首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the cofactors Ca2+ and phospholipid in the activation of human Factor X by Factor IXa was investigated. By use of a sensitive spectrophotometric Factor Xa assay, it was demonstrated that human Factor IXa can activate Factor X in the absence of cofactors. The presence of Ca2+ as the only cofactor resulted in a 7-fold stimulation of the Factor Xa formation. Kinetic analysis of the Ca2+-stimulated reaction showed that the apparent Km of Factor X was 4.6 microM, whereas the apparent Vmax. for Factor Xa formation was 0.0088 mol of Xa/min per mol of IXa. The presence of phospholipid as the only cofactor had no effect on the rate of Factor Xa formation. However, a several-hundred-fold stimulation was observed when Ca2+ and phospholipid were present in combination. The activation of Factor X in the presence of Ca2+ and phospholipid was found to be kinetically heterogeneous, involving both phospholipid-bound and free reactants. Quantitative data concerning the phospholipid binding of Factors IXa and X were used to study the relation between the rate of Factor Xa formation and the binding of enzyme and substrate to the phospholipid membrane. The results support the hypothesis that phospholipid-bound Factor X is the substrate in the phospholipid-stimulated reaction; however, phospholipid-bound and free Factor IXa seem to be equally efficient in catalysing the activation of phospholipid-bound Factor X.  相似文献   

2.
Intrinsic versus extrinsic coagulation. Kinetic considerations.   总被引:3,自引:1,他引:2       下载免费PDF全文
A study to compare the kinetics of activation of factor IX by Factor XIa/Ca2+ and by Factor VIIa/tissue factor/Ca2+ has been undertaken. When purified human proteins, detergent-extracted brain tissue factor and tritiated-activation-peptide-release assays were utilized, the kinetic constants obtained were: Km = 310 nM, kcat. = 25 min-1 for Factor XIa and Km = 210 nM, kcat. = 15 min-1 for Factor VIIa. The kinetic constants for the activation of Factor X by Factor VIIa/brain tissue factor were: Km = 205 nM, kcat. = 70 min-1. Predicted rates for the generation of Factor IXa and Factor Xa were obtained when human monocytic tumour U937 cells (source of tissue factor) and Factor VIIa were used to form the activator. In other experiments, inclusion of high-Mr kininogen did not increase the activation rates of Factor IX by Factor XIa in the presence or absence of platelets and/or denuded rabbit aorta. These kinetic data strongly indicate that both Factor XIa and Factor VIIa play physiologically significant roles in the activation of Factor IX.  相似文献   

3.
Y Komiyama  A H Pedersen  W Kisiel 《Biochemistry》1990,29(40):9418-9425
Previous studies indicated that factor VIIa, in complex with tissue factor, readily activates either factor X or factor IX in the presence of calcium ions. In order to assess the relative physiological importance of the activation of factor IX versus the activation of factor X by recombinant factor VIIa, we have obtained steady-state kinetic parameters for the factor VIIa catalyzed activation of factor IX and factor X under a variety of cofactor conditions that include calcium alone, calcium and phospholipids, calcium, phospholipids, and tissue factor apoprotein, and calcium and cell-surface tissue factor. Calcium alone stimulated the activation of factors IX and X by factor VIIa maximally at 1 and 2.5 mM, respectively. In the presence of 25 microM phospholipids, maximal rates of factor IX and factor X activation were achieved at 2.5-5 mM calcium. With calcium alone, or with phospholipid and calcium, the initial rates of factor IX activation by factor VIIa were significantly higher than that observed for factor X. Kinetic studies revealed that the Km for the factor VIIa catalyzed activation of factor IX was essentially constant in the presence of 5 mM calcium and 1-500 microM phospholipid, whereas the Km for factor X activation varied with phospholipid concentration, reaching a minimum at 7-20 microM phospholipid. At all concentrations of added phospholipid, the kcat/Km ratio for the activation of factor IX by factor VIIa appeared to be considerably greater than that observed for the activation of factor X.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The activation of human coagulation factor IX by human tissue factor.factor VIIa.PCPS.Ca2+ (TF.VIIa.PCPS.Ca2+) and factor Xa.PCPS.Ca2+ enzyme complexes was investigated. Reactions were performed in a highly purified system consisting of isolated human plasma proteins and recombinant human tissue factor with synthetic phospholipid vesicles (PCPS: 75% phosphatidylcholine (PC), 25% phosphatidylserine (PS)). Factor IX activation was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, [3H]factor IX activation peptide assay, colorimetric substrate thiobenzyl benzyloxycarbonyl-L-lysinate (Z-Lys-SBzl) hydrolysis, and specific incorporation of a fluorescent peptidyl chloromethyl ketone. Factor IX activation by the TF.VIIa.PCPS.Ca2+ enzyme complex was observed to proceed through the obligate non-enzymatic intermediate species factor IX alpha. The simultaneous activation of human coagulation factors IX and X by the TF.VIIa.PCPS.Ca2+ enzyme complex were investigated. When factors IX and X were presented to the TF.VIIa complex, at equal concentrations, it was observed that the rate of factor IX activation remained unchanged while the rate of factor X activation slowed by 45%. When the proteolytic cleavage products of this reaction were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was observed that the intermediate species factor IX alpha was generated more rapidly when factor X was present in the reaction mixture. When factor IX was treated with factor Xa.PCPS in the presence of Ca2+, it was observed that factor IX was rapidly converted to factor IX alpha. The activation of factor IX alpha by the TF.VIIa.PCPS.Ca2+ complex was evaluated, and it was observed that factor IX alpha was activated more rapidly by the TF.VIIa.PCPS.Ca2+ complex than was factor IX itself. These data suggest that factors IX and X, when presented to the TF.VIIa.PCPS.Ca2+ enzyme complex, are both rapidly activated and that factor Xa, which is generated in the initial stages of the extrinsic pathway, participates in the first proteolytic step in the activation of factor IX, the generation of factor IX alpha.  相似文献   

5.
The prothrombin activator present in the venom of the mainland tiger snake (Notechis scutatus scutatus) was purified to homogeneity by gel chromatography on Sephadex G-200 followed by ion-exchange chromatography on SP-Sephadex. The venom activator has an apparent molecular weight of 54,000. It consists of a heavy chain (Mr = 32,000) and a light chain (Mr = 23,000) held together by one or more disulfide bridges. The active site is located at the heavy chain region of the molecule. The venom activator contains 8 gamma-carboxyglutamic acid residues/molecule. Gel electrophoretic analysis of prothrombin activation indicates that the venom activator is capable of cleaving both the Arg 274-Thr 275 and Arg 323-Ile 324 bonds of bovine prothrombin. The order of bond cleavage appears to be random since prethrombin-2 and meizothrombin occur as intermediates during prothrombin activation. Prothrombin activation by the venom activator alone is very slow. This is explained by the unfavorable kinetic parameters for the reaction (Km for prothrombin = 105 microM, Vmax = 0.0025 nmol of prothrombin activated per min/microgram of venom activator). Phospholipids plus Ca2+ and Factor Va greatly stimulate venom-catalyzed prothrombin activation. In the presence of 50 microM phospholipid vesicles composed of 20 mol % phosphatidylserine and 80 mol % phosphatidylcholine, the Km drops to 0.2 microM, whereas there is hardly any effect on the Vmax. Factor Va causes a 3,500-fold increase of the Vmax (8.35 nmol of prothrombin activated per min/microgram of venom activator) and a 10-fold decrease of the Km (9.5 microM). The most favorable kinetic parameters are observed in the presence of both 50 microM phospholipid and Factor Va (Km = 0.16 microM, Vmax = 27.9 nmol of prothrombin activated per min/microgram of venom activator). These changes of the kinetic parameters explain the stimulatory effects of Factor Va and phospholipid on venom-catalyzed prothrombin activation. The venom activator slowly converts the Factor Xa-specific chromogenic substrates CH3SO2-D-leucyl-glycyl-L-arginine-p-nitroanilide and N-benzoyl-L-isoleucyl-L-glutamyl-(piperidyl)-glycyl-L-arginyl-p-nitroani lide hydrochloride. Factor Va causes a 7-fold stimulation of chromogenic substrate conversion by the venom activator. This stimulation appears to be the result of the formation of a tight 1:1 complex between the venom activator and Factor Va.  相似文献   

6.
Tissue factor (coagulation factor III) inhibition by apolipoprotein A-II   总被引:1,自引:0,他引:1  
Apolipoprotein A-II (apoA-II) has been shown to inhibit tissue factor participation in the activation of coagulation factor X by factor VIIa. The magnitude of inhibition was dependent on the concentration of the enzyme (factor VIIa) and substrate (factor X) present in the reaction. With factor VIIa at 0.86 nM, 0.41 microM apoA-II inhibited factor X activation as much as 50% at 200 nM factor X, with inhibition decreasing to 39% at 3 nM factor X. When factor X was held constant at 100 nM, 0.41 microM apoA-II inhibited its activation by 80% when factor VIIa was present at 26.7 pM, but the inhibition decreased to 47% when factor VIIa was increased to 1.75 nM. Kinetically, increasing apoA-II decreased the reaction Vmax. ApoA-II produced little effect on the apparent Km, but the apparent K1/2 for factor VIIa in the reaction increased as apoA-II concentration increased. In the presence of 0.75 pM bovine tissue factor, reconstituted with 4.31 microM phosphatidylserine-phosphatidylcholine (30:70, w/w) vesicles, and in the absence of apoA-II, the apparent Km was near 7 nM factor X when factor VIIa was present at 0.86 nM. Under the same conditions with factor X at 100 nM, the apparent K1/2 was near 56 pM factor VIIa. As apoA-II was added to 0.41 microM, the apparent K1/2 increased to about 200 pM factor VIIa. The aggregate results support a model in which apoA-II inhibits tissue factor potentiation of factor VIIa activity. Because the apparent K1/2 increases when apoA-II is added, the factor VIIa can apparently protect tissue factor from the effects of apoA-II. Thus, apoA-II appears to inhibit factor X activation by preventing the appropriate association of tissue factor with factor VIIa.  相似文献   

7.
R P Link  F J Castellino 《Biochemistry》1983,22(17):4033-4041
The Vmax/Km (microM -1 min -1.) for bovine factor X activation by bovine factor IXa alpha, in the presence of sufficient [Ca2+] to saturate the initial reaction rate, was 0.007. When factor IXa beta was substituted for factor IXa alpha in this reaction, the Vmax/Km decreased to 0.001, suggesting that factor IXa alpha was a more potent catalyst under these conditions. When phospholipid (PL) vesicles (egg phosphatidylcholine/bovine brain phosphatidylserine, 4:1 w/w) were added to these same systems, at levels sufficient to saturate their effects, little change in the Vmax/Km occurred when factor IXa alpha was the enzyme. However, when factor IXa beta was employed, the Vmax/Km dramatically increased to 0.023, demonstrating that factor IXa beta responded to PL addition to a much greater extent than did factor IXa alpha. Upon addition of thrombin-activated factor VIII (factor VIIIa,t), at a suboptimal level, to the above systems, the Vmax/Km for factor X activation by factor IXa alpha/Ca2+/PL/factor VIIIa,t was increased to 1.0, whereas this parameter for factor X activation by factor IXa beta/Ca2+/PL/factor VIIIa,t under the same conditions was found to be 27.3. During these studies, it was discovered that the factor X which became activated to factor Xa during the course of reaction participated in several feedback reactions: activation of factor X, activation of factor VIII, and conversion of factor IXa alpha to factor IXa beta. All feedback reactions, which are capable of complicating the kinetic interpretation, were inhibited by performing the studies in a system which contained a rapid factor Xa inhibitor, Glu-Gly-Arg-CH2Cl, thus allowing kinetic constants to be accurately determined. The results show that while factor IXa alpha is a more efficient enzyme than factor IXa beta toward factor X activation in the absence of cofactors, the response of factor IXa beta to the reaction cofactors, PL and factor VIIIa,t, is much greater than that of factor IXa alpha.  相似文献   

8.
An activator of blood coagulation factor X was found in the venom of the horned viper Cerastes cerastes, and was purified by gel filtration, ion-exchange chromatography and chromatofocussing. The activator is a protein composed of a heavy and a light polypeptide chain linked by disulfide bonds. Two subforms of the activator were found. Both contained a heavy chain of Mr 58000 and are distinguished from each other by the presence of two different light chains of Mr 17700 and 15000. The activator appears to cleave the bond in the factor X molecule that is also cleaved by factor IXa. Factor X activation by the activator is strongly stimulated by Ca2+. The kinetic parameters for the activation reaction have been determined. A Km for factor X of 19.2 nM and a Vmax of 0.11 pmol of Xa/min per ng venom were found.  相似文献   

9.
Limited proteolysis of bovine blood coagulation Factor X by chymotrypsin produces a derivative in which the light chain is cleaved between Tyr 44 and Lys 45. Two peptide products, residues 1-44 of the Factor X light chain and a modified zymogen, Factor X(-GD) have been isolated and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, elution behavior on anion-exchange chromatography, amino acid composition, and by partial amino acid sequence determination. Factor X(-GD) no longer contains the 12 gamma-carboxyglutamic acid residues of the native zymogen and thus serves as a model for investigation of the properties conferred on Factor X by the presence of gamma-carboxyglutamic acid. Cleavage of Factor X at Tyr 44 by chymotrypsin is inhibited by Ca2+ and Mg2+ ions. Factor X(-GD) is activated by the coagulation factor activator of Vipera russellii venom, but at less than 1% of the rate of activation of native Factor X. The susceptibility of Tyr 44 to chymotryptic cleavage implies that this residue is on the surface of the light chain of Factor X. Factor Xa(-GD) is indistinguishable from native Factor Xa in its activity on Benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide, on prothrombin alone, and on prothrombin plus Factor Va. In the presence of phospholipid the rate of prothrombin activation catalyzed by Factor Xa(-GD) is the same as in the absence of phospholipid.  相似文献   

10.
Steady state kinetic studies have been performed to investigate the formation of thrombin from prothrombin by human coagulation Factor Xa in the presence of Ca2+ and phospholipid. The concentration of ligand which gives 50% of the maximum velocity (K0.5) is 2.3 mM for Ca2+, 7.4 microM for phospholipid, and 0.006 microM for prothrombin. Hill plots of the Ca2+ enhancement of the reaction give a Hill coefficient of 3.1, indicating positive cooperativity. The initial velocity patterns are consistent with an ordered addition of reactants with phospholipid as the second reactant to bind to the enzyme. Although our results do not differentiate between Ca2+ or the prothrombin substrate as the first reactant to bind to Factor Xa, it is established that Ca2+ can bind to Factor Xa in the absence of the other reactants. Thus, the most probable order of addition of reactants is Ca2+, phospholipid, and the prothrombin substrate. Plots of (v)-1 versus (prothrombin)-1 or (v)-1 versus [(Ca2+)3]-1 at several constant concentrations of phospholipid indicate that the major effect of phospholipid is to increase the turnover number of Factor Xa.  相似文献   

11.
Purification of human brain tissue factor   总被引:11,自引:0,他引:11  
Tissue factor (factor III) is a lipoprotein cofactor which markedly enhances the catalytic effect of coagulation factor VIIa upon factors IX and X. Human tissue factor apoprotein was purified 53,000-fold to homogeneity from brain using acetone delipidation, Triton X-100 extraction, and affinity chromatography upon factor VII-agarose. The purified apoprotein has an apparent molecular weight of 44,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, an amino acid composition similar to bovine brain tissue factor, and an NH2-terminal amino acid sequence of Ser-X-Asn-Thr-Val-Ala-Val-Tyr-X-Tyr-X-Leu-Lys-(Ser)-Lys-Asn-Phe. Optimal relipidation of the tissue factor apoprotein was associated with a 5000-fold enhancement of clotting activity and occurred at a phospholipid/apoprotein (w/w) ratio of greater than 600.  相似文献   

12.
To determine the functional role of the metal-dependent conformational changes in Factor IX, two populations of conformation-specific anti-Factor IX antibodies were prepared. Anti-Factor IX X Mg(II) antibodies bind to Factor IX in the presence of Mg(II) and other metal ions, but not in the absence of metal ions. Anti-Factor IX X Ca(II)-specific antibodies bind to Factor IX in the presence of Ca(II) and Sr(II), but not in the presence of Mn(II), Mg(II), and Ba(II). In the presence of a metal ion that induces the conformational transition recognized by the anti-Factor IX X Mg(II) antibodies, the concentrations of CaCl2 and SrCl2 needed for the half-maximal binding of the anti-Factor IX X Ca(II)-specific antibodies to Factor IX were reduced 3- and 20-fold, respectively. Factor IX binding to phospholipid vesicles was inhibited by the Fab fragments of the anti-Factor IX X Ca(II)-specific antibodies, but was not inhibited by the Fab fragments of the anti-Factor IX X Mg(II) antibodies. Factor XIa activation of Factor IX was also inhibited by the Fab fragments of the anti-Factor IX X Ca(II)-specific antibodies, but not by the anti-Factor IX X Mg(II) antibodies. These results support the hypothesis that Factor IX undergoes two metal-dependent conformational transitions: FIX----FIX'----FIX*. The first transition (FIX----FIX') is metal-dependent but cation-nonselective; the second transition (FIX'----FIX*) is metal-selective for Ca(II) or Sr(II). The second transition results in the expression of conformational determinants necessary for membrane binding and the Ca(II)-dependent activation of Factor IX by Factor XIa. These results suggest chemical similarity between a surface of a domain of Factor XIa and phospholipid vesicles, both of which interact with Factor IX in the presence of Ca(II).  相似文献   

13.
The kinetic parameters of bovine prothrombin activation by factor Xa were determined in the absence and presence of factor Va as a function of the phospholipid concentration and composition. In the absence of factor Va, the Km for prothrombin increases proportionally with the phospholipid concentration and correlates well with the affinity of prothrombin for the different membranes. Phospholipid vesicles with a high affinity for prothrombin yield low Km values compared to membranes with less favorable binding parameters. At limited phospholipid concentrations, the Vmax of prothrombin activation correlates with the binding affinity of factor Xa for the various phospholipid vesicles. Membranes with a high affinity for factor Xa have high Vmax values, while for membranes with a low affinity a low Vmax is observed. Extrapolation of double-reciprocal plots of 1/Vmax vs. 1/[phospholipid] to infinite phospholipid concentrations, a condition at which all factor Xa would participate in prothrombin activation, yields a kcat of 2-4 min-1 independent of the type and amount of acidic phospholipid present in the vesicles. Also, in the presence of factor Va the Km for prothrombin varies proportionally with the phospholipid concentration. There is, however, no correlation between the binding parameters and the Km. Factor Va drastically lowers the Km for prothrombin for vesicles that have a low affinity for prothrombin. Vesicles composed of 20 mol % phosphatidylglycerol and 80 mol % phosphatidylcholine have a Km of 0.04 microM when factor Va is present, compared to 2.2 microM determined in the absence of factor Va.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Membrane anchoring of tissue factor (TF), the cell receptor for coagulation factor VIIa (VIIa), exemplifies an effective mechanism to localize proteolysis at the cell surface. A recombinant TF mutant (TF1-219), deleted of membrane spanning and intracellular domains, was used to evaluate the role of phospholipid interactions for assembly of substrate with the catalytic TF.VIIa complex. TF1-219 was secreted by cells rather than expressed as a cell membrane protein. Unlike free VIIa, TF1-219 as well as the TF1-219.VIIa complex demonstrated no stable association with phospholipid. In the absence of lipid, kinetic evaluation of substrate factor X cleavage by free VIIa, TF.VIIa, and TF1-219.VIIa suggests that the catalytic function of VIIa rather than substrate recognition is enhanced by complex formation. Furthermore, compared with free factor X, factor X on phospholipid was preferentially cleaved as a substrate by TF1-219.VIIa. TF-dependent initiation of the coagulation protease cascades thus involves an enhancement of the activation of factor X on the cell surface by a crucial role of the TF transmembrane domain to membrane anchor the reaction, by the TF extracellular domain to provide protein-protein interactions with VIIa to enhance the activity of the catalytic domain of VIIa, and the preferential presentation of factor X as a substrate when associated with phospholipid surfaces.  相似文献   

15.
J P Wehrle  R M Pollack 《Steroids》1986,47(2-3):115-130
The 3-oxo-delta 5-steroid isomerase (EC 5.3.3.1) activity from bovine adrenal cortex microsomes can be extracted in soluble form by the use of appropriate detergents, although recovery of enzyme activity is low (ca. 2%). Activity is restored upon removal of detergent and reconstitution of the enzyme into phospholipid vesicles. Both Km and Vmax of 3-oxo-delta 5-steroid isomerase of intact microsomes increase as the pH is raised from 7.5 to 9.5, with a particularly sharp increase (6- to 8-fold) above pH 8.5. The kinetic parameters of a detergent-solubilized isomerase preparation show little increase from pH 7.5 to 9.0, but isomerase reconstituted into artificial phospholipid vesicles demonstrates a 6- to 10-fold increase in both Km and Vmax over this pH range. Addition of Ca++ (1 mM) enhances the pH dependence of both Km and Vmax of the membrane-bound isomerase, causing a slight rise in Vmax/Km.  相似文献   

16.
Generation of active coagulation factor VIII from isolated subunits   总被引:1,自引:0,他引:1  
Factor VIII-light chain (FVIII-LC) and Factor VIII-heavy chain (FVIII-HC) were isolated separately from human plasma and were without coagulation activity. When FVIII-LC and FVIII-HC preparations were mixed, coagulation activity was generated in the presence of Mn2+, Ca2+, or Co2+. Mn2+ was most effective and with Ca2+ maximal activity was first obtained after 8 days. Bovine Factor X (FX) accelerated recombination and was able to increase the amount of FVIII:C generated up to 10-fold when FVIII-LC/HC were incubated with Ca2+ for 20 h. When recombination was performed in the presence of micromolar concentrations of sulfhydryl reagents, the total amount of FVIII:C generated was increased up to 4-fold and in excess of FVIII-HC it was possible to drive 70% of FVIII-LC into active complex. If FVIII-HC was prepared in the presence of a sulfhydryl reagent it was possible to drive 75% of FVIII-HC into active complex with FVIII-LC in excess. Me2+, which is necessary for recombination, catalyzes disulfide formation, and it is proposed that FVIII subunits have free sulfhydryl groups. The presence of sulfhydryl reagents during purification of FVIII-HC and during recombination retains the individual subunits in a conformation suitable for recombination.  相似文献   

17.
Coagulation factor X is activated by the extrinsic Xase complex composed of factor VIIa associated with the integral membrane protein tissue factor. The kinetics of human factor X activation was studied following reconstitution of this reaction system using purified human proteins and synthetic phospholipid vesicles composed of phosphatidylcholine and phosphatidylserine (PCPS) or phosphatidylcholine alone (PC). Factor X activation was evaluated by discontinuous measurements of the amidolytic activity of the product, factor Xa, or continuously monitored using the fluorescent serine protease inhibitor 4-aminobenzamidine. The results of both techniques were verified by direct physical measurements of zymogen activation using SDS-polyacrylamide gel electrophoresis. The rate of factor X activation with PC vesicles was less than 5% of that observed with PCPS vesicles. Since factor X does not bind to vesicles containing only PC, these data suggested an important role for the substrate-membrane interaction in the catalytic cycle. The importance of the substrate-membrane interaction in the activation process was investigated by using membrane-binding proteins to compete with the substrate for combining sites on PCPS vesicles. Prothrombin fragment 1 was an inhibitor of factor X activation. The dependence of inhibition by fragment 1 on PCPS and factor X was consistent with a significant reduction in initial velocity due to the displacement of factor X from the membrane surface. The inhibition data also suggested that the membrane-bound pool of factor X was the preferred substrate for the human extrinsic Xase complex. The influence of PCPS concentrations on the rate of factor X activation was systematically investigated. Increasing concentrations of PCPS resulted in a modest change in the Km,app and a dramatic change in the Vmax,app for the reaction. The initial velocity data could be globally analyzed according to the preferential utilization of membrane-bound factor X with the intrinsic kinetic constants: Km approximately equal to 1 microM and kcat = 37 s-1 at saturating PCPS. In addition, the equilibrium parameters for the factor X-membrane interaction inferred from these studies were in excellent agreement with the directly determined values. Collectively, the data suggest that the substrate-membrane interaction must precede catalysis for the efficient activation of human factor X by the extrinsic Xase complex.  相似文献   

18.
The kinetics of activation of normal and gamma-carboxyglutamic acid (Gla)-deficient prothrombins isolated from cattle maintained for extended periods on the vitamin K antagonist dicoumarol were studied. The catalyst was prothrombinase, comprising isolated Factor Xa, Factor Va, phospholipid vesicles, and calcium ion. The Km and kcat values for prothrombins with 0, 1, 2, 5, 7, and 10 Gla residues were determined both by initial rate analysis and by integrated Michaelis-Menten-Henri analysis. Each of the Gla-deficient prothrombins exhibited kcat values similar to that of normal 10-Gla prothrombin but Km values that were 8- to 20-fold greater than that of the normal molecule. The increased Km coincided with a loss of Ca2+- and phospholipid-binding properties of the Gla-deficient prothrombins. The magnitude of the defect in both the kinetics of activation and Ca2+ and phospholipid binding is not progressive with the loss of Gla residues but rather appears abruptly with the loss of as few as 3 of the 10 Gla residues present in the normal substrate. The theoretical relationship between Km(app) and the dissociation constant (Kd) of the prothrombin-phospholipid interactions was derived. According to the result, the increase in apparent Km observed with the Gla-deficient prothrombins corresponds to at least a 100- to 1000-fold decrease in affinity for phospholipid compared to the affinity of normal prothrombin. In addition, the products of the activation of 10-Gla prothrombin were found to inhibit the activation of the Gla-deficient prothrombins.  相似文献   

19.
Prothrombin is a major constituent of the blood coagulation cascade and requires phospholipid and Ca2+ for its activation. We have found that phospholipid/Ca(2+)-dependent protein kinase (Protein kinase C) phosphorylates prothrombin and the associated apparent Km value for prothrombin (0.86 microM) is comparable to the Km value reported for most known substrates of protein kinase C. A 2-dimension separation analysis revealed that serine residue was apparently phosphorylated by PKC. The phosphorylation was inhibited by such phosphatidylserine- and/or Ca2+ competitive protein kinase C inhibitors as trifluoperazine, palmitoylcarnitine and gossypol. These results suggest that protein kinase C phosphorylation was involved in the regulation of blood coagulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号