首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta-1,4-glycanase Cex of the gram-positive bacterium Cellulomonas fimi is a glycoprotein comprising a C-terminal cellulose-binding domain connected to an N-terminal catalytic domain by a linker containing only prolyl and threonyl (PT) residues. Cex is also glycosylated by Streptomyces lividans. The glycosylation of Cex produced in both C. fimi and S. lividans protects the enzyme from proteolysis. When the gene fragments encoding the cellulose-binding domain of Cex (CBDCex), the PT linker plus CBDCex (PT-CBDCex), and the catalytic domain plus CBDCex of Cex were expressed in S. lividans, only PT-CBDCex was glycosylated. Therefore, all the glycans must be O linked because only the PT linker was glycosylated. A glycosylated form and a nonglycosylated form of PT-CBDCex were produced by S. lividans. The glycosylated form of PT-CBDCex was heterogeneous; its average carbohydrate content was approximately 10 mol of D-mannose equivalents per mol of protein, but the glycans contained from 4 to 12 alpha-D-mannosyl and alpha-D-galactosyl residues. Glycosylated Cex from S. lividans was also heterogeneous. The presence of glycans on PT-CBDCex increased its affinity for bacterial microcrystalline cellulose. The location of glycosylation only on the linker region of Cex correlates with the properties conferred on the enzyme by the glycans.  相似文献   

2.
The modular xylanase Cex (or CfXyn10A) from Cellulomonas fimi consists of an N-terminal catalytic domain and a C-terminal cellulose-binding domain, joined by a glycosylated proline-threonine (PT) linker. To characterize the conformation and dynamics of the Cex linker and the consequences of its modification, we have used NMR spectroscopy to study full-length Cex in its nonglycosylated ( approximately 47 kDa) and glycosylated ( approximately 51 kDa) forms. The PT linker lacks any predominant structure in either form as indicated by random coil amide chemical shifts. Furthermore, heteronuclear (1)H-(15)N nuclear Overhauser effect relaxation measurements demonstrate that the linker is flexible on the ns-to-ps time scale and that glycosylation partially dampens this flexibility. The catalytic and cellulose-binding domains also exhibit identical amide chemical shifts whether in isolation or in the context of either unmodified or glycosylated full-length Cex. Therefore, there are no noncovalent interactions between the two domains of Cex or between either domain and the linker. This conclusion is supported by the distinct (15)N relaxation properties of the two domains, as well as their differential alignment within a magnetic field by Pf1 phage particles. These data demonstrate that the PT linker is a flexible tether, joining the structurally independent catalytic and cellulose-binding domains of Cex in an ensemble of conformations; however, more extended forms may predominate because of restrictions imparted by the alternating proline residues. This supports the postulate that the binding-domain anchors Cex to the surface of cellulose, whereas the linker provides flexibility for the catalytic domain to hydrolyze nearby hemicellulose (xylan) chains.  相似文献   

3.
A family II cellulose-binding domain (CBD) of an exoglucanase/xylanase (Cex) from the bacterium Cellulomonas fimi was replaced with the family I CBD of cellobiohydrolase I (CbhI) from the fungus Trichoderma reesei. Expression of the hybrid gene in Escherichia coli yielded up to 50 mg of the hybrid protein, CexCBDCbhI, per liter of culture supernatant. The hybrid was purified to homogeneity by affinity chromatography on cellulose. The relative association constants (Kr) for the binding of Cex, CexCBDCbhI, the catalytic domain of Cex (p33), and CbhI to bacterial microcrystalline cellulose (BMCC) were 14.9, 7.8, 0.8, and 10.6 liters g-1, respectively. Cex and CexCBDCbhI had similar substrate specificities and similar activities on crystalline and amorphous cellulose. Both released predominantly cellobiose and cellotriose from amorphous cellulose. CexCBDCbhI was two to three times less active than Cex on BMCC, but significantly more active than Cex on soluble cellulose and on xylan. Unlike Cex, the hybrid protein neither bound to alpha-chitin nor released small particles from dewaxed cotton fibers.  相似文献   

4.
The endoglucanase CenA and the exoglucanase Cex from Cellulomonas fimi each contain a discrete cellulose-binding domain (CBD), at the amino-terminus or carboxyl-terminus respectively. The gene fragment encoding the CBD can be fused to the gene of a protein of interest. Using this approach hybrid proteins can be engineered which bind reversibly to cellulose and exhibit the biological activity of the protein partner. Alkaline phosphatase (PhoA) from Escherichia coli, and a beta-glucosidase (Abg) from an Agrobacterium sp. are dimeric proteins. The fusion polypeptides CenA-PhoA and Abg-CBC(Cex) are sensitive to proteolysis at the junctions between the fusion partners. Proteolysis results in a mixture of homo- and heterodimers; these bind to cellulose if one or both of the monomers carry a CBD, e.g. CenA-PhoA/CenA-PhoA and CenA-PhoA/PhoA. CBD fusion polypeptides could be used in this way to purify polypeptides which associate with the fusion partner.  相似文献   

5.
6.
CenA and Cex are beta-1,4-glycanases produced by the cellulolytic bacterium Cellulomonas fimi. Both enzymes are composed of two domains and contain six Cys residues. Two disulfide bonds were assigned in both enzymes by peptide analysis of the isolated catalytic domains. A further disulfide bond was deduced in both cellulose-binding domains from the absence of free thiols under denaturing conditions. Corresponding Cys residues are conserved in eight of nine other known C. fimi-type cellulose-binding domains. CenA and Cex belong to families B and F, respectively, in the classification of beta-1,4-glucanases and beta-1,4-xylanases based on similarities in catalytic domain primary structure. Disulfide bonds in the CenA catalytic domain correspond to the two disulfide bonds in the catalytic domain of Trichoderma reesei cellobiohydrolase II (family B) which stabilize loops forming the active-site tunnel. Sequence alignment indicates the probable occurrence of disulfides at equivalent positions in the two other family B enzymes. Partial resequencing of the gene encoding Streptomyces KSM-9 beta-1,4-glucanase CasA (family B) revealed five errors in the original nucleotide sequence analysis. The corrected amino acid sequence contains an Asp residue corresponding to the proposed proton donor in hydrolysis catalysed by cellobiohydrolase II. Cys residues which form disulfide bonds in the Cex catalytic domain are conserved in XynZ of Clostridium thermocellum and Xyn of Cryptococcus albidus but not in the other eight known family F enzymes. Like other members of its family, Cex catalyses xylan hydrolysis. The catalytic efficiency (kcat/Km) for hydrolysis of the heterosidic bond of p-nitrophenyl-beta-D-xylobioside is 14,385 min-1.mM-1 at 25 degrees C; the corresponding kcat/Km for p-nitrophenyl-beta-D-cellobioside hydrolysis is 296 min-1.mM-1.  相似文献   

7.
本研究自行设计合成两对特异性引物,通过RT-PCR扩增出1株鸽源H5N1亚型禽流感病毒血凝素(HA)和神经氨酸酶(NA)两个基因的cDNA片段,将它们成功克隆于pMD18-T载体上,然后进行序列测定。结果表明,HA基因全长1707bp,编码568个氨基酸, HA基因有7个糖基化位点,在裂解位点附近有连续6个碱性氨基酸(R-R-R-K-K-R)的插入,具有高致病性毒株的分子特征。受体结合位点的氨基酸分别为YWIHELY,左侧壁氨基酸为SGVSSA,右侧壁为NGQSGR;NA基因全长1350bp,编码446个氨基酸,NA基因有3个糖基化位点。  相似文献   

8.
Altmann F  Fabini G  Ahorn H  Wilson IB 《Biochimie》2001,83(8):703-712
Recently the genomic sequences of three multicellular eukaryotes, Caenorhabditis elegans, Drosophila melanogaster and Arabidopsis thaliana, have been elucidated. A number of cDNAs encoding glycosyltransferases demonstrated to have a role in N-linked glycosylation have already been cloned from these organisms, e.g., GlcNAc transferases and alpha 1,3-fucosyltransferases. However, many more homologues of glycosyltransferases and other glycan modifying enzymes have been predicted by analysis of the genome sequences, but the predictions of full length open reading frames appear to be particularly poor in Caenorhabditis. The use of these organisms as models in glycobiology may be hampered since they all have N-linked glycosylation repertoires unlike those of mammals. Arabidopsis and Drosophila have glycosylation similar to that of other plants or insects, while our new data from MALDI-TOF analysis of PNGase A-released neutral N-glycans of Caenorhabditis indicate that there exists a range of pauci- and oligomannosidic structures, with up to four fucose residues and up to two O-methyl groups. With all these three 'genetic model organisms', however, much more work is required for a full understanding of their glycobiology.  相似文献   

9.
Bacteria of the Burkholderia cepacia complex (Bcc) are pathogens of humans, plants, and animals. Burkholderia cenocepacia is one of the most common Bcc species infecting cystic fibrosis (CF) patients and its carriage is associated with poor prognosis. In this study, we characterized a general O‐linked protein glycosylation system in B. cenocepacia K56‐2. The PglLBc O‐oligosaccharyltransferase (O‐OTase), encoded by the cloned gene bcal0960, was shown to be capable of transferring a heptasaccharide from the Campylobacter jejuni N‐glycosylation system to a Neisseria meningitides‐derived acceptor protein in an Escherichia coli background, indicating that the enzyme has relaxed specificities for both the sugar donor and protein acceptor. In B cenocepacia K56‐2, PglLBc is responsible for the glycosylation of 23 proteins involved in diverse cellular processes. Mass spectrometry analysis revealed that these proteins are modified with a trisaccharide HexNAc‐HexNAc‐Hex, which is unrelated to the O‐antigen biosynthetic process. The glycosylation sites that were identified existed within regions of low complexity, rich in serine, alanine, and proline. Disruption of bcal0960 abolished glycosylation and resulted in reduced swimming motility and attenuated virulence towards both plant and insect model organisms. This study demonstrates the first example of post‐translational modification in Bcc with implications for pathogenesis.  相似文献   

10.
11.
Glycosylation of proteins in prokaryotes has been known for the last few decades. Glycan structures and/or the glycosylation pathways have been experimentally characterized in only a small number of prokaryotes. Even this has become possible only during the last decade or so, primarily due to technological and methodological developments. Glycosylated proteins are diverse in their function and localization. Glycosylation has been shown to be associated with a wide range of biological phenomena. Characterization of the various types of glycans and the glycosylation machinery is critical to understand such processes. Such studies can help in the identification of novel targets for designing drugs, diagnostics, and engineering of therapeutic proteins. In view of this, the experimentally characterized pgl system of Campylobacter jejuni, responsible for N-linked glycosylation, has been used in this study to identify glycosylation loci in 865 prokaryotes whose genomes have been completely sequenced. Results from the present study show that only a small number of organisms have homologs for all the pgl enzymes and a few others have homologs for none of the pgl enzymes. Most of the organisms have homologs for only a subset of the pgl enzymes. There is no specific pattern for the presence or absence of pgl homologs vis-à-vis the 16S rRNA sequence-based phylogenetic tree. This may be due to differences in the glycan structures, high sequence divergence, horizontal gene transfer or non-orthologous gene displacement. Overall, the presence of homologs for pgl enzymes in a large number of organisms irrespective of their habitat, pathogenicity, energy generation mechanism, etc., hints towards the ubiquity of N-linked glycosylation in prokaryotes.  相似文献   

12.
Nuclear tRNA export plays an essential role in key cellular processes such as regulation of protein synthesis, cell cycle progression, response to nutrient availability and DNA damage and development. Like other nuclear export processes, assembly of the nuclear tRNA export complex in the nucleus is dependent on Ran-GTP/Gsp1p-GTP, and dissociation of the export receptor-tRNA-Ran-GTP/Gsp1p-GTP complex in the cytoplasm requires RanBP1/Yrb1p and RanGAP/Rna1p to activate the GTPase activity of Ran-GTP/Gsp1p-GTP. The Saccharomyces cerevisiae Cex1p and Human Scyl1 have also been proposed to participate in unloading of the tRNA export receptors at the cytoplasmic face of the nuclear pore complex (NPC). Here, we provide evidence suggesting that Cex1p is required for activation of the GTPase activity of Gsp1p and dissociation of the receptor-tRNA-Gsp1p export complex in S. cerevisiae. The data suggest that Cex1p recruits Rna1p from the cytoplasm to the NPC and facilitates Rna1p activation of the GTPase activity of Gsp1p by enabling Rna1p to gain access to Gsp1p-GTP bound to the export receptor tRNA complex. It is possible that this tRNA unloading mechanism is conserved in evolutionarily diverse organisms and that other Gsp1p-GTP-dependent export processes use a pathway-specific component to recruit Rna1p to the NPC.  相似文献   

13.
In all eukaryotes, transcribed precursor tRNAs are maturated by processing and modification processes in nucleus and are transported to the cytoplasm. The cytoplasmic export protein (Cex1p) captures mature tRNAs from the nuclear export receptor (Los1p) on the cytoplasmic side of the nuclear pore complex, and it delivers them to eukaryotic elongation factor 1α. This conserved Cex1p function is essential for the quality control of mature tRNAs to ensure accurate translation. However, the structural basis of how Cex1p recognizes tRNAs and shuttles them to the translational apparatus remains unclear. Here, we solved the 2.2 Å resolution crystal structure of Saccharomyces cerevisiae Cex1p with C-terminal 197 disordered residues truncated. Cex1p adopts an elongated architecture, consisting of N-terminal kinase-like and a C-terminal α-helical HEAT repeat domains. Structure-based biochemical analyses suggested that Cex1p binds tRNAs on its inner side, using the positively charged HEAT repeat surface and the C-terminal disordered region. The N-terminal kinase-like domain acts as a scaffold to interact with the Ran-exportin (Los1p·Gsp1p) machinery. These results provide the structural basis of Los1p·Gsp1p·Cex1p·tRNA complex formation, thus clarifying the dynamic mechanism of tRNA shuttling from exportin to the translational apparatus.  相似文献   

14.
Endoglucanase C (CenC) from Cellulomonas fimi binds to cellulose and to Sephadex. The enzyme has two contiguous 150-amino-acid repeats (N1 and N2) at its N-terminus and two unrelated contiguous 100-amino-acid repeats (C1 and C2) at its C-terminus. Polypeptides corresponding to N1, N1N2, C1, and C1C2 were produced by expression of appropriate cenC gene fragments in Escherichia coli. N1N2, but not N1 alone, binds to Sephadex; both polypeptides bind to Avicel, (a heterogeneous cellulose preparation containing both crystalline and non-crystalline components). Neither C1 nor C1C2 binds to Avicel or Sephadex. N1N2 and N1 bind to regenerated ('amorphous') cellulose but not to bacterial crystalline cellulose; the cellulose-binding domain of C. fimi exoglucanase Cex binds to both of these forms of cellulose. Amino acid sequence comparison reveals that N1 and N2 are distantly related to the cellulose-binding domains of Cex and C. fimi endoglucanases A and B.  相似文献   

15.
The contributions of enzyme-substrate hydrogen-binding interactions to catalysis by two different families of xylanases were evaluated through kinetic studies with two representative wild-type enzymes, Cellulomonas fimi xylanase (Cex) and Bacillus circulans xylanase (Bcx), on a series of monodeoxygenated and monodeoxyfluorinated p-nitrophenyl xylobioside substrates. Effects of substitution in the distal (-2 subsite) sugar on kcat/Km for Cex were moderately large (up to 2.9 kcal mol-1), with no effect seen on kcat. By contrast, substantial effects upon both kcat and kcat/Km were seen for substrates modified in the proximal (-1 subsite) sugar. Very similar results were obtained with Bcx. Kinetic analyses with a series of eight mutants of Cex in which active site residues interacting with the substrate were mutated yielded complementary insights. Again, interactions with the distal (-2) sugar were seen to contribute substantially to kcat/Km (up to 3.7 kcal mol-1), thus to the formation of the glycosyl-enzyme intermediate, but not to kcat, thus to the hydrolysis of the glycosyl-enzyme. Interactions with the proximal (-1) sugar are much more significant, contributing up to 6.7 kcal mol-1 to both kcat/Km and kcat. These results together indicate that interactions with the distal sugar maintain similar magnitudes in the transition states for glycosylation and deglycosylation as well as in the glycosyl-enzyme intermediate and can be referred to as "uniform binding interactions" in the parlance of Albery and Knowles (Albery, W. J., and Knowles, J. R. (1976) Biochemistry 15, 5631-5640). Interactions with the proximal sugar are considerably stronger at the deglycosylation transition state than in the intermediate, and fall into the category of differential binding interactions. This behavior likely has its origins in the changes in ring conformation of the proximal sugar but not of the distal sugar between the ground state and the reaction transition state. Correlation of these individual interaction energies with the hydrogen-bonding pattern seen in the glycosyl-enzyme intermediate allows for the assignment of hydrogen-bond strengths to each interaction, with good correlation between the two approaches. These findings are relevant to the discussion of remote binding effects upon enzymatic catalysis.  相似文献   

16.
The first step in the assembly of the dolichol-linked oligosaccharides required for asparagine-linked glycosylation in eukaryotes is catalyzed by a tunicamycin-sensitive, dolichol phosphate-dependent N-acetylglucosamine-1-phosphate transferase (GPT). A fragment of the gene encoding the enzyme from Chinese hamster ovary (CHO) cells was partially cloned and characterized by a novel strategy. By stepwise selection, CHO cells were made 80-fold resistant to tunicamycin and found to have 10-fold elevated levels of GPT activity. Using a cloned segment of the yeast ALG-7 gene, which encodes the putative GPT from yeast, an amplified gene was identified by Southern blotting of the CHO DNA and a 6.6-kilobase segment of the gene was molecularly cloned. A family of RNA molecules in the 2.0-2.2-kilobase range identified with a probe from this gene was overexpressed in the resistant cells. The cloned DNA revealed a 24-amino acid residue sequence that was 92% conserved with the corresponding yeast sequence.  相似文献   

17.
18.
The Saccharomyces cerevisiae Yor112wp, which we named Cex1p, was identified using a yeast tRNA three-hybrid interaction approach and an in vivo nuclear tRNA export assay as a cytoplasmic component of the nuclear tRNA export machinery. Cex1p binds tRNA saturably, and associates with the nuclear pore complex by interacting directly with Nup116p. Cex1p co-purifies with the nuclear tRNA export receptors Los1p and Msn5p, the eukaryotic elongation factor eEF-1A, which delivers aminoacylated tRNAs to the ribosome, and the RanGTPase Gsp1p, but not with Cca1p, a tRNA maturation enzyme that facilitates translocation of non-aminoacylated tRNAs across the nuclear pore complex. Depletion of Cex1p and eEF-1A or Los1p significantly reduced the efficiency of nuclear tRNA export. Cex1p interacts with Los1p but not with eEF-1A in vitro. These findings suggest that Cex1p is a component of the nuclear aminoacylation-dependent tRNA export pathway in S. cerevisiae. They also suggest that Cex1p collects aminoacyl-tRNAs from the nuclear export receptors at the cytoplasmic side of the nuclear pore complex, and transfers them to eEF-1A using a channelling mechanism.  相似文献   

19.
An integration vector for gene analysis in Streptomyces has been constructed. This vector replicates in Escherichia coli, and integrates into Streptomyces by homologous recombination between a cloned fragment and the genome. To overcome methylation-specific restriction barriers, an E. coli mutant triply defective in DNA methylation was constructed as a source for the integration plasmids. The frequency of integration of pVE616 derivatives into the Streptomyces avermitilis genome was proportional to the size of the cloned DNA. Derivatives of pVE616, containing fragments from pVE650, a plasmid with a 24-kb insert of S. avermitilis DNA, were used in complementation analyses of seven S. avermitilis mutants defective in glycosylation of avermectin (Av). Three complementation groups, located in a 7-kb region, were identified. Derivatives of pVE616, containing fragments from the 18-kb of DNA adjacent to the glycosylation region, were integrated into an Av producer. Av produced from the integrants was substantially reduced, indicating that the 18 kb also encodes gene products which are involved in Av biosynthesis.  相似文献   

20.
Nehrke  K; Hagen  FK; Tabak  LA 《Glycobiology》1998,8(4):367-371
Multiple isoforms of UDP-GalNAc:polypeptide N-acetylgalactosaminyl- transferase (ppGaNTase) have been cloned and expressed from a variety of organisms. In general, these isoforms display different patterns of tissue-specific expression, but exhibit overlapping substrate specificities, in vitro . A peptide substrate, derived from the sequence of the V3 loop of the HIV gp120 protein (HIV peptide), has previously been shown to be glycosylated in vitro exclusively by the ppGaNTase-T3 (Bennett et al. , 1996). To determine if this isoform- specificity is maintained in vivo , we have examined the glycosylation of this substrate when it is expressed as a reporter peptide (rHIV) in a cell background (COS7 cells) which lacks detectable levels of the ppGaNTase-T3. Glycosylation of rHIV was greatly increased by coexpression of a recombinant ppGaNTase-T3. Overexpression of ppGaNTase- T1 yielded only partial glycosylation of the reporter. We have also determined that the introduction of a proline residue at the +3 position flanking the potential glycosylation site eliminated ppGaNTase- T3 selectivity toward rHIV observed both in vivo and in vitro .   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号