首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Compound AF64A, ethylcholine mustard aziridinium ion (0.4-8 nmol) was stereotaxically administered into rat dorsal hippocampus, and neurochemical changes were determined 5 days later. AF64A treatment, over an almost 10-fold dose range, resulted in a significant (up to 70%) decline in choline acetyltransferase activity. In the same tissue samples, Na+-dependent choline transport activity was also lowered, with most decreases ranging between 10 and 50% of controls; however, there was no significant correlation (r = 0.39) between these two parameters. Acetylcholinesterase activity was not affected by AF64A treatment when assayed by either histochemical or enzymatic methods. AF64A reduced acetylcholine levels by 43%, but did not alter norepinephrine content or serotonin uptake. These results demonstrate that AF64A can induce a specific, long-term reduction of cholinergic presynaptic biochemical markers in rat hippocampus. Thus, AF64A can serve as a useful new tool to study the cholinergic system and as an important agent to help develop animal models representing disorders of central cholinergic hypofunction.  相似文献   

3.
1. The effects of ethylcholine mustard aziridinium ion (AF64A) on the cholinergic neurotransmission in the sixth abdominal ganglion of the cockroach were studied electrophysiologically and morphologically. 2. The pre- and post-synaptic compound action potentials (CAPs) elicited via electrical stimulation of the presynaptic fibers were recorded extracellularly. 3. The amplitude of both CAPs was depressed by AF64A (50-400 microM) in a concentration- and time-dependent manner. 4. At a high concentration, they were abolished but 100 microM of carbachol still evoked the postsynaptic event. 5. Electron microscopic observation of AF64A-treated ganglia showed that nerve terminals containing small lucent vesicles could not be observed but those containing dense core or large granular vesicles changed only slightly in shape. 6. These results suggest that AF64A is selectively neurotoxic for the presynaptic cholinergic neurons in the sixth abdominal ganglion of the cockroach.  相似文献   

4.
Localization in rat CNS of the acceptors for botulinum neurotoxin (types A and B) was examined by lesioning of cholinergic input to the cortex and immuno-affinity purification of cholinergic nerve terminals. Ibotenic acid lesions of the cortical cholinergic tract caused a small reduction in the content of high affinity binding sites for type A neurotoxin and a concomitant decrease in the activities of acetylcholinesterase and choline acetyltransferase. No such change was observed in the level of acceptors for BoNT B or the extent of immuno-labelling of Chol-I, a cholinergic ganglioside. Purification of cholinergic nerve terminals, using anti-(Chol-I) antibodies gave an equivalent enrichment in the acceptors (high and low affinity) for both toxin types and choline acetyltransferase. Neurotoxin type B (but not type A) inhibited binding of anti-(Chol-I) antibodies to this cholinergic ganglioside on nerve terminals and to semi-purified Chol-I. It can be deduced from these collective findings that the high affinity binding sites for BoNT A and possibly B are localized on cholinergic nerve terminals in the CNS and that the Chol-I ganglioside may be associated with the acceptor for type B toxin.  相似文献   

5.
Ethylcholine mustard aziridinium ion (AF64A) was administered via intracerebroventricular injection to rats. Unilateral injection of 40 nmol AF64A resulted in pronounced toxicity with an 80% mortality rate. Administration of 10 nmol unilaterally resulted in a significant reduction in both acetylcholine content and ouabain stimulated acetylcholine release in the hippocampus 2, 4 and 7 days after treatment. Non-specific changes in hippocampal levels of dopamine, noradrenaline and 5-hydroxytryptamine were also observed.Bilateral injection of 5 nmol AF64A was more effective than a unilateral 10 nmol injection in reducing acetylcholine release from hippocampus 4 and 7 days after treatment. Hippocampal acetylcholine content was also reduced (to 35% of control). In contrast, there was less effect on acetylcholine content in striatum and frontal cortices, and acetylcholine release from these areas was not decreased. Although there was a transient reduction in hippocampal 5-hydroxytryptamine content 4 days after treatment, this had recovered to control levels within 7 days. 5-Hydroxytryptamine levels in striatum or cortex were not affected, nor were there any changes in noradrenaline or dopamine contents in the areas studied.This study indicates that, in the correct dose range, AF64A can exert selective effects on cholinergic systems, particularly in the hippocampus. The selective cholinotoxicity of this compound makes it a useful tool in developing animal models of cholinergic dysfunction.  相似文献   

6.
Z Pittel  A Fisher  E Heldman 《Life sciences》1989,44(20):1437-1448
The effect of ethylcholine aziridinium ion (AF64A) after an intracerebroventricular (icv) injection was compared to that obtained after an intravascular administration. Reductions in choline acetyltransferase (ChAT) and acetylcholinesterase activities in the hippocampus but not in the cerebral cortex or the corpus striatum were observed 10 days after bilateral injection of AF64A into the rat cerebroventricles (3 nmol/side). However, when AF64A was injected into the carotid artery (1 mumol/kg) following a unilateral opening of the blood-brain barrier by a hypertonic treatment, a significant decrease in ChAT activity was observed in the ipsilateral side of the cerebral cortex but not in hippocampus, corpus striatum, or cerebellum. High-affinity choline transport was reduced significantly 11 days after an icv injection of AF64A in all the above mentioned brain regions, and recovered 60 days post injection in the cerebral cortex and in the corpus striatum but not in the hippocampus. Our results suggest that in various brain regions, AF64A causes various degrees of damage to cholinergic neurons, depending on the quantity of the toxin that reaches the target tissue.  相似文献   

7.
AF64A (ethylcholine mustard aziridinium ion) was stereotaxically administered bilaterally (1 nmol/side) into rat lateral cerebral ventricles. Choline acetyltransferase (ChAT) activity and ChAT mRNA levels were measured at predetermined time points in the septo-hippocampal pathway and striatum, both well identified as rich in cholinergic neurons. AF64A caused a rapid but transient increase in ChAT mRNA (167%, P < 0.05) and ChAT activity (164%, P < 0.01) in the septum. By day 7 post treatment, there was a significant decrease in ChAT mRNA (42.5% of control, P < 0.05) in the septum although the ChAT activity still stayed high. This decreased ChAT mRNA level in the septum lasted for at least four weeks, and was paralleled by a long-lasting decrease in ChAT activity in the hippocampus. In the striatum, on the other hand, there were no observed changes in either ChAT activity or ChAT mRNA. These data suggest that the long term effect of AF64A on the septo-hippocampal cholinergic pathway may, at least in part, be due to an action of AF64A on gene expression in the cholinergic neuron. The difference in the response to AF64A between the septo-hippocampal and striatal cholinergic systems might be due to their difference in neuron types.  相似文献   

8.
Intracerebroventricular injection of ethylcholine aziridinium (AF64A) (2 nmol/ventricle) induced a considerable decrease in the level of acetylcholine (ACh) in hippocampus (from 21.14 +/- 0.84 to 10.04 +/- 0.59 pmol/mg of tissue; p less than 0.001) 4 days after application. The reduction of cholinergic function was accompanied by a decrease in the level of noradrenaline (NA) (from 1.96 +/- 0.08 to 1.41 +/- 0.06 pmol/mg of tissue; p less than 0.001). Two days after administration of AF64A (1 or 2 nmol/ventricle), the dose-dependent decrease in NA level was associated with an increase in the level of its major metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), resulting in a considerable increase in the MHPG/NA molar ratio (from 0.84 +/- 0.06 to 1.62 +/- 0.17; p less than 0.002). Chronic treatment of AF64A-injected rats with clonidine (0.02-0.2 mg/kg, i.p., every 8-12 h) had no significant effect on the loss of ACh content, whereas the decrease in NA content in hippocampus was completely prevented. Clonidine induced aggressive behavior in the AF64A-treated rats, in contrast to sedation in vehicle-injected rats. The response to clonidine under these experimental conditions and the increased MHPG/NA molar ratio in response to AF64A suggest that the transient loss of NA content following AF64A administration results from increased NA release. The increased noradrenergic activity in hippocampus may be linked to the reduction of tonic inhibitory cholinergic input. These results are discussed in relation to possible implications for senile dementia of the Alzheimer type.  相似文献   

9.
10.
The question whether during the process of cholinergic degeneration somatostatin- and/or neuropeptide Y-containing neurons in rat hippocampus and cortex react to the withdrawal of cholinergic function was addressed. After bilateral intracerebroventricular injection of the cholinotoxin ethylcholine aziridinium (AF64A; 1 or 2 nmol/ventricle) in rats, the activity of choline acetyltransferase (ChAT) started to decline in the hippocampus within 24 h. The reduction of ChAT activity reached its maximum within 4 days (34 and 55% after 1 and 2 nmol of AF64A/ventricle, respectively) and persisted during the observation period of 14 days. In the parietal cortex, ChAT activity decreased by 23% 4 days after 2 nmol of AF64A/ventricle. The loss in ChAT activity was accompanied by a transient decline in the levels of somatostatin and a transient increase in the levels of neuropeptide Y in both brain areas. In the hippocampus, the reduction in somatostatin content was most pronounced after 2 days (by 22 and 33% after 1 and 2 nmol of AF64A/ventricle, respectively). Within 14 days, somatostatin levels returned to control values. Neuropeptide Y levels increased slightly by approximately 25% of control values in the hippocampus. The changes described were present in both the dorsal and ventral subfields of the hippocampus. Similar but less pronounced changes in levels of both neuropeptides were observed in the parietal cortex. The present data provide further evidence for a close neuronal interrelationship between cholinergic and somatostatin- and/or neuropeptide Y-containing neurons in rat hippocampus and parietal cortex.  相似文献   

11.
The aziridinium ion of ethylcholine (AF64A) is a neurotoxin that has demonstrated selectivity for cholinergic neurons. Unilateral stereotaxic injection of AF64A into the caudate-putamen of rats, resulted in a decrease in dopamine D-2 receptors as evidenced by a decrease in [3H]-sulpiride binding. Dopamine D-1 receptors, labeled with [3H]-SCH 23390, were unchanged. The efficacy of the lesion was demonstrated by the reduction of Na+-dependent high affinity choline uptake sites labeled with [3H]-hemicholinium-3. These data indicate that a population of D-2 receptors are postsynaptic on cholinergic interneurons within the striatum of rat brain.  相似文献   

12.
P Kása  I Hanin 《Histochemistry》1985,83(4):343-345
A cholinotoxin, ethylcholine mustard aziridinium ion, (AF64A) specifically and irreversibly blocks the intraaxonal transport of acetylcholinesterase in the rat. Impairment of the transport of this enzyme in the septo-hippocampal cholinergic fibres and in the sciatic nerve has been studied, using different doses of AF64A. It is demonstrated that the effect on the axonal transport is dose-dependent, but is not related to the mode of drug application. AF64A thus may exert its neurotoxic effects on cholinergic neurons at several target sites of action. In addition to the localized presynaptic mechanisms, it may also be compromising cholinergic function by inhibiting axonal transport in vivo.  相似文献   

13.
Abstract: In this study, we examined the effects of nerve growth factor (NGF) administration on cholinergic enzyme activity in both normal and ethylcholine mustard aziridinium (AF64A)-treated rats. Choline acetyltransferase (ChAT) and acetylcholinesterase activity were measured in the hippocampus and septum of rats chronically administered NGF (0.36–2.85 µg/day) into the lateral ventricle for 14 days. In both normal and AF64A-treated rats, NGF increased cholinergic enzyme activity in a dose-dependent manner. Furthermore, although NGF increased ChAT activity in normal rats by 147%, it had a greater effect in AF64A-treated rats, increasing ChAT activity as much as 273%. NGF increased acetylcholinesterase activity in normal rats by only 125% but produced a 221% increase in this activity in AF64A-treated rats. These data indicate that AF64A produces an increased sensitivity to NGF in cholinergic neurons.  相似文献   

14.
Sarin is a toxic organophosphorus (OP) nerve agent that has been reported to cause long-term alterations in behavioral and neuropsychological processes. The present study was designed to investigate the effect of low dose sarin exposure on the monoamine neurotransmitter systems in various brain regions of mice. The rationale was to expand our knowledge about the noncholinergic neurochemical alterations associated with low dose exposure to this cholinesterase inhibitor. We analyzed the levels of monoamines and their metabolites in different brain areas after exposure of male C57BL/6 mice to a subclinical dose of sarin (0.4 LD50). Mice did not show any signs of cholinergic toxicity or pathological changes in brain tissue. At 1, 4 and 8 weeks post-sarin exposure brains were collected for neurochemical analysis. A significant decrease in the dopamine (DA) turnover, as measured by the metabolite to parent ratio, was observed in the frontal cerebral cortex (FC) at all time points tested. DA turnover was significantly increased in the amygdala at 4 weeks but not at 1 or 8 weeks after exposure. The caudate nucleus displayed a decrease in DA turnover at 1 week but no significant change was observed at 4 and 8 weeks suggesting a reversible effect. In addition to this, serotonin (5-HT) levels were transiently altered at various time points in all the brain regions studied (increase in FC, caudate nucleus and decrease in amygdala). Since there were no signs of cholinergic toxicity or cell death after sarin exposure, different non-cholinergic mechanisms may be involved in regulating these effects. Our results demonstrate that non-symptomatic dose of OP nerve agent sarin has potent long-term, region-specific effects on the monoaminergic neurotransmitter systems. Data also suggests differential effects of sarin on the various DA projections. These neurochemical alterations could be associated with long term behavioral and neuropsychological changes associated with low dose OP exposure.  相似文献   

15.
Ethylcholine mustard aziridinium ion (AF64A, MEChMAz) has been proposed as a cholinergic neuron-specific neurotoxin. We report that in further studies on its mechanism of action incubation of the cholinergic neuroblastoma X glioma cell line, NG-108-15, with 100 microM AF64A resulted in a rapid decrease in cellular choline acetyltransferase (ChAT) activity which preceded cytotoxicity. Thus, a 60-85% decrease in ChAT activity was measured within 5 h of AF64A exposure, whereas cell lysis (measured as the release of the cytosolic enzyme lactate dehydrogenase into the medium) did not become apparent until 18 h of AF64A exposure. This led us to examine the effects of AF64A on partially purified ChAT. We report a concentration- and time-dependent inhibition of partially purified ChAT by AF64A that could not be reversed by dialysis but could be prevented by coincubation of the enzyme and AF64A with choline but not with acetyl-coenzyme A. We present kinetic evidence that choline and AF64A compete for the same site on the enzyme. In addition, thiosulfate, which inactivates the aziridinium ion, eliminated AF64A's capacity to inhibit the enzyme. AF64A also irreversibly inhibited partially purified choline kinase and acetylcholinesterase but not lactate dehydrogenase, alcohol dehydrogenase, carboxypeptidase A, or chymotrypsinogen, enzymes that do not use choline as a substrate or product. Thus, the data suggest that AF64A acts as an irreversible active site directed inhibitor of ChAT and possibly other enzymes recognizing choline.  相似文献   

16.
Summary A cholinotoxin, ethylcholine mustard aziridinium ion, (AF64A) specifically and ireversibly blocks the intraaxonal transport of acetylcholinesterase in the rat. Impairment of the transport of this enzyme in the septo-hippocampal cholinergic fibres and in the sciatic nerve has been studied, using different doses of AF64A. It is demonstrated that the effect on the axonal transport is dose-dependent, but is not related to the mode of drug application. AF64A thus may exert its neurotoxic effects on cholinergic neurons at several target sites of action. In addition to the localized presynaptic mechanisms, it may also be compromising cholinergic function by inhibiting axonal transport in vivo.  相似文献   

17.
The aim of the present study was to reveal whether reduced cortical cholinergic input affects the acetyl-CoA metabolism in cholinoceptive cortical target regions which may play a causative role for the deficits in cerebral glucose metabolism observed in Alzheimer's disease. The effect of cortical cholinergic denervation produced by a single intracerebroventricular application of the cholinergic immunotoxin 192IgG-saporin, on activities of pyruvate dehydrogenase and adenosine triphosphate (ATP)-citrate lyase as well as on the level of synaptoplasmic and mitochondrial acetyl-CoA and acetylcholine release in cortical target regions was studied. Cholinergic lesion produced 83%, 72% and 32% decreases in the activities of choline acetyltransferase, acetylcholinesterase and ATP-citrate lyase in nerve terminals isolated from rat brain cortex, respectively, but no change in pyruvate dehydrogenase activity. Spontaneous and Ca2+-evoked acetylcholine release from synaptosomes was inhibited by 76% and 73%, respectively, following immunolesion. The lesion-induced 39% decrease of acetyl-CoA level in synaptosomal mitochondria was accompanied by 74% increase in synaptoplasmic fraction. Levels of acetyl-CoA and CoASH assayed in fraction of whole brain mitochondria from lesioned cortex were 61% and 48%, respectively, higher as compared to controls. The data suggest a preferential localization of ATP-citrate lyase in cholinergic nerve terminals, where it may contribute to the transport of acetyl-CoA from the mitochondrial to the cytoplasmic compartment. They provide evidence on differential distribution of acetyl-CoA in subcellular compartments of cholinergic and non-cholinergic nerve terminals. There are also indications that cholinergic activity affects acetyl-CoA level and its intracellular distribution in glial and other non-cholinergic cortical cells.  相似文献   

18.
S A Stwertka  G L Olson 《Life sciences》1986,38(12):1105-1110
The putative specific cholinergic neurotoxin AF64A was prepared by a micro-scale procedure which afforded the neurotoxin in greater than 95% purity and was microinjected unilaterally into the striatum of male albino rats. The AF64A-injected animals displayed amphetamine- and apomorphine-induced ipsilateral turning indicating disruption of normal striatal pathways. These turning effects were absent in the control injected animals. Histological examinations of the brains revealed that AF64A in amounts as low as 1 nmole produced regions of necrosis in the striatum in some cases extending along the cannula tract up to and including the cortex. These results indicate that the striatum is highly sensitive to relatively low doses of AF64A, and that consideration should be given to the possibility of gross tissue damage when interpreting behavioral data.  相似文献   

19.
Calelectrin is a calcium-binding protein of Mr 36 000 which has previously been shown to be associated with membranes of the cholinergic synapse in a calcium-dependent manner. We report here that calelectrin was solubilized from the electric organ of Torpedo marmorata in the absence of calcium together with proteins of Mr 54 000 and Mr 15 000. In cholinergic nerve endings isolated from the electric organ only calelectrin was solubilized in a calcium-dependent manner. A specific antiserum to calelectrin was used to localize the antigen by immunofluorescence microscopy on sections of electric organ and showed that calelectrin is distributed throughout the postsynaptic cell. Calelectrin was also detected in axons and in the cell bodies of the cholinergic neurones where it was concentrated in discrete patches throughout the cells. Electric organ tissue was processed to localize calelectrin with the electron microscope using an immunoperoxidase method. The most intense staining was observed on the cytoplasmic face of the acetylcholine receptor-containing postsynaptic membrane and also associated with the intracellular filaments of the electrocyte. The intensity of staining associated with these structures could be greatly reduced by preincubating the tissue with calcium chelators. In nerve terminals calelectrin was associated with synaptic vesicles in a polarized fashion. Calelectrin was also found on the cytoplasmic face of the synaptosomal plasma membrane and associated with neurofilaments. No extracellular staining was ever observed. Our results strongly support our original hypothesis that calelectrin is a calcium-regulated component of intracellular structure associated both with membranes and filaments.  相似文献   

20.
S Eliash  G Urca  S Cohen 《Life sciences》1988,42(17):1669-1674
The aim of this study was to ascertain whether drug-induced cholinergic hypofunction in the posterior hypothalamus would affect the development and the maintenance of hypertension in hypertensive rats. Spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats were treated with AF64A, a neurotoxin which can irreversibly inhibit cholinergic transmission in vivo. AF64A or saline was injected bilaterally into the posterior hypothalamus of rats of two age groups: normotensive one month-old rats whose blood pressure was subsequently measured at the age of three months and hypertensive three month-old rats, whose blood pressure was measured four weeks later. In both age groups there was a significant fall in mean arterial blood pressure in SHR but not WKY rats. In SHR injected at the age of one month, there was a fall of at least 15.9 mm Hg, while in the rats injected at the age of three months there was a fall of 14.3 mm Hg. Heart rate in either strain was not affected. When AF64A was injected into the anterior hypothalamus of one month-old SHR, no antihypertensive effect was observed in these rats at the age of three months. These results show that cholinergic stimulation in the posterior hypothalamus may play a role in both the development and maintenance of hypertension in SHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号