首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inner ear disorders are known to be elicited by mitochondrial dysfunction, which decreases the ATP level in the inner ear. 5′-AMP-activated protein kinase (AMPK) is a serine/threonine kinase activated by metabolic stress and by an increase in the AMP/ATP ratio. To elucidate the involvement of AMPK-derived signals in noise-induced hearing loss, we investigated whether in vivo acoustic overstimulation would activate AMPK in the cochlea of mice. Std-ddY mice were exposed to 8 kHz octave band noise at a 90-, 110- or 120-dB sound pressure level (SPL) for 2 h. Exposure to the noise at 110 or 120 dB SPL produced outer hair cell death in the organ of Corti and permanent hearing loss. Exposure to the noise at 120-dB SPL elevated the level of the phospho-AMPK α-subunit (p-AMPKα), without affecting the protein level of this subunit, immediately and at 12-h post-exposure in the lateral wall structures including the spiral ligament and stria vascularis. In the hair cells and spiral ganglion cells, no marked change in the level of p-AMPKα was observed at any time post-exposure. The level of phospho-c-Jun N-terminal kinase (p-JNK) was increased in the lateral wall structures at 2- to 4-h post-exposure at 120 dB SPL. Noise exposure significantly, but temporarily, decreased the ATP level in the spiral ligament, in an SPL-dependent manner at 110 dB and above. Likewise, elevation of p-AMPKα and p-JNK levels was also observed in the lateral wall structures post-exposure to noise at an SPL of 110 dB and above. Taken together, our data suggest that AMPK and JNK were activated by ATP depletion in the cochlear spiral ligament prior to permanent hearing loss induced by in vivo acoustic overstimulation.  相似文献   

2.
3.
Because of its high prevalence and social impact, hearing impairment is a major public health problem. Whatever the cause--heredity, acoustic trauma, aminoglycoside antibiotics, noise exposure or aging--the hearing impairment is often caused by an irreversible loss of sensory hair cells. So far, hearing aids and cochlear implants are the only possibility to "treat" profound deafness. With the advent of regenerative medicine, extensive studies aimed to repair, regenerate or replace lost hair cells have been initiated. Recently, Stefan Heller and colleagues described a guidance protocol to induce mouse embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) to differentiate into mechanosensitive hair cells. The resulting hair cells hold promise as a tool for hair cell molecular physiology and physiopathology, drug discovery, and possibly also hair cell replacement. The next challenges, alternative strategies, their limitations and prospects are also discussed.  相似文献   

4.
The hallmark of mechanosensory hair cells is the stereocilia, where mechanical stimuli are converted into electrical signals. These delicate stereocilia are susceptible to acoustic trauma and ototoxic drugs. While hair cells in lower vertebrates and the mammalian vestibular system can spontaneously regenerate lost stereocilia, mammalian cochlear hair cells no longer retain this capability. We explored the possibility of regenerating stereocilia in the noise-deafened guinea pig cochlea by cochlear inoculation of a viral vector carrying Atoh1, a gene critical for hair cell differentiation. Exposure to simulated gunfire resulted in a 60–70 dB hearing loss and extensive damage and loss of stereocilia bundles of both inner and outer hair cells along the entire cochlear length. However, most injured hair cells remained in the organ of Corti for up to 10 days after the trauma. A viral vector carrying an EGFP-labeled Atoh1 gene was inoculated into the cochlea through the round window on the seventh day after noise exposure. Auditory brainstem response measured one month after inoculation showed that hearing thresholds were substantially improved. Scanning electron microscopy revealed that the damaged/lost stereocilia bundles were repaired or regenerated after Atoh1 treatment, suggesting that Atoh1 was able to induce repair/regeneration of the damaged or lost stereocilia. Therefore, our studies revealed a new role of Atoh1 as a gene critical for promoting repair/regeneration of stereocilia and maintaining injured hair cells in the adult mammal cochlea. Atoh1-based gene therapy, therefore, has the potential to treat noise-induced hearing loss if the treatment is carried out before hair cells die.  相似文献   

5.
Sensory hair cells of the inner ear are sensitive to death from aging, noise trauma, and ototoxic drugs. Ototoxic drugs include the aminoglycoside antibiotics and the antineoplastic agent cisplatin. Exposure to aminoglycosides results in hair cell death that is mediated by specific apoptotic proteins, including c-Jun N-terminal kinase (JNK) and caspases. Induction of heat shock proteins (Hsps) can inhibit JNK- and caspase-dependent apoptosis in a variety of systems. We have previously shown that heat shock results in robust upregulation of Hsps in the hair cells of the adult mouse utricle in vitro. In addition, heat shock results in significant inhibition of both cisplatin- and aminoglycoside-induced hair cell death. In this system, Hsp70 is the most strongly induced Hsp, which is upregulated over 250-fold at the level of mRNA 2 h after heat shock. Hsp70 overexpression inhibits aminoglycoside-induced hair cell death in vitro. In this study, we utilized Hsp70-overexpressing mice to determine whether Hsp70 is protective in vivo. Both Hsp70-overexpressing mice and their wild-type littermates were treated with systemic kanamycin (700 mg/kg body weight) twice daily for 14 days. While kanamycin treatment resulted in significant hearing loss and hair cell death in wild-type mice, Hsp70-overexpressing mice were significantly protected against aminoglycoside-induced hearing loss and hair cell death. These data indicate that Hsp70 is protective against aminoglycoside-induced ototoxicity in vivo.  相似文献   

6.
Noise over-stimulation may induce hair cells loss and hearing deficit. The c-myc oncogene is a major regulator for cell proliferation, growth, and apoptosis. However, the role of this gene in the mammalian cochlea is still unclear. The study was designed to firstly investigate its function under noise condition, from the aspect of cochlear ultrastructural changes. We had established the adenoviral vector of c-myc gene and delivered the adenovirus suspension into the scala tympani of guinea pigs 4 days before noise exposure. The empty adenoviral vectors were injected as control. Then, all subjects were exposed to 4-kHz octave-band noise at 110 dB SPL for 8 h/day, 3 days consecutively. Auditory thresholds were assessed by auditory brainstem response, prior to and 7 days following noise exposure. On the seventh days after noise exposure, the cochlear sensory epithelia surface was observed microscopically and the cochleae were taken to study the ultrastructural changes. The results indicated that auditory threshold shift after noise exposure was higher in the ears treated with Ad.EGFP than that treated with Ad.c-myc-EGFP. Stereocilia loss and the disarrangement of outer hair cells were observed, with greater changes found in the Ad.EGFP group. Also, the ultrastructure changes were severe in the Ad.EGFP group, but not obvious in the Ad.c-myc-EGFP group. Therefore, c-myc gene might play an unexpected role in hearing functional and morphological protection from acoustic trauma.  相似文献   

7.
8.
Acute acoustic trauma (AAT) results in oxidative stress to the cochlea through overproduction of cellular reactive oxygen, nitrogen, and other free radical species appearing from 1 h to 10 days after noise exposure. It has been shown that N-acetyl-L-cysteine (NAC), a glutathione prodrug, and acetyl-L-carnitine (ALCAR), a mitochondrial biogenesis agent, are effective in reducing noise-induced hearing loss. Phenyl N-tert-butylnitrone (PBN), a nitrone-based free radical trap, appears to suppress oxidative stress in a variety of disorders and several biological models. In this study, we tested whether 4-hydroxy PBN (4-OHPBN), a major metabolite of PBN, administered 4 h after noise exposure is effective in treating noise-induced hearing loss and whether a combination of antioxidant drugs (4-OHPBN plus NAC and 4-OHPBN plus NAC plus ALCAR) provides greater efficacy in attenuating AAT since each agent addresses different injury mechanisms. Chinchilla were exposed to a 105 dB octave-band noise centered at 4 kHz for 6 h. 4-OHPBN and combinations of antioxidant drugs were intraperitoneally administered beginning 4 h after noise exposure. Hearing threshold shifts in auditory brainstem responses and missing outer hair cell counts were obtained. 4-OHPBN reduced threshold shifts in a dose-dependent manner while both drug combinations showed greater effects. These results demonstrate that 4-OHPBN and combinations of antioxidants can effectively treat acute acoustic trauma and drug combinations may increase the effectiveness of treatment and decrease the required individual medication dose.  相似文献   

9.
Mitogen-activated protein kinases (MAP kinases) are intracellular signaling kinases activated by phosphorylation in response to a variety of extracellular stimuli. Mammalian MAP kinase pathways are composed of three major pathways: MEK1 (mitogen-activated protein kinase kinase 1)/ERK 1/2 (extracellular signal-regulated kinases 1/2)/p90 RSK (p90 ribosomal S6 kinase), JNK (c-Jun amino (N)-terminal kinase)/c-Jun, and p38 MAPK pathways. These pathways coordinately mediate physiological processes such as cell survival, protein synthesis, cell proliferation, growth, migration, and apoptosis. The involvement of MAP kinase in noise-induced hearing loss (NIHL) has been implicated in the cochlea; however, it is unknown how expression levels of MAP kinase change after the onset of NIHL and whether they are regulated by transient phosphorylation or protein synthesis. CBA/J mice were exposed to 120-dB octave band noise for 2 h. Auditory brainstem response confirmed a component of temporary threshold shift within 0–24 h and significant permanent threshold shift at 14 days after noise exposure. Levels and localizations of phospho- and total- MEK1/ERK1/2/p90 RSK, JNK/c-Jun, and p38 MAPK were comprehensively analyzed by the Bio-Plex® Suspension Array System and immunohistochemistry at 0, 3, 6, 12, 24 and 48 h after noise exposure. The phospho-MEK1/ERK1/2/p90 RSK signaling pathway was activated in the spiral ligament and the sensory and supporting cells of the organ of Corti, with peaks at 3–6 h and independently of regulations of total-MEK1/ERK1/2/p90 RSK. The expression of phospho-JNK and p38 MAPK showed late upregulation in spiral neurons at 48 h, in addition to early upregulations with peaks at 3 h after noise trauma. Phospho-p38 MAPK activation was dependent on upregulation of total-p38 MAPK. At present, comprehensive data on MAP kinase expression provide significant insight into understanding the molecular mechanism of NIHL, and for developing therapeutic models for acute sensorineural hearing loss.  相似文献   

10.
Hearing loss from noise exposure is a leading occupational disease, with up to 5% of the population at risk world-wide. Here, we present a novel purine-based pharmacological intervention that can ameliorate noise-induced cochlear injury. Wistar rats were exposed to narrow-band noise (8–12 kHz, 110 dB SPL, 2–24 h) to induce cochlear damage and permanent hearing loss. The selective adenosine A1 receptor agonist, adenosine amine congener (ADAC), was administered intraperitoneally (100 μg/kg/day) at time intervals after noise exposure. Hearing thresholds were assessed using auditory brainstem responses and the hair cell loss was evaluated by quantitative histology. Free radical damage in the organ of Corti was assessed using nitrotyrosine immunohistochemistry. The treatment with ADAC after noise exposure led to a significantly greater recovery of hearing thresholds compared with controls. These results were upheld by increased survival of sensory hair cells and reduced nitrotyrosine immunoreactivity in ADAC-treated cochlea. We propose that ADAC could be a valuable treatment for noise-induced cochlear injury in instances of both acute and extended noise exposures.  相似文献   

11.
Zhang YM  Ma B  Gao WY  Wen W  Liu HY 《生理学报》2007,59(1):103-110
本文旨在研究谷氨酸及其受体在噪声致豚鼠螺旋神经节细胞损伤中的作用。实验分为在体和离体两部分。(1)在体实验:豚鼠分为生理盐水(NS,10μL)组,NS(10μL)+噪声组和犬尿喹啉酸(kynurenic acid,KYNA,5mmol/L,10μL)+噪声组,每组15只。用微量注射器经完整圆窗膜表面给予NS或KYNA:暴露于白噪声110dBSPL,1h。在圆窗给药前及噪声暴露后测试听觉脑干诱发电位(auditory brainstem response,ABR)阈值及Ⅲ波幅值,听神经复合动作电位(compound action potential,CAP)阈值及N1波幅值和潜伏期,测试后取基底膜进行透射电镜观察。(2)离体实验:观察高浓度谷氨酸对急性分离的豚鼠螺旋神经节细胞的影响。结果显示,NS+噪声组豚鼠ABR及CAP阈移显著高于KYNA+噪声组,且Ⅲ波和NI波幅值明显降低,潜伏期明显延长。NS+噪声组豚鼠毛细胞及传入神经末梢急性水肿和线粒体结构破坏:KYNA+噪声组豚鼠的毛细胞和传入神经末梢无明显变化。离体胞外施加谷氨酸可引起螺旋神经节细胞逐渐出现水肿、变性,最后死亡。本实验提示,噪声暴露可引起豚鼠听功能损伤,毛细胞/传入神经突触的结构破坏和螺旋神经节细胞变性、死亡:这种损伤可能与噪声暴露引起谷氨酸的过度释放有关;谷氨酸通过其受体介导致使螺旋神经节细胞损伤,谷氨酸受体的广谱拮抗剂KYNA可减轻噪声对螺旋神经节细胞的损伤。  相似文献   

12.
Luo P  Lin M  Li L  Yang B  He Q 《PloS one》2011,6(11):e27298
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Differentiated human NBs are associated with better outcome and lower stage; induction of differentiation is considered to be therapeutically advantageous. All-trans retinoic acid (ATRA) has been shown to induce the differentiation of neuroblastoma (NB) cell lines. The proteasome inhibitor bortezomib inhibits cell growth and angiogenesis in NBs. Here, we investigated the synergistic effect between bortezomib and ATRA in inducing NB cell differentiation in different NB cell lines. Bortezomib combined with ATRA had a significantly enhanced antiproliferative effect. This inhibition was characterized by a synergistic increase in neuronal differentiation. At the same time, the combination therapy showed little neuronal toxicity which was assessed in primary cultures of rat cerebellar granule cells by the MTT assay, PI staining. The combination of bortezomib and ATRA triggered increased differentiation through the activation of proteins, including RARα, RARβ, RARγ, p-JNK and p21, compared with ATRA treatment alone. Using JNK inhibitor SP600125 to block JNK-dependent activity, the combination therapy-induced neuronal differentiation was partially attenuated. In addition, p21 shRNA had no effect on the combination therapy-induced neuronal differentiation. The in vivo antitumor activities were examined in human NB cell xenografts and GFP-labeled human NB cell xenografts. Treatment of human NB cell CHP126-bearing nude mice with ATRA plus bortezomib resulted in more significant tumor growth inhibition than mice treated with either drug alone. These findings provide the rationale for the development of a new therapeutic strategy for NB based on the pharmacological combination of ATRA and bortezomib.  相似文献   

13.
《Free radical research》2013,47(3):264-272
Abstract

Objective. The objective of this study was to investigate the dose-dependent therapeutic effect of the orally administrated antioxidant drugs [4-hydroxy alpha-phenyl-tert-butylnitrone (4-OHPBN) and N-acetyl-L-cysteine (NAC)] on acute noise-induced hearing loss because oral administration is the most commonly used method of drug administration due to its convenience, safety, and economical efficiency. Methods. Thirty chinchilla were exposed to a 105 dB octave band noise centered at 4 kHz for 6 h and randomly assigned to a control group (saline only) and three experimental groups [4-OHPBN (10 mg/kg) plus NAC (20 mg/kg), 4-OHPBN (20 mg/kg) plus NAC (50 mg/kg), and 4-OHPBN (50 mg/kg) plus NAC (100 mg/kg)]. The drugs were orally administrated beginning 4 h after noise exposure and then administered twice daily for the next 2 days. Permanent auditory brainstem response threshold shifts, distortion product otoacoustic emission threshold shifts, and the percentage of missing outer hair cell were determined. Results. The oral administration significantly reduced permanent hearing threshold shift, distortion product otoacoustic emission threshold shift, and the percentage of missing outer hair cell in a dose-dependent manner. Discussion. This result demonstrates that orally administered drugs can treat acute noise-induced hearing loss in a dose-dependent manner. This suggests that oral administration was effective in treating acute noise-induced hearing loss as in intraperitoneal administration.  相似文献   

14.
Various cochlear pathologies, such as acoustic trauma, ototoxicity and age-related degeneration, cause hearing loss. These pre-existing hearing losses can alter cochlear responses to subsequent acoustic overstimulation. So far, the knowledge on the impacts of pre-existing hearing loss caused by genetic alteration of cochlear genes is limited. Prestin is the motor protein expressed exclusively in outer hair cells in the mammalian cochlea. This motor protein contributes to outer hair cell motility. At present, it is not clear how the interference of prestin function affects cochlear responses to acoustic overstimulation. To address this question, a genetic model of prestin dysfunction in mice was created by inserting an internal ribosome entry site (IRES)-CreERT2-FRT-Neo-FRT cassette into the prestin locus after the stop codon. Homozygous mice exhibit a threshold elevation of auditory brainstem responses with large individual variation. These mice also display a threshold elevation and a shift of the input/output function of the distortion product otoacoustic emission, suggesting a reduction in outer hair cell function. The disruption of prestin function reduces the threshold shifts caused by exposure to a loud noise at 120 dB (sound pressure level) for 1 h. This reduction is positively correlated with the level of pre-noise cochlear dysfunction and is accompanied by a reduced change in Cdh1 expression, suggesting a reduction in molecular responses to the acoustic overstimulation. Together, these results suggest that prestin interference reduces cochlear stress responses to acoustic overstimulation.  相似文献   

15.
Li H  Wang Q  Steyger PS 《PloS one》2011,6(4):e19130

Background

Exposure to intense sound or high doses of aminoglycoside antibiotics can increase hearing thresholds, induce cochlear dysfunction, disrupt hair cell morphology and promote hair cell death, leading to permanent hearing loss. When the two insults are combined, synergistic ototoxicity occurs, exacerbating cochlear vulnerability to sound exposure. The underlying mechanism of this synergism remains unknown. In this study, we tested the hypothesis that sound exposure enhances the intra-cochlear trafficking of aminoglycosides, such as gentamicin, leading to increased hair cell uptake of aminoglycosides and subsequent ototoxicity.

Methods

Juvenile C57Bl/6 mice were exposed to moderate or intense sound levels, while fluorescently-conjugated or native gentamicin was administered concurrently or following sound exposure. Drug uptake was then examined in cochlear tissues by confocal microscopy.

Results

Prolonged sound exposure that induced temporary threshold shifts increased gentamicin uptake by cochlear hair cells, and increased gentamicin permeation across the strial blood-labyrinth barrier. Enhanced intra-cochlear trafficking and hair cell uptake of gentamicin also occurred when prolonged sound, and subsequent aminoglycoside exposure were temporally separated, confirming previous observations. Acute, concurrent sound exposure did not increase cochlear uptake of aminoglycosides.

Conclusions

Prolonged, moderate sound exposures enhanced intra-cochlear aminoglycoside trafficking into the stria vascularis and hair cells. Changes in strial and/or hair cell physiology and integrity due to acoustic overstimulation could increase hair cell uptake of gentamicin, and may represent one mechanism of synergistic ototoxicity.  相似文献   

16.
Roles of the JNK signaling pathway in Drosophila morphogenesis.   总被引:1,自引:0,他引:1  
Epithelial cell differentiation and morphogenesis are crucial in many aspects of metazoan development. Recent genetic studies in Drosophila have revealed that the conserved Jun amino-terminal kinase (JNK) signaling pathway regulates epithelial morphogenesis during the process of embryonic dorsal closure and participates in the control of planar polarity in several tissues. Importantly, these studies have linked the JNK pathway to the decapentaplegic and Frizzled pathways in these processes, suggesting a high degree of integrative signaling during epithelial morphogenesis.  相似文献   

17.
目的:探讨Reg3b在大鼠耳蜗中的分布情况及在噪声刺激前后的表达变化,为治疗噪声性聋提供新思路。方法:30只健康成年SD大鼠,分为噪声暴露组和正常对照组,利用110dBSPL宽频稳态白噪声对噪声组进行噪声暴露,通过免疫组织荧光技术,观察Reg3b在正常及噪声刺激后成年sD大鼠耳蜗内的分布情况。采用实时定量PCR技术(Realtime-PCR)方法检测大鼠接受噪声刺激前后Reg3b在耳蜗内的表达变化。结果:免疫组织荧光技术提示,Reg3b在噪声暴露后主要表达于大鼠耳蜗的内毛细胞、外毛细胞,以及螺旋神经节处,而正常大鼠耳蜗中Reg3b表达不明显或呈阴性表达。与噪声刺激前相比,噪声刺激后,Reg3b在mRNA水平表达较噪声前明显提高。结论:Reg3b在耳蜗内的分布及在噪声刺激后的表达显著升高提示其在噪声诱导的细胞死亡及对抗噪声损伤方面具有一定作用,可能成为治疗感音神经性聋的新靶点。  相似文献   

18.
This study delineates the role of peroxiredoxin 3 (Prx3) in hair cell death induced by several etiologies of acquired hearing loss (noise trauma, aminoglycoside treatment, age). In vivo, Prx3 transiently increased in mouse cochlear hair cells after traumatic noise exposure, kanamycin treatment, or with progressing age before any cell loss occurred; when Prx3 declined, hair cell loss began. Maintenance of high Prx3 levels via treatment with the radical scavenger 2,3-dihydroxybenzoate prevented kanamycin-induced hair cell death. Conversely, reducing Prx3 levels with Prx3 siRNA increased the severity of noise-induced trauma. In mouse organ of Corti explants, reactive oxygen species and levels of Prx3 mRNA and protein increased concomitantly at early times of drug challenge. When Prx3 levels declined after prolonged treatment, hair cells began to die. The radical scavenger p-phenylenediamine maintained Prx3 levels and attenuated gentamicin-induced hair cell death. Our results suggest that Prx3 is up-regulated in response to oxidative stress and that maintenance of Prx3 levels in hair cells is a critical factor in their susceptibility to acquired hearing loss.  相似文献   

19.
Diao MF  Liu HY  Zhang YM  Gao WY 《生理学报》2003,55(6):672-676
实验探讨了声刺激后豚鼠血清总抗氧化能力(total antioxidant capacity,TAC)和耳蜗组织一氧化氮(nitricoxide,NO)含量的变化及α-硫辛酸的抗氧化和对声损伤的保护作用。将豚鼠(350-400 g)随机分为无噪声对照组(n=20)、噪声+生理盐水组(n=20)和噪声+α-硫辛酸组(n=20)。噪声刺激(4.kHz倍频程,115 dB SPL 5 h)结束后立即测试脑于诱发电位(auditory brainstem responses,ABRs),取血清测TAC,制备耳蜗组织匀浆测NO的水平。所得结果如下:(1)无噪声对照组,动物听阈无明显变化;噪声刺激后生理盐水组,听阈上升的幅度明显高于α-硫辛酸组(P<0.05)。(2)噪声+生理盐水组,TAlC明显低于无噪声对照组(P<0.05);噪声+α-硫辛酸组同噪声+生理盐水组相比,TAC明显升高(P<0.05),同无噪声对照组相比,无显著性差异(P>0.05)。(3)噪声+生理盐水组,NO含量高于无噪声对照组(P<0.05);噪声+α-硫辛酸组同噪声+生理盐水组相比,NO含量明显减少(P<0.05),同无噪声对照组相比,差异无显著性(P>0.05)。上述结果提示,噪声刺激后血清TAC降低,耳蜗组织内NO含量增加;α-硫辛酸可通过抗氧化机制对噪声性听力损伤(noise induced hearing loss,NIHL)发挥保护作用。  相似文献   

20.
Magnolol (MG) and honokiol (HK), two lignans showing anti-inflammatory and anti-oxidant properties and abundantly available in the medicinal plants Magnolia officinalis and M. obovata, were found to enhance HL-60 cell differentiation initiated by low doses of 1,25-dihydroxyvitamin D3 (VD3) and all-trans-retinoic acid (ATRA). Cells expressing membrane differentiation markers CD11b and CD14 were increased from 4% in non-treated control to 8-16% after being treated with 10-30 microM MG or HK. When added to 1 nM VD3, MG or HK increased markers expressing cells from approximately 30% to 50-80%. When either MG or HK was added to 20 nM ATRA, only CD11b, but not CD14, expressing cells were increased from 9% to 24-70%. Under the same conditions, adding MG or HK to VD3 or ATRA treatment further enlarged the G0/G1 cell population and increased the expression of p27(Kip1), a cyclin-dependent kinase inhibitor. Pharmacological studies using PD098059 (a MEK inhibitor), SB203580 (a p38 MAPK inhibitor) and SP600125 (a JNK inhibitor) suggested that the MEK pathway was important for VD3 and ATRA-induced differentiation and also its enhancement by MG or HK, the p38 MAPK pathway had a inhibitory effect and the JNK pathway had little influence. It is evident that MG and HK are potential differentiation enhancing agents which may allow the use of low doses of VD3 and ATRA in the treatment for acute promyelocytic leukemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号