首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The hemagglutinating (HA) activity of extracellular and intracellular forms of Japanese encephalitis (JE) virus was comparatively titrated by exposure to acidic pH below 7.0. A pH-dependent irreversible loss in titer was observed with the virus grown in both C6/36 and BHK 21 (BHK) cells maintained in the pH range of 5.8 to 7.0 for 10 min at 37 C. The HA activity of intracellular virus was relatively more stable than that of extracellular virus in the pH range of 5.8 to 6.4. Virion structural components, envelope glycoprotein (E), capsid (C), and membrane (M) proteins in extracellular virus and E, C, and the precursor form of M (prM) proteins in intracellular virus were detected by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. A panel of monoclonal antibody (mAb) directed for nine antigenic epitopes on the JE virus E protein molecule was used for the analysis of antigenic reactivity of E protein after treatment at pH 6.0. The reaction between the extracellular virus and three HA-inhibiting (HI) mAbs was significantly reduced after acid treatment; however, the antigenic reactivity of intracellular virus was much more stable with a 100- to 1,000-fold difference. Infectivity titers of extracellular and intracellular viruses in Vero cells were reduced by 1/24,100 and 1/21,666 after acidic treatment at pH 6.0. In contrast, the infectivity of intracellular viruses was more stable, with residual infectivity of 1/182 and 1/340 for BHK and C6/36 cell-grown virus, respectively. Acidic treatment of JE virus not only resulted in the irreversible loss of its HA activity but also affected the antigenic reactivity of HI epitopes on its E protein molecule.  相似文献   

3.
To understand the process of cardiac aging, it is of crucial importance to gain insight into the age‐related changes in gene expression in the senescent failing heart. Age‐related cardiac remodeling is known to be accompanied by changes in extracellular matrix (ECM) gene and protein levels. Small noncoding microRNAs regulate gene expression in cardiac development and disease and have been implicated in the aging process and in the regulation of ECM proteins. However, their role in age‐related cardiac remodeling and heart failure is unknown. In this study, we investigated the aging‐associated microRNA cluster 17–92, which targets the ECM proteins connective tissue growth factor (CTGF) and thrombospondin‐1 (TSP‐1). We employed aged mice with a failure‐resistant (C57Bl6) and failure‐prone (C57Bl6 × 129Sv) genetic background and extrapolated our findings to human age‐associated heart failure. In aging‐associated heart failure, we linked an aging‐induced increase in the ECM proteins CTGF and TSP‐1 to a decreased expression of their targeting microRNAs 18a, 19a, and 19b, all members of the miR‐17–92 cluster. Failure‐resistant mice showed an opposite expression pattern for both the ECM proteins and the microRNAs. We showed that these expression changes are specific for cardiomyocytes and are absent in cardiac fibroblasts. In cardiomyocytes, modulation of miR‐18/19 changes the levels of ECM proteins CTGF and TSP‐1 and collagens type 1 and 3. Together, our data support a role for cardiomyocyte‐derived miR‐18/19 during cardiac aging, in the fine‐tuning of cardiac ECM protein levels. During aging, decreased miR‐18/19 and increased CTGF and TSP‐1 levels identify the failure‐prone heart.  相似文献   

4.
The purpose of this study was to investigate the effects of equol, a plant and intestinal flora derived isoflavonoid molecule on the expression of skin genes and proteins using human dermal models. As equol has been shown to mimic 17β-estradiol and bind specifically to 5α-dihydrotestostone (5α-DHT), these agents were used (in addition to equol) to determine whether equol may play important and beneficial roles in the extracellular matrix (ECM). Equol at 0.3 or 1.2% in qPCR experiments using a human skin barrier model examined ECM gene expression. Equol, 5α-DHT, and 17β-estradiol at 10 nM were studied in human monolayer fibroblasts cultures (hMFC) for ECM protein expression. Human fibroblast three-dimensional organotypic cultures revealed equol's influence (@ 10 nM) on ECM proteins via fluorescent-activated cell sorting (FACS) analysis. In qPCR experiments, equol significantly increased collagen, elastin (ELN), and tissue inhibitor of metalloprotease and decreased metalloproteinases (MMPs) gene expression and caused significant positive changes in skin antioxidant and antiaging genes. In hMFC, equol significantly increased collagen type I (COL1A1), whereas, 5α-DHT significantly decreased cell viability that was blocked by equol. FACS analysis showed equol and 17β-estradiol significantly stimulated COL1A1, collagen type III (COL3A1), and ELN while MMPs were significantly decreased compared with control values. Finally, tamoxifen blocked the positive influences of equol on ECM proteins via FACS analysis. These findings suggest that equol has the potential to be used topically for the treatment and prevention of skin aging, by enhancing ECM components in human skin.  相似文献   

5.
Cyclophilin C-associated protein (CyCAP) is identified from macrophages. It locates in intracellular, membrane bound and extracellular, suggesting it has an important role, however both of its regulation and function have not been elucidated. The expression of CyCAP in skin and during wound healing is also unknown. We demonstrate that CyCAP is expressed in both dermal fibroblasts and keratinocytes. In the dermis, the majority of CyCAP protein is located intracellular in a filamentous protein form while a lesser amount is in the extracellular matrix (ECM). CyCAP gene and protein expression is increased 1 day after skin wound healing in both fetal and adult rats and remains elevated level up to 1 week in adult rats. Immunohistochemistry studies demonstrate that the increased CyCAP expression locates mainly to inflammatory cells, including macrophages, monocytes and lymphocytes during wound healing. Interferon-gamma increases CyCAP gene and protein expression in cultured rat fibroblasts. We also found that wound healing is slower and less collagen is expressed in skin of CyCAP null mice. These data are the first observations of CyCAP expression in skin and during wound repair. Our data indicates that CyCAP is regulated by IFNgamma and may function on immune defense in macrophages, lymphocytes, dermal fibroblasts and keratinocytes during wound healing.  相似文献   

6.
The extracellular matrix (ECM) is a complex meshwork of cross-linked proteins that provides biophysical and biochemical cues that are major regulators of cell proliferation, survival, migration, etc. The ECM plays important roles in development and in diverse pathologies including cardio-vascular and musculo-skeletal diseases, fibrosis, and cancer. Thus, characterizing the composition of ECMs of normal and diseased tissues could lead to the identification of novel prognostic and diagnostic biomarkers and potential novel therapeutic targets. However, the very nature of ECM proteins (large in size, cross-linked and covalently bound, heavily glycosylated) has rendered biochemical analyses of ECMs challenging. To overcome this challenge, we developed a method to enrich ECMs from fresh or frozen tissues and tumors that takes advantage of the insolubility of ECM proteins. We describe here in detail the decellularization procedure that consists of sequential incubations in buffers of different pH and salt and detergent concentrations and that results in 1) the extraction of intracellular (cytosolic, nuclear, membrane and cytoskeletal) proteins and 2) the enrichment of ECM proteins. We then describe how to deglycosylate and digest ECM-enriched protein preparations into peptides for subsequent analysis by mass spectrometry.  相似文献   

7.
8.
D C Dixon  J R Cutt    D F Klessig 《The EMBO journal》1991,10(6):1317-1324
Several biochemical and localization studies have shown that the acidic isoforms of the tobacco pathogenesis-related (PR) proteins, PR-1a, -1b and -1c are secreted to the extracellular spaces of leaves in response to pathogen infection or chemical treatment. Here we report the differential accumulation of these proteins within the vacuoles of specialized cells known as crystal idioblasts. In situ hybridization analysis indicated that crystal idioblasts expressed the PR-1 genes at the mRNA level and suggested that PR-1 proteins were synthesized by these cells. Transgenic plants which constitutively express a chimeric gene encoding an acidic PR-1b isoform also accumulated PR-1 protein in the extracellular spaces and within crystal idioblast vacuoles. Analysis of mRNA derived from these transgenic plants indicated that expression of the introduced PR-1b gene was responsible for the accumulation of PR-1 protein in these two distinct locations. The synthesis and accumulation within crystal idioblasts of PR-1 proteins, which are secreted by other cell types, indicates that idioblasts sort these proteins in a unique manner. Moreover, this suggests that protein sorting in higher plants may be modulated in a cell specific manner.  相似文献   

9.
Extracellular acidification induces human neutrophil activation   总被引:3,自引:0,他引:3  
In the current work, we evaluated the effect of extracellular acidification on neutrophil physiology. Neutrophils suspended in bicarbonate-buffered RPMI 1640 medium adjusted to acidic pH values (pH 6.5-7.0) underwent: 1) a rapid transient increase in intracellular free calcium concentration levels; 2) an increase in the forward light scattering properties; and 3) the up-regulation of surface expression of CD18. By contrast, extracellular acidosis was unable to induce neither the production of H2O2 nor the release of myeloperoxidase. Acidic extracellular pH also modulated the functional profile of neutrophils in response to conventional agonists such as FMLP, precipiting immune complexes, and opsonized zymosan. It was found that not only calcium mobilization, shape change response, and up-regulation of CD18 expression but also production of H2O2 and release of myeloperoxidase were markedly enhanced in neutrophils stimulated in acidic pH medium. Moreover, extracellular acidosis significantly delayed neutrophil apoptosis and concomitantly extended neutrophil functional lifespan. Extracellular acidification induced an immediate and abrupt fall in the intracellular pH, which persisted over the 240-s analyzed. A similar abrupt drop in the intracellular pH was detected in cells suspended in bicarbonate-supplemented PBS but not in those suspended in bicarbonate-free PBS. A role for intracellular acidification in neutrophil activation is suggested by the fact that only neutrophils suspended in bicarbonate-buffered media (i.e., RPMI 1640 and bicarbonate-supplemented PBS) underwent significant shape changes in response to extracellular acidification. Together, our results support the notion that extracellular acidosis may intensify acute inflammatory responses by inducing neutrophil activation as well as by delaying spontaneous apoptosis and extending neutrophil functional lifespan.  相似文献   

10.
Interleukin-10 (IL-10) is a cytokine with many regulatory functions. In particular, IL-10 exerts neutralizing effect on other cytokines, and therefore IL-10 is thought to have important therapeutic implications. Recent reports suggest that IL-10 regulates not only immunocytes but also collagen and collagenase gene expression in fibroblasts. In this study, we investigated the effect of IL-10 on gene expression of extracellular matrix (ECM) proteins, such as type I collagen, fibronectin, and decorin, in human skin fibroblasts. Results of Northern blot analysis showed that both collagen I and fibronectin mRNAs were downregulated, while decorin gene expression was enhanced by IL-10 (10 ng/ml) time-dependently (6-24 h). alpha1(I) collagen and fibronectin mRNAs were decreased to one-third and one-fourth, respectively, by 50 ng/ml IL-10, whereas decorin mRNA was increased up to 2.7-fold by 50 ng/ml IL-10. Response to IL-10 by scleroderma fibroblasts was similar to that in normal dermal fibroblasts, with decreased expression levels of collagen and fibronectin and induced decorin mRNA levels. Transforming growth factor-beta (TGF-beta) is a crucial fibrogenic cytokine which upregulates the mRNA expression of collagen and fibronectin, whereas it downregulates decorin mRNA expression in fibroblasts. Monocyte chemoattractant protein-1 (MCP-1) has recently been shown to upregulate the type I collagen mRNA expression in cultured fibroblasts. We therefore examined whether IL-10 alters gene expression of ECM elicited by TGF-beta and MCP-1. Our results demonstrated that IL-10 downregulated the TGF-beta-elicited increase of mRNA expression of type I collagen and fibronectin, while partially recovering TGF-beta-elicited decrease of decorin expression in normal skin fibroblasts. By contrast, IL-10 did not alter the MCP-1-elicited upregulation of mRNA expression of either alpha1(I) collagen and decorin. Our data indicate that IL-10 differentially regulates TGF-beta and MCP-1 in the modulation of ECM proteins and therefore suggest that IL-10 plays a role in the regulation of tissue remodeling.  相似文献   

11.
The extracellular matrix (ECM) provides an essential structural framework for cell attachment, proliferation, and differentiation, and undergoes progressive changes during senescence. To investigate changes in protein expression in the extracellular matrix between young and senescent fibroblasts, we compared proteomic data (LTQ-FT) with cDNA microarray results. The peptide counts from the proteomics analysis were used to evaluate the level of ECM protein expression by young cells and senescent cells, and ECM protein expression data were compared with the microarray data. After completing the comparative analysis, we grouped the genes into four categories. Class I included genes with increased expression levels in both analyses, while class IV contained genes with reduced expression in both analyses. Class II and Class III contained genes with an inconsistent expression pattern. Finally, we validated the comparative analysis results by examining the expression level of the specific gene from each category using Western blot analysis and semiquantitative RT-PCR. Our results demonstrate that comparative analysis can be used to identify differentially expressed genes.  相似文献   

12.
Aging is associated with progressive structural and functional deterioration of the kidney. Among the morphological changes associated with renal aging is an accumulation of extracellular matrix (ECM) in the glomeruli and tubuloinsterstitium, which may ultimately lead to the development of renal fibrosis. The mechanisms governing the regulation of ECM metabolism during renal aging are only incompletely defined. We present data from a genome-wide mRNA expression study on renal tissue from 90 wk old male Wistar rats and 10 wk old controls using Illumina BeadArray cDNA microarray. Regulation of candidate gene products was verified by real-time PCR. Morphological changes were evaluated by routine histological methods. Activated fibroblasts were identified by their expression of alpha-smooth muscle actin and collagen I. Morphological analysis demonstrated an expansion of the tubulointerstitial compartment with increased amounts of fibrous collagen but no overt glomerular or tubular damage in the aged rats. Activated fibroblasts were readily detectable in the adventitial layer of large renal vessels in controls and were not found in the old animals. In agreement with this finding, gene expression analysis revealed significant downregulation of collagen I mRNA along with numerous other ECM components. Concomitantly, collagen-stabilizing proteins were induced, whereas matrix metalloproteinase 9, an enzyme involved in collagen breakdown, was reduced. In conclusion, our results suggest that ECM expansion during renal aging results from an augmented stabilization in conjunction with a reduced breakdown of collagen fibers. Collagen stabilizing proteins may be essential for the control of renal ECM turnover and the pathogenesis of kidney fibrosis.  相似文献   

13.
Alström Syndrome (ALMS) is a rare genetic disorder (483 living cases), characterized by many clinical manifestations, including blindness, obesity, type 2 diabetes and cardiomyopathy. ALMS is caused by mutations in the ALMS1 gene, encoding for a large protein with implicated roles in ciliary function, cellular quiescence and intracellular transport. Patients with ALMS have extensive fibrosis in nearly all tissues resulting in a progressive organ failure which is often the ultimate cause of death. To focus on the role of ALMS1 mutations in the generation and maintenance of this pathological fibrosis, we performed gene expression analysis, ultrastructural characterization and functional assays in 4 dermal fibroblast cultures from ALMS patients. Using a genome-wide gene expression analysis we found alterations in genes belonging to specific categories (cell cycle, extracellular matrix (ECM) and fibrosis, cellular architecture/motility and apoptosis). ALMS fibroblasts display cytoskeleton abnormalities and migration impairment, up-regulate the expression and production of collagens and despite the increase in the cell cycle length are more resistant to apoptosis. Therefore ALMS1-deficient fibroblasts showed a constitutively activated myofibroblast phenotype even if they do not derive from a fibrotic lesion. Our results support a genetic basis for the fibrosis observed in ALMS and show that both an excessive ECM production and a failure to eliminate myofibroblasts are key mechanisms. Furthermore, our findings suggest new roles for ALMS1 in both intra- and extra-cellular events which are essential not only for the normal cellular function but also for cell-cell and ECM-cell interactions.  相似文献   

14.
15.
The mechanisms by which ligand-stimulated generation of reactive oxygen species in nonphagocytic cells mediate biologic effects are largely unknown. The profibrotic cytokine, transforming growth factor-beta1 (TGF-beta1), generates extracellular hydrogen peroxide (H2O2) in contrast to intracellular reactive oxygen species production by certain mitogenic growth factors in human lung fibroblasts. To determine whether tyrosine residues in fibroblast-derived extracellular matrix (ECM) proteins may be targets of H2O2-mediated dityrosine-dependent cross-linking reactions in response to TGF-beta1, we utilized fluorophore-labeled tyramide, a structurally related phenolic compound that forms dimers with tyrosine, as a probe to detect such reactions under dynamic cell culture conditions. With this approach, a distinct pattern of fluorescent labeling that seems to target ECM proteins preferentially was observed in TGF-beta1-treated cells but not in control cells. This reaction required the presence of a heme peroxidase and was inhibited by catalase or diphenyliodonium (a flavoenzyme inhibitor), similar to the effect on TGF-beta1-induced dityrosine formation. Exogenous addition of H2O2 to control cells that do not release extracellular H2O2 produced a similar fluorescent labeling reaction. These results support the concept that, in the presence of heme peroxidases in vivo, TGF-beta1-induced H2O2 production by fibroblasts may mediate oxidative dityrosine-dependent cross-linking of ECM protein(s). This effect may be important in the pathogenesis of human fibrotic diseases characterized by overexpression/activation of TGF-beta1.  相似文献   

16.
Termination of wound-healing process requires a fine balance between connective tissue deposition and its hydrolysis. Previously, we have demonstrated that keratinocyte-releasable stratifin, also known as 14-3-3 sigma protein, stimulates collagenase (MMP-1) expression in dermal fibroblasts. However, role of extracellular stratifin in regulation of extracellular matrix (ECM) factors and other matrix metalloproteinases (MMPs) in dermal fibroblast remains unexplored. To address this question, large-scale ECM gene expression profile were analyzed in human dermal fibroblasts co-cultured with keratinocytes or treated with recombinant stratifin. Superarray pathway-specific microarrays were utilized to identify upregulation or downregulation of 96 human ECM and adhesion molecule genes. RT-PCR and Western blot were used to validate microarray expression profiles of selected genes. Comparison of gene profiles with the appropriate controls showed a significant (more than twofold) increase in expression of collagenase-1, stromelysin-1 and -2, neutrophil collagenase, and membrane type 5 MMP in dermal fibroblasts treated with stratifin or co-cultured with keratinocytes. Expression of type I collagen and fibronectin genes decreased in the same fibroblasts. The results of a dose-response experiment showed that stratifin stimulates the expression of stromelysin-1 (MMP-3) mRNA by dermal fibroblasts in a concentration-dependent fashion. Furthermore, Western blot analysis of fibroblast-conditioned medium showed a peak in MMP-3 protein levels 48 h following treatment with recombinant stratifin. In a lasting-effect study, MMP-3 protein was detected in fibroblast-condition medium for up to 72 h post removal of stratifin. In conclusion, our results suggest that keratinocyte-releasable stratifin plays a major role in induction of ECM degradation by dermal fibroblasts through stimulation of key MMPs, such as MMP-1 and MMP-3. Therefore, stratifin protein may prove to be a useful target for clinical intervention in controlling excessive wound healing in fibrotic conditions.  相似文献   

17.
Plasminogen activators of the urokinase- and tissue-type and fetal calf serum (u-PA, t-PA, FCS) exert their mitogenic effect on quiescent human dermal fibroblasts and modulate the mRNA expression of cell-cycle related genes. The present study deals with the effects of PAs on the expression of fibronectin (FN), a heterodimeric extracellular matrix (ECM) protein that can be modulated in different ways by various mitogens. The kinetics of FN gene response was examined in quiescent fibroblasts upon PA stimulation (30 min -24 h). The results obtained evidenced that: (i) all mitogens tested (u-PA, t-PA and FCS) led to an increase of FN mRNA expression in early G1, as shown by the analysis of two sequences, III-9, common to all FN mRNAs, and EDA+, present only in the EDA+FN isoform; (ii) the kinetic profiles of FN mRNA stimulation were comparable for the three mitogens, although the effects on the FN-ECM assembly were distinct; (iii) t-PA and FCS led to FN assembly in the ECM, which was absent or decreased in u-PA-treated cultures. Immunobiochemical analysis of total FN and EDA+ FN showed that FN induced by t-PA was mainly dimeric (450-500 kDa), whereas FN induced by u-PA was mainly monomeric (230-250 kDa). These differences are probably due to the differential enzymatic action of t-PA and u-PA on FN, which might be related to a differential role of the two PAs in several physiopathological conditions.  相似文献   

18.
19.
Mechanical forces are important regulators of connective tissue homeostasis. Our recent experiments in vivo indicate that externally applied mechanical load can lead to the rapid and sequential induction of distinct extracellular matrix (ECM) components in fibroblasts, rather than to a generalized hypertrophic response. Thus, ECM composition seems to be adapted specifically to changes in load. Mechanical stress can regulate the production of ECM proteins indirectly, by stimulating the release of a paracrine growth factor, or directly, by triggering an intracellular signalling pathway that activates the gene. We have evidence that tenascin-C is an ECM component directly regulated by mechanical stress: induction of its mRNA in stretched fibroblasts is rapid both in vivo and in vitro, does not depend on prior protein synthesis, and is not mediated by factors released into the medium. Fibroblasts sense force-induced deformations (strains) in their ECM. Findings by other researchers indicate that integrins within cell-matrix adhesions can act as 'strain gauges', triggering MAPK and NF-kappaB pathways in response to changes in mechanical stress. Our results indicate that cytoskeletal 'pre-stress' is important for mechanotransduction to work: relaxation of the cytoskeleton (e.g. by inhibiting Rho-dependent kinase) suppresses induction of the tenascin-C gene by cyclic stretch, and hence desensitizes the fibroblasts to mechanical signals. On the level of the ECM genes, we identified related enhancer sequences that respond to static stretch in both the tenascin-C and the collagen XII promoter. In the case of the tenascin-C gene, different promoter elements might be involved in induction by cyclic stretch. Thus, different mechanical signals seem to regulate distinct ECM genes in complex ways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号