrel. To probe such changes, site-directed cysteine mutants in the cork domain (L109C and Q112C) and in the barrel domain (S356C and M383C) were created within the putative siderophore transport pathway. Molecular modeling predicted that the double cysteine mutants L109C/S356C and Q112C/M383C would form disulfide bonds, thereby tethering the cork and barrel domains. The double cysteine FhuA mutants were denatured under nonreducing conditions and fluorescently labeled with thiol-specific Oregon Green maleimide. Subsequent SDS-PAGE analysis revealed two distinct species: FhuA containing a disulfide bond and FhuA with free sulfhydryl groups. To address the role of the putative siderophore transport pathway and to evaluate possible rearrangements of the cork domain during ferricrocin transport, disulfide bond formation was enhanced by an oxidative catalyst. Cells containing double cysteine FhuA mutants that were subjected to oxidation during ferricrocin transport exhibited disulfide bond formation to near completion. After disulfide tethering of the cork to the barrel, ferricrocin transport was equivalent to transport by untreated cells. These results demonstrate that blocking the putative siderophore transport pathway does not abrogate ferricrocin uptake. We propose that, during siderophore transport through FhuA, the cork domain remains within the barrel rather than being displaced.  相似文献   

2.
The filamentous ascomycete A. nidulans produces two major siderophores: it excretes triacetylfusarinine C to capture iron and contains ferricrocin intracellularly. In this study we report the characterization of two siderophore biosynthetic genes, sidA encoding l-ornithine N(5)-monooxygenase and sidC encoding a non-ribosomal peptide synthetase respectively. Disruption of sidC eliminated synthesis of ferricrocin and deletion of sidA completely blocked siderophore biosynthesis. Siderophore-deficient strains were unable to grow, unless the growth medium was supplemented with siderophores, suggesting that the siderophore system is the major iron assimilatory system of A. nidulans during both iron depleted and iron-replete conditions. Partial restoration of the growth of siderophore-deficient mutants by high concentrations of Fe(2+) (but not Fe(3+)) indicates the presence of an additional ferrous transport system and the absence of an efficient reductive iron assmilatory system. Uptake studies demonstrated that TAFC-bound iron is transferred to cellular ferricrocin whereas ferricrocin is stored after uptake. The siderophore-deficient mutant was able to synthesize ferricrocin from triacetylfusarinine C. Ferricrocin-deficiency caused an increased intracellular labile iron pool, upregulation of antioxidative enzymes and elevated sensitivity to the redox cycler paraquat. This indicates that the lack of this cellular iron storage compound causes oxidative stress. Moreover, ferricrocin biosynthesis was found to be crucial for efficient conidiation.  相似文献   

3.
Amiodarone is an effective class III antiarrhythmic drug, however, the pulmonary toxicity is one of the most life-threatening complications of its use. The present study was designed to determine the mechanisms underlying pulmonary toxicity of amiodarone. In cultured human lung epithelial cells A549, amiodarone caused cell injury characterized by mitochondrial membrane depolarization, ATP depletion, enhanced propidium iodide (PI) uptake and increase in the number of Annexin-V positive cells, although the population of PI-stained cells appeared earlier and was not identical to that of Annexin-V stained cells, suggesting that the apoptosis and necrosis appeared in different cells. The apoptosis was accompanied with the activation of caspase-2, -3 and -8 but not caspase-9, and reversed by these caspase inhibitors. However, the caspase inhibitors had no influence on mitochondrial membrane potential or PI uptake after exposure of A549 cells to amiodarone. In contrast, mitochondrial cofactors such as L-carnitine and acetyl-l-carnitine attenuated mitochondrial membrane depolarization, abrogated cellular ATP depletion and reversed PI uptake without affecting Annexin-V positive cells. These finding suggest that different intracellular events operate to cause apoptosis and necrosis after exposure of pulmonary epithelial cells to amiodarone.  相似文献   

4.
In excitable cells, hypoxia inhibits K channels, causes membrane depolarization, and initiates complex adaptive mechanisms. It is unclear whether K channels of alveolar epithelial cells reveal a similar response to hypoxia. A549 cells were exposed to hypoxia during whole cell patch-clamp measurements. Hypoxia reversibly inhibited a voltage-dependent outward current, consistent with a K current, because tetraethylamonium (TEA; 10 mM) abolished this effect; however, iberiotoxin (0.1 microM) does not. In normoxia, TEA and iberiotoxin inhibited whole cell current (-35%), whereas the K-channel inhibitors glibenclamide (1 microM), barium (1 mM), chromanol B293 (10 microM), and 4-aminopyridine (1 mM) were ineffective. (86)Rb uptake was measured to see whether K-channel modulation also affected transport activity. TEA, iberiotoxin, and 4-h hypoxia (1.5% O(2)) inhibited total (86)Rb uptake by 40, 20, and 35%, respectively. Increased extracellular K also inhibited (86)Rb uptake in a dose-dependent way. The K-channel opener 1-ethyl-2-benzimidazolinone (1 mM) increased (86)Rb uptake by 120% in normoxic and hypoxic cells by activation of Na-K pumps (+60%) and Na-K-2Cl cotransport (+170%). However, hypoxic transport inhibition was also seen in the presence of 1-ethyl-2-benzimidazolinone, TEA, and iberiotoxin. These results indicate that hypoxia, membrane depolarization, and K-channel inhibition decrease whole cell membrane currents and transport activity. It appears, therefore, that a hypoxia-induced change in membrane conductance and membrane potential might be a link between hypoxia and alveolar ion transport inhibition.  相似文献   

5.
Uptake of ferric iron from ferricrocin was studied in Escherichia coli using a polymer-coupled ferricrocin that was unable to penetrate into the cell. Ferricrocinyl polyethylene glycol succinate (Mr 7000 -- 8500) promoted growth of E. coli K-12 AB2847 aroB under iron-limiting conditions. In iron-starved cells, uptake of 55Fe could be demonstrated; the amount of iron accumulated amounted to 10% of that observed with free ferricrocin. The iron supply by ferricrocin bound to polyethylene glycol was strictly dependent upon the functions expressed by the tonA and the tonB genes, as was the iron uptake promoted by free ferricrocin. Polymer-bound ferricrocin protected cells against colicin M and phage T5 by competition for the common tonA-coded outer membrane receptor protein. In addition, the rate of iron transport via the negatively charged ferricrocinyl succinate was as fast as via the neutral ferricrocin molecule. No ligand was found associated with the cells. Penetration of chelator beyond receptor is not necessary for siderophore-mediated iron uptake. It is concluded that sufficient amounts of iron can be released from the polymer complex to satisfy growth requirements.  相似文献   

6.
The relationship between transferrin-free iron uptake and cellular metabolism was investigated using rabbit reticulocytes in which energy metabolism was altered by incubation with metabolic inhibitors (antimycin A, 2,4-dinitrophenol, NaCN, NaN3 and rotenone) or substrates. Measurements were made of cellular ATP concentration and the rate of uptake of Fe(II) from a sucrose solution buffered at pH 6.5. There was a highly significant correlation between the rate of iron uptake into cytosolic and stromal fractions of the cells and ATP levels. Iron transport into the cytosol showed saturation kinetics. The metabolic inhibitors all reduced the Vmax but had no effect on the Km values for this process. It is concluded that the uptake of transferrin-free iron by reticulocytes is dependent on the cellular concentration of ATP and that it crosses the cell membrane by an active, carrier-mediated transport process. Additional studies were performed using transferrin-bound iron. The metabolic inhibitors also reduced the uptake of this form of iron but the inhibition could be accounted for entirely by reduction in the rate of transferrin endocytosis.  相似文献   

7.
The effect of reducing the membrane potential on glutamine transport in cells of Escherichia coli has been investigated. Addition of valinomycin to tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid-treated E. coli cells in the presence of 20 mM exogenous potassium reduced the membrane potential, as measured by the uptake of the lipophilic cation triphenylmethylphosphonium, and caused a complete inhibition of glutamine transport. Valinomycin plus potassium also caused a rapid decrease in the intracellular levels of ATP of normal E. coli cells, but had little if any effect on the ATP levels of two mutants of E. coli carrying lesions in the energy-transducing ATP complex (unc mutants). Yet both the membrane potential and the capacity to transport glutamine were depressed in the unc mutants by valinomycin and potassium. These findings are consistent with the hypothesis that both ATP and a membrane potential are essential to the active transport of glutamine by E. coli cells.  相似文献   

8.
Siderophores have been identified as virulence factors in the opportunistic fungal pathogen Aspergillus fumigatus. The 14-pass transmembrane protein MirB is postulated to function as a siderophore transporter, responsible for uptake of the hydroxamate siderophore N,N′,N″-triacetylfusarinine C (TAFC). Our aim was to identify amino acids of A. fumigatus MirB that are crucial for uptake of TAFC. Site-directed mutagenesis was used to create MirB mutants. Expression of wild-type and mutant proteins in the Saccharomyces cerevisiae strain PHY14, which lacks endogenous siderophore transporters, was confirmed by Western blotting. TAFC transport assays using 55Fe-labeled TAFC and growth assays with Fe-TAFC as the sole iron source identified alanine 125, tyrosine 577, loop 3, and the second half of loop 7 (Loop7Del2) as crucial for function, since their substitution or deletion abrogated uptake completely. Wild-type MirB transported ferricrocin and coprogen as well as TAFC but not ferrichrysin. MirB was localized by fluorescence microscopy using antisera raised against a MirB extracellular loop peptide. Immunofluorescence microscopy showed that in yeast, wild-type MirB had a punctate distribution under the plasma membrane, as did the A125D and Y577A strains, indicating that the defect in transport of these mutants was unlikely to be due to mislocalization or degradation. MirB immunolocalization in A. fumigatus showed that the transporter was found in vesicles which cycled between the cytoplasm and the plasma membrane and was concentrated at the hyphal tips. The location of MirB was not influenced by the presence of the siderophore TAFC but was sensitive to internal iron stores.  相似文献   

9.
p-azidobenzoyloxy desferriferricrocin (AF) 2, a photoactivatable analog of ferrichrome, was prepared by selective acylation of the serine group of ferricrocin 1 in two steps: transesterification of ferricrocin followed by demetallation. A model compound, (L) 2-benzyloxycarbonylamino-3-p-azidobenzoyloxy N-isopropyl propionamide 8, was separately synthesized in order to set up optimal transesterification conditions to avoid , -elimination or epimerization of serine. Binding of iron-loaded AF (FeAF) to the FhuA outer membrane receptor protein of Escherichia coli AB2847 was demonstrated by inhibition of ferrichrome transport, interference with the infection by the bacteriophage 80 and with killing of cells by albomycin and colicin M. FeAF transported iron only weakly which indicates that the photoaffinity moiety is incompatible with transport or intracellular iron release from the siderophore.  相似文献   

10.
For uptake of ferrichrome into bacterial cells, FhuA, a TonB-dependent outer membrane receptor of Escherichia coli, is required. The periplasmic protein FhuD binds and transfers ferrichrome to the cytoplasmic membrane-associated permease FhuB/C. We exploited phage display to map protein-protein interactions in the E. coli cell envelope that contribute to ferrichrome transport. By panning random phage libraries against TonB and against FhuD, we identified interaction surfaces on each of these two proteins. Their interactions were detected in vitro by dynamic light scattering and indicated a 1:1 TonB-FhuD complex. FhuD residue Thr-181, located within the siderophorebinding site and mapping to a predicted TonB-interaction surface, was mutated to cysteine. FhuD T181C was reacted with two thiol-specific fluorescent probes; addition of the siderophore ferricrocin quenched fluorescence emissions of these conjugates. Similarly, quenching of fluorescence from both probes confirmed binding of TonB and established an apparent KD of approximately 300 nM. Prior saturation of the siderophorebinding site of FhuD with ferricrocin did not alter affinity of TonB for FhuD. Binding, further characterized with surface plasmon resonance, indicated a higher affinity complex with KD values in the low nanomolar range. Addition of FhuD to a preformed TonB-FhuA complex resulted in formation of a ternary complex. These observations led us to propose a novel mechanism in which TonB acts as a scaffold, directing FhuD to regions within the periplasm where it is poised to accept and deliver siderophore.  相似文献   

11.
Abstract: The ability of mitochondrial Ca2+ transport to limit the elevation in free cytoplasmic Ca2+ concentration in neurones following an imposed Ca2+ load is reexamined. Cultured cerebellar granule cells were monitored by digital fura-2 imaging. Following KCI depolarization, addition of the protonophore carbonylcyanide m -chlorophenylhydrazone (CCCP) to depolarize mitochondria released a pool of Ca2+ into the cytoplasm in both somata and neurites. No CCCP-releasable pool was found in nondepolarized cells. Although the KCI-evoked somatic and neurite Ca2+ concentration elevations were enhanced when CCCP was present during KCI depolarization, this was associated with a collapsed ATP/ADP ratio. In the presence of the ATP synthase inhibitor oligomycin, glycolysis maintained high ATP/ADP ratios for at least 10 min. The further addition of the mitochondrial complex I inhibitor rotenone led to a collapse of the mitochondrial membrane potential, monitored by rhodamine-123, but had no effect on ATP/ADP ratios. In the presence of rotenone/oligomycin, no CCCP-releasable pool was found subsequent to KCI depolarization, consistent with the abolition of mitochondrial Ca2+ transport; however, paradoxically the KCI-evoked Ca2+ elevation is decreased. It is concluded that the CCCP-induced increase in cytoplasmic Ca2+ response to KCI is due to inhibition of nonmitochondrial ATP-dependent transport and that mitochondrial Ca2+ transport enhances entry of Ca2+, perhaps by removing the cation from cytoplasmic sites responsible for feedback inhibition of voltage-activated Ca2+ channel activity.  相似文献   

12.
The effect of ATP on mitochondrial membrane depolarization in rat submandibular glands was investigated. Exposure of the cell suspension to high concentrations of ATP induced a sustained depolarization of mitochondrial membrane. This effect was blocked in the presence of magnesium and reproduced by low concentrations of 2',3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP), suggesting the implication of the P2X(7) purinergic receptor. This point was confirmed by comparison of the response to ATP by wild-type and P2X(7) knock-out (P2X(7)R(-/-)) mice. Mitochondria took up calcium after ATP stimulation but the depolarization of the mitochondrial membrane by ATP was not affected by the removal of calcium from the extracellular medium. It was nearly fully suppressed in the absence of sodium and partially blocked by the mitochondrial Na/Ca exchanger inhibitor 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157). Both ATP and monensin increased the uptake of extracellular sodium (as shown by the depolarization of the plasma membrane) but the sodium ionophore did not affect the mitochondrial membrane potential. It is concluded that the activation of P2X(7) receptors depolarizes the mitochondrial membrane. The uptake of extracellular sodium is necessary but not sufficient to induce this response.  相似文献   

13.
14.
Growth promotion was tested using M. smegmatis wild type strain, an exochelin-deficient mutant, and M. fortuitum employing a broad variety of xenosiderophores including hydroxamates, catecholates and a-hydroxy carboxylic acids. The experiments revealed that utilization of siderophore-bound iron is substrate specific suggesting high-affinity siderophore receptor and transport systems. Concentration-dependent uptake of a selected xenosiderophore (fericrocin) in M. smegmatis showed saturation kinetics and uptake was inhibited by respiratory poisons. In situ Mössbauer spectroscopy of ferricrocin uptake in M. smegmatis indicated rapid intracellular reductive removal of the metal excluding intracellular ferricrocin accumulation. The ultimate intracellular iron pool is represented by a compound ( = 0.43 mm s, DE = 1.03 mm s) which has also been found in many other microorganisms and does not represent a bacterioferritin, cytochrome or iron-sulfur cluster. By contrast, iron uptake via citrate - a compound exhibiting a very low complex stability constant - involves ligand exchange with mycobactin. Mycobactin has merely a transient role. The ultimate storage compound is an E.coli-type bacterioferritin, in which over 90% of cellular iron is located.  相似文献   

15.
The uptake of a linear peptide with renin-inhibiting activity (code number EMD 51921) was characterized in isolated rat liver cells. Isolated hepatocytes take up EMD 51921 in a time-, concentration-, energy- and temperature-dependent manner. Transport of the peptide follows mixed-type kinetics. Diffusion occurs at a rate of 8.123 x 10(-6) cm/sec at 6 degrees C. For the saturable part of uptake, a Km of 2.0 microM and a Vmax of 160 pmol/mg per min were calculated. Various substrate analogues inhibit the uptake of EMD 51921. Absence of oxygen or decreased cellular ATP content (e.g., by metabolic inhibitors or xylulose) blocks hepatocellular uptake of EMD 51921. Temperatures above 20 degrees C accelerate the uptake. The activation energy was calculated to be 58.3 kJ/mol. The apparently active uptake of EMD 51921 was not sodium dependent. The membrane potential is a driving force for the accumulation of EMD 51921. Mutual competitive transport inhibition of EMD 51921, cholate and taurocholate is indicative of a common transport system. Benzamidotaurocholate and a cyclosomatostatin analog 008, not phalloidin and iodipamide, however, considerably decrease the uptake of EMD 51921. AS 30D ascites hepatoma cells, unable to accumulate bile acids and certain cyclopeptides, also fail to transport EMD 51921. BSP, a foreign substrate of the bilirubin carrier, noncompetitively inhibits the transport of EMD 51921. The inhibition of the uptake of EMD 51921 by rifampicin, a further substrate of the bilirubin carrier, is mixed: competitive at high EMD 51921 concentrations and uncompetitive at low EMD 51921 concentrations. The uptake of rifampicin into isolated rat liver cells, however, is not influenced by EMD 51921. Substrates of the transport systems for cations, amino acids, long chain fatty acids and hexoses did not influence the transport of EMD 51921.  相似文献   

16.
The inducible glutamate uptake system in Corynebacterium glutamicum (Kr?mer, R., Lambert, C., Hoischen, C. & Ebbighausen, H., preceding paper in this journal) was characterized with respect to its mechanism and energy coupling. All possible secondary active uptake mechanisms can be excluded. Glutamate transport is not coupled to the translocation of H+, Na+ or K+ ions. Although changes in membrane potential and uptake activity cannot completely be separated, no correlation between these two parameters is observed. The uptake of glutamate resembles a primary active, ATP-dependent transport mechanism in several respects. (a) The substrate affinity is very high (1.3 microM). (b) Accumulation of glutamate reaches values of greater than 2.10(5), at least as high as those reported for binding-protein-dependent systems in Gram-negative bacteria. (c) The uptake is unidirectional. Even after complete deenergization, the accumulation ratio was not significantly reduced. (d) The rate of glutamate uptake is directly correlated to the cytosolic ATP content and also to the ATP/ADP ratio. This is shown by varying internal ATP by different procedures applying inhibitors (NaCN, dicyclohexyl carbodiimide), uncouplers (carbonyl m-chlorophenylhydrazone), ionophores (valinomycin), and even by shifting the cells to anaerobiosis. Uptake is not promoted by cytosolic ATP levels below 1.5 mM, the maximum uptake rate is reached at 4-5 mM ATP.  相似文献   

17.
Dipeptide substrates for metalloendoproteases have previously been shown to block biological processes requiring membrane fusion. Thus, we employed such compounds as potential inhibitors of the insulin-dependent activation of glucose transport in fat cells. This event is thought to involve vesicle movement from an intracellular site to the cell surface and would therefore require membrane fusion during the activation step. We find that synthetic dipeptides which are metalloendoprotease substrates rapidly and reversibly inhibit insulin-activated glucose oxidation in a dose-dependent manner but exhibit essentially no effect on basal levels. A similar result is obtained when glucose transport is measured directly in intact fat cells, in metabolically poisoned cells, and in isolated membrane vesicles derived from insulin-activated or untreated fat cells. That is, the dipeptide substrates inhibit insulin-activated glucose uptake to a greater extent than basal transport, and they do so even when vesicle translocation and fusion have already taken place as in ATP-depleted cells and isolated vesicles. Onset of transport inhibition after dipeptide addition is rapid, but not instantaneous, with a t 1/2 of 15-30 s. The metalloendoprotease substrates also inhibit glucose uptake and cytochalasin B binding in human erythrocytes but not in human placental microsomes. Finally, light microscopic examination of substrate-treated red cells reveals marked cupping and/or echinolation of the cell membrane. We conclude the following from these observations: Metalloendoprotease substrates are inhibitors of adipocyte glucose transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
ATP released from airway epithelial cells promotes purinergic receptor-regulated mucociliary clearance activities necessary for innate lung defense. Cell swelling-induced membrane stretch/strain is a common stimulus that promotes airway epithelial ATP release, but the mechanisms transducing cell swelling into ATP release are incompletely understood. Using knockdown and knockout approaches, we tested the hypothesis that pannexin 1 mediates ATP release from hypotonically swollen airway epithelia and investigated mechanisms regulating this activity. Well differentiated primary cultures of human bronchial epithelial cells subjected to hypotonic challenge exhibited enhanced ATP release, which was paralleled by the uptake of the pannexin probe propidium iodide. Both responses were reduced by pannexin 1 inhibitors and by knocking down pannexin 1. Importantly, hypotonicity-evoked ATP release from freshly excised tracheas and dye uptake in primary tracheal epithelial cells were impaired in pannexin 1 knockout mice. Hypotonicity-promoted ATP release and dye uptake in primary well differentiated human bronchial epithelial cells was accompanied by RhoA activation and myosin light chain phosphorylation and was reduced by the RhoA dominant negative mutant RhoA(T19N) and Rho and myosin light chain kinase inhibitors. ATP release and Rho activation were reduced by highly selective inhibitors of transient receptor potential vanilloid 4 (TRPV4). Lastly, knocking down TRPV4 impaired hypotonicity-evoked airway epithelial ATP release. Our data suggest that TRPV4 and Rho transduce cell membrane stretch/strain into pannexin 1-mediated ATP release in airway epithelia.  相似文献   

19.
Interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) are produced by hepatic nonparenchymal cells after systemic injury and have been reported to inhibit ATP synthesis in hepatocytes, which may contribute to hepatic dysfunction in inflammatory states. To elucidate the mechanisms of action of IL-1beta and IL-6 on hepatocellular ATP synthesis, we measured the oxygen uptake rate (OUR) and mitochondrial membrane potential (MMP) of stable hepatocyte cultures, and analyzed the dynamic MMP response following the addition of mitochondrial inhibitors (antimycin A and oligomycin) with a model of mitochondrial metabolism. IL-1beta reduced mitochondrial OUR coupled to ATP synthesis via inhibition of phosphorylation reactions which dissipate the MMP, including ATP synthesis and consumption. Furthermore, the ATP synthesis rate in cytokine-free and IL-1beta-treated hepatocytes was controlled primarily by phosphorylation reactions, which corresponds to a state where the ATP synthesis rate closely follows the cellular energy demand. Thus, IL-1beta-mediated effects on electron transport and substrate oxidation reactions are not likely to significantly impact on ATP synthesis. IL-6 did not reduce mitochondrial OUR coupled to ATP synthesis, but shifted the control for ATP synthesis towards processes which generate the MMP, indicating that IL-6 induces a metabolic state where cellular functions are limited by the mitochondrial energy supply.  相似文献   

20.
The relationship between the respiratory rate and the membrane ionic current on the protonmotive force has been investigated in percoll purified potato mitochondria. The dependence of the membrane ionic current on the membrane potential was monitored using a methyltriphenylphosphonium-sensitive electrode and determining the maximal net rate of depolarization following the addition of a respiratory inhibitor. We have confirmed that a nonohmic relationship exists between the ionic conductance and membrane potential. Addition of ATPase inhibitors markedly increased the initial rate of dissipation suggesting that in their absence the dissipation rate induced by respiratory inhibitors is partially offset by H+-efflux due to the hydrolysis of endogenous ATP. This was corroborated by direct measurement of endogenous ATP levels which decreased significantly following dissipation of the membrane potential. Results are discussed in terms of the regulation of electron transport in plant mitochondria in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号