首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bacterial phosphoenolpyruvate (PEP): sugar phosphotransferase system (PTS), formed by a cascade of several proteins, couples the translocation and phosphorylation of specific sugars across cell membranes. The structure and thermal stability of the first protein (enzyme I, EI) of the PTS in Streptomyces coelicolor is studied by using far-UV circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) at pH 7.0. The deconvolution of FTIR spectra indicates that the protein is mainly composed by a 35% of alpha-helical structure and 30% of beta-sheet. The thermal denaturation curves, as followed by both techniques, show only a midpoint at 330 K. This thermal denaturation behaviour is different to that observed in other members of the EI family.  相似文献   

2.
Previous studies have predicted five disulfide bonds in Aspergillus niger phytase (phy A). To investigate the role of disulfide bonds, intrinsic fluorescence spectra, far-ultraviolet circular dichroism (CD) spectra, and an enzyme activity assay were used to compare the differences of catalytic activity and conformational stability of phytase during denaturation in urea in the presence and absence of dithiothreitol (DTT). In the presence of 2 mM DTT, the inactivation and unfolding were greatly enhanced at the same concentration of denaturant. The fluorescence emission maximum red shift and decreases of ellipticity at 222 nm were in accord with the changes of catalytic activity. The kinetics of the unfolding courses were a biphasic process consisting of two first-order reactions in the absence of DTT and a monophasic process of a first-order reaction in the presence of DTT. The results suggested that the loss of enzymatic activity was most likely because of a conformational change, and that disulfide bonds played an important role in three-dimensional structure and catalytic activity.  相似文献   

3.
The bacterial PEP:sugar phosphotransferase system couples the phosphorylation and translocation of specific sugars across the membrane. The activity of the first protein in this pathway, enzyme I (EI), is regulated by a monomer-dimer equilibrium where a Mg(2+)-dependent autophosphorylation by PEP requires the dimer. Dimerization constants for dephospho- and phospho-EI and inactive mutants EI(H189E) and EI(H189A) (in which Glu or Ala is substituted for the active site His189) have been measured under a variety of conditions by sedimentation equilibrium at pH 7.5 and 4 and 20 degrees C. Concurrently, thermal unfolding of these forms of EI has been monitored by differential scanning calorimetry and by changes in the intrinsic tryptophanyl residue fluorescence. Phosphorylated EI and EI(H189E) have 10-fold increased dimerization constants [ approximately 2 x 10(6) (M monomer)(-1)] compared to those of dephospho-EI and EI(H189A) at 20 degrees C. Dimerization is strongly promoted by 1 mM PEP with 2 mM MgCl(2) [K(A)' > or = 10(8) M(-1) at 4 or 20 degrees C], as demonstrated with EI(H189A) which cannot undergo autophosphorylation. Together, 1 mM PEP and 2 mM Mg(2+) also markedly stabilize and couple the unfolding of C- and N-terminal domains of EI(H189A), increasing the transition temperature (T(m)) for unfolding the C-terminal domain by approximately 18 degrees C and that for the N-terminal domain by approximately 9 degrees C to T(max) congruent with 63 degrees C, giving a value of K(D)' congruent with 3 microM PEP at 45 degrees C. PEP alone also promotes the dimerization of EI(H189A) but only increases T(m) approximately 5 degrees C for C-terminal domain unfolding without affecting N-terminal domain unfolding, giving an estimated value of K(D)' congruent with 0.2 mM for PEP dissociation in the absence of Mg(2+) at 45 degrees C. In contrast, the dimerization constant of phospho-EI at 20 degrees C is the same in the absence and presence of 5 mM PEP and 2 mM MgCl(2). Thus, the separation of substrate binding effects from those of phosphorylation by studies with the inactive EI(H189A) has shown that intracellular concentrations of PEP and Mg(2+) are important determinants of both the conformational stability and dimerization of dephospho-EI.  相似文献   

4.
G Russo  D Vincenti  R Ragone  P Stiuso  G Colonna 《Biochemistry》1992,31(38):9279-9287
A protein fragment (M(r) approximately 9000) isolated from the cortex of nonpathological calf lenses has been structurally characterized. The polypeptide structure was well organized (39% alpha-helix, 33% beta-structure, and 28% remainder) according to the far-ultraviolet circular dichroism. The fluorescence was heterogeneous for the presence of two tryptophan classes. Structure perturbation by pH and denaturant revealed cooperative structural transitions which are characteristics of a globular organization. A single-step unfolding curve induced by Gdn-HCl (midpoint = 1.38 M Gdn-HCl) was monitored by emission maximum shift as well as by far-ultraviolet circular dichroism. This transition was analyzed as a two-state process. The standard free energy of unfolding in the absence of the denaturant, delta Go (H2O), was found to be 10.80 +/- 0.25 kJ/mol at 20 degrees C and pH 7.4. The fragment also shows an unusual thermal resistance. Its structure was unperturbed up to 90 degrees C according to the fluorescence and dichroism. This last property, its peculiar amino acid composition, and the sequence of a small segment are shared, among crystallins, only with the N-terminal region of the alpha-crystallin B chain. A search for proteolysis sites along the alpha-crystallin B chain sequence revealed that it possesses specific points for proteinase attack. These sites are particularly exposed and clustered in a very flexible region in the middle of the protein sequence. They are also well represented in the C-terminal extension of the molecule while a few are buried in the N-terminal region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Enzyme I(Ntr) is the first protein in the nitrogen phosphotransferase pathway. Using an array of biochemical and biophysical tools, we characterized the protein, compared its properties to that of EI of the carbohydrate PTS and, in addition, examined the effect of substitution of all nonexchangeable protons by deuterium (perdeuteration) on the properties of EI(Ntr). Notably, we find that the catalytic function (autophosphorylation and phosphotransfer to NPr) remains unperturbed while its stability is modulated by deuteration. In particular, the deuterated form exhibits a reduction of approximately 4°C in thermal stability, enhanced oligomerization propensity, as well as increased sensitivity to proteolysis in vitro. We investigated tertiary, secondary, and local structural changes, both in the absence and presence of PEP, using near- and far-UV circular dichroism and Trp fluorescence spectroscopy. Our data demonstrate that the aromatic residues are particularly sensitive probes for detecting effects of deuteration with an enhanced quantum yield upon PEP binding and apparent decreases in tertiary contacts for Tyr and Trp side chains. Trp mutagenesis studies showed that the region around Trp522 responds to binding of both PEP and NPr. The significance of these results in the context of structural analysis of EI(Ntr) are evaluated.  相似文献   

6.
The conformational changes accompanying thermal denaturation under neutral, acidic and reducing conditions of Cajanus cajan proteinase inhibitor were investigated using near- and far-ultraviolet circular dichroism (CD) spectroscopy. The protein inhibitor shows a reversible N<-->D transition at neutral pH with a Tm approximately equal to 63 degrees C. The negative CD band intensities at 200 nm (far-UV) and near about 280 nm (near-UV) decrease as a result of thermal stress. The effect is more pronounced at low pH and in the presence of dithiothreitol. Only partial reversibility is observed under acidic conditions. Significant changes in the near- as well as far-ultraviolet CD spectrum are observed in the presence of dithiothreitol suggestive of the importance of disulfide linkages in maintaining the structure of C. cajan proteinase inhibitor.  相似文献   

7.
The head shell of bacteriophage lambda expands by about 20% in diameter when it packages the DNA molecule in vivo. The expansion reaction is essentially a conformational change of the major head protein molecules to a state of lower free energy and can also be triggered in vitro by treatment with 4 M-urea. In order to investigate the conformational change, we have measured the circular dichroism, fluorescence and difference absorption spectra of the lambda head shell before and after the expansion by the treatment with urea. The far-ultraviolet circular dichroism spectra and the fluorescence spectra show that the expansion is not accompanied by a great change in the secondary structure (29% alpha-helix, 23% beta-structure) and the environment (non-polar) of the tryptophan residues of the major head protein molecule. On the other hand, by measurements of the circular dichroism and difference absorption spectra in the near-ultraviolet region as well as by chemical modification experiments with tetranitromethane, we have found that one or two tyrosine residues of the major head protein are transferred from a polar, solvent-exposed to a non-polar, solvent-unexposed environment during the expansion. Judging from these results, the conformational change seems to be mainly intermolecular or interdomainal rather than intradomainal.  相似文献   

8.
We investigated the denaturation of tetrameric 20 beta-hydroxysteroid dehydrogenase (20R)-17 beta,20 beta,21-trihydroxysteroid:NAD+ oxidoreductase, EC 1.1.1.53) to find out whether intermediate states are formed during the process. The denaturation process was studied in the presence and absence of stabilizers, both specific, such as NADH, and non-specific, such as the salting-out anion phosphate. Changes in enzymatic activity, intrinsic protein fluorescence and far-ultraviolet circular dichroism were monitored. When NADH was present, denaturation of the enzyme by urea was a one-step transition between the native and the completely denatured state. In dilute phosphate, and even more so in concentrated phosphate, the existence of intermediate states with different stability is evidenced by the noncoincidence of the transition curves that probe for different functional and conformational aspects of the enzyme. Therefore, for 20 beta-hydroxysteroid dehydrogenase the formation of intermediates can be prevented by adding NADH, or enhanced by adding concentrated phosphate.  相似文献   

9.
The secondary and tertiary structure of the oligomeric arginase (EC 3.5.3.1) from beef liver was investigated by circular dichroism (CD) and fluorescence measurements. The far-ultraviolet CD spectrum of the enzyme at neutral pH is indicative of high helical content. The intrinsic fluorescence emission of the protein is due to tryptophan, the contribution of tyrosine being small. Upon excitation at 295 nm, the maximum of emission occurs at 330 nm, implying that the tryptophan residues are rather buried in a hydrophobic interior of the protein. Ethylenediaminetetraacetic acid (EDTA), which inactivates the enzyme by removing the functional Mn2+-ion from the enzyme, does not dissociate the enzyme into subunits, nor affect noticeably its secondary and tertiary structure. Inactivation occurs in the acid pH range, being complete at pH below 4. However, acidification up to pH 1.5 produced only limited changes in the far-ultra-violet CD spectrum and intrinsic fluorescence emission properties. The enzyme shows noteworthy thermal stability, as shown by measuring the residual activity after heating and by evaluating the temperature dependence of the CD signal at 220 nm and the intensity of emission fluorescence. A temperature of half inactivation (Tm) of 77 degrees was determined upon heating the enzyme at pH 7.5 in the presence of Mn2+-ions for 10 min; in the presence of EDTA, Tm is shifted to 55 degrees. Taken together, these observations indicate that the structural stability of beef liver arginase arises from a clustering of hydrophobic amino acids and from Mn2+-ion binding.  相似文献   

10.
ATP-dependent phosphoenolpyruvate (PEP) carboxykinases are found in plants and microorganisms, and catalyse the reversible formation of PEP, ADP, and CO(2) from oxaloacetate plus ATP. These enzymes vary in quaternary structure although there is significant sequence identity among the proteins isolated from different sources. To help understand the influence of quaternary structure in protein stability, the urea-induced unfolding of free- and substrate-bound tetrameric Saccharomyces cerevisiae PEP carboxykinase is described and compared with the unfolding characteristics of the monomeric Escherichia coli enzyme [Eur. J. Biochem. 255 (1998) 439]. The urea-induced denaturation of S. cerevisiae PEP carboxykinase was studied by monitoring the enzyme activity, intrinsic protein fluorescence, circular dichroism (CD) spectra, and 1-anilino-8-naphthalenesulfonate (ANS) binding. The unfolding profiles were multi-steps, and formation of hydrophobic structures were detected. The data indicate that unfolding and dissociation of the enzyme tetramer are simultaneous events. Ligand binding, most notably PEP in the presence of MnCl(2), conferred a marked protection against urea-induced denaturation. A similar protection effect was found when N-iodoacetyl-N'-(5-sulfo-1-napthyl)ethylene diamine (1,5-I-AEDANS) was covalently bound at Cys(365), within the active site region. Refolding experiments indicated that total recovery of tertiary structure was only obtained from samples previously unfolded to less than 30%. In the presence of substrates, complete refolding was achieved from samples originally denatured up to 50%. The unfolding behaviour of S. cerevisiae PEP carboxykinase was found to be similar to that of E. coli PEP carboxykinase, however all steps take place at lower urea concentrations. These findings show that, at least for monomeric and tetrameric ATP-dependent PEP carboxykinases, quaternary structure does not contribute to protein conformational stability.  相似文献   

11.
The bacterial phosphoenolpyruvate (PEP):glycose phosphotransferase system (PTS) mediates uptake/phosphorylation of sugars. The transport of all PTS sugars requires Enzyme I (EI) and a phosphocarrier histidine protein of the PTS (HPr). The PTS is stringently regulated, and a potential mechanism is the monomer/dimer transition of EI, because only the dimer accepts the phosphoryl group from PEP. EI monomer consists of two major domains, at the N and C termini (EI-N and EI-C, respectively). EI-N accepts the phosphoryl group from phospho-HPr but not PEP. However, it is phosphorylated by PEP(Mg(2+)) when complemented with EI-C. Here we report that the phosphotransfer rate increases approximately 25-fold when HPr is added to a mixture of EI-N, EI-C, and PEP(Mg(2+)). A model to explain this effect is offered. Sedimentation equilibrium results show that the association constant for dimerization of EI-C monomers is 260-fold greater than the K(a) for native EI. The ligands have no detectable effect on the secondary structure of the dimer (far UV CD) but have profound effects on the tertiary structure as determined by near UV CD spectroscopy, thermal denaturation, sedimentation equilibrium and velocity, and intrinsic fluorescence of the 2 Trp residues. The binding of PEP requires Mg(2+). For example, there is no effect of PEP on the T(m), an increase of 7 degrees C in the presence of Mg(2+), and approximately 14 degrees C when both are present. Interestingly, the dissociation constants for each of the ligands from EI-C are approximately the same as the kinetic (K(m)) constants for the ligands in the complete PTS sugar phosphorylation assays.  相似文献   

12.
FsrC is the membrane-bound histidine kinase component of the Fsr two-component signal transduction system involved in quorum sensing in the hospital-acquired infection agent Enterococcus faecalis. Synchrotron radiation circular dichroism spectroscopy was used here to study the intact purified protein solubilised in detergent micelles. Conditions required for FsrC stability in detergent were firstly determined and tested by prolonged exposure of stabilised protein to far-ultraviolet radiation. Using stabilised purified protein, far-ultraviolet synchrotron radiation circular dichroism revealed that FsrC is 61% α-helical and that it is relatively thermostable, retaining at least 57% secondary structural integrity at 90°C in the presence or absence of gelatinase biosynthesis-activating pheromone (GBAP). Whilst binding of the quorum pheromone ligand GBAP did not significantly affect FsrC secondary structure, near-ultraviolet spectra revealed that the tertiary structure in the regions of the Tyr and Trp residues was significantly affected. Titration experiments revealed a calculated k(d) value of 2μM indicative of relatively loose binding of gelatinase biosynthesis-activating pheromone to FsrC. Although use of synchrotron radiation circular dichroism has been applied to membrane proteins previously, to our knowledge this is the first report of its use to determine a k(d) value for an intact membrane protein. Based on our findings, we suggest that synchrotron radiation circular dichroism will be a valuable technique for characterising ligand binding by other membrane sensor kinases and indeed other membrane proteins in general. It further provides a valuable screening tool for membrane protein stability under a range of detergent conditions prior to downstream structural methods such as crystallisation and NMR experiments particularly when lower detergent concentrations are used.  相似文献   

13.
The equilibrium unfolding of dimeric yeast glutathione reductase (GR) by guanidine hydrochloride (GdnHCl) was investigated. Unfolding was monitored by a variety of techniques, including intrinsic fluorescence emission, anisotropy and iodide quenching measurements, far-ultraviolet circular dichroism and thiol reactivity measurements. At 1 M GdnHCl, one thiol group of GR became accessible to modification with 5,5′-dithiobis-(2-nitrobenzoic) acid (DTNB), whereas no changes could be detected in the spectroscopic properties (fluorescence, circular dichroism) of the protein. Between 2 and 3 M GdnHCl, two partially folded intermediate states possessing flexible tertiary structures (revealed by fluorescence data) but compact secondary structures (as indicated by circular dichroism measurements) were identified. The quaternary structure of GR in the presence of GdnHCl was also investigated by size-exclusion liquid chromatography. These results indicated the presence of an expanded predissociated dimer at 2.5 M GdnHCl and partially folded monomers at 3 M GdnHCl. Taken together, these results suggest the existence of two molten-globule-like intermediate species (one dimeric and one monomeric) in the unfolding of GR. The results are discussed in terms of the mechanism of GR folding and dimerization.  相似文献   

14.
The structural and functional properties of arginine kinase (AK) in alkaline conditions in the absence or presence of salt have been investigated. The conformational changes of AK during alkaline unfolding and salt-induced folding at alkaline pH were monitored using intrinsic fluorescence emission, binding of the fluorescence probe 1-anilino-8-naphthalenesulfonate and circular dichroism. The results for the alkaline unfolded enzyme showed that much lower pH (11.0) was required to cause the complete loss of AK activity than was required to cause an obvious conformational change of the enzyme. Compared with the completely unfolded state in 5 M urea, the high pH denatured enzyme had some residual secondary and tertiary structure even at pH 13.0. Increasing the ionic strength by adding salt at pH 12.75 resulted in the formation of a relatively compact tertiary structure and a little new secondary structure with hydrophobic surface enhancement. These results indicate that the partially folded state formed under alkaline conditions may have similarities to the molten globule state which is compact, but it has a poorly defined tertiary structure and a native-like secondary structure.  相似文献   

15.
The activity of enzyme I (EI), the first protein in the bacterial PEP:sugar phosphotransferase system, is regulated by a monomer-dimer equilibrium where a Mg(2+)-dependent autophosphorylation by PEP requires the homodimer. Using inactive EI(H189A), in which alanine is substituted for the active-site His189, substrate-binding effects can be separated from those of phosphorylation. Whereas 1 mM PEP (with 2 mM Mg(2+)) strongly promotes dimerization of EI(H189A) at pH 7.5 and 20 degrees C, 5 mM pyruvate (with 2 mM Mg(2+)) has the opposite effect. A correlation between the coupling of N- and C-terminal domain unfolding, measured by differential scanning calorimetry, and the dimerization constant for EI, determined by sedimentation equilibrium, is observed. That is, when the coupling between N- and C-terminal domain unfolding produced by 0.2 or 1.0 mM PEP and 2 mM Mg(2+) is inhibited by 5 mM pyruvate, the dimerization constant for EI(H189A) decreases from > 10(8) to < 5 x 10(5) or 3 x 10(7) M(-1), respectively. Incubation of the wild-type, dephospho-enzyme I with the transition-state analog phosphonopyruvate and 2 mM Mg(2+) also increases domain coupling and the dimerization constant approximately 42-fold. With 2 mM Mg(2+) at 15-25 degrees C and pH 7.5, PEP has been found to bind to one site/monomer of EI(H189A) with K(A)' approximately 10(6) M(-1) (deltaG' = -8.05 +/- 0.05 kcal/mole and deltaH = +3.9 kcal/mole at 20 degrees C); deltaC(p) = -0.33 kcal K(-1) mole(-1). The binding of PEP to EI(H189A) is synergistic with that of Mg(2+). Thus, physiological concentrations of PEP and Mg(2+) increase, whereas pyruvate and Mg(2+) decrease the amount of dimeric, active, dephospho-enzyme I.  相似文献   

16.
We have investigated the effect of the binding of glutamine on the conformational dynamics of the recombinant glutamine binding protein (GlnBP) from Escherichia coli by steady-state and time-resolved fluorescence techniques. The structural stability of the protein was also studied by far-UV circular dichroism spectroscopy in the range of temperature between 25 and 80 degrees C. The results showed that the interaction of the protein with the ligand resulted in a marked change of the structural and conformational dynamics features of the protein. In particular, the fluorescence and circular dichroism data showed that the presence of glutamine resulted in a dramatic increase of the protein thermal stability of about 10 degrees C. In addition, the fluorescence time-resolved data pointed out that both in the absence and in the presence of glutamine the protein structure was highly rigid with small amplitude of segmental motion up to 65 degrees C and a low accessibility of the protein tryptophan residues to acrylamide. The obtained results on the structural properties of the recombinant glutamine-binding protein in the absence and in the presence of glutamine can contribute to a better understanding of the transport-related functions of the protein and structurally similar periplasmic transport proteins, as well as to the design and development of new biotechnological applications of this class of proteins.  相似文献   

17.
Enzyme INtr is the first protein in the nitrogen phosphotransferase pathway. Using an array of biochemical and biophysical tools, we characterized the protein, compared its properties to that of EI of the carbohydrate PTS and, in addition, examined the effect of substitution of all nonexchangeable protons by deuterium (perdeuteration) on the properties of EINtr. Notably, we find that the catalytic function (autophosphorylation and phosphotransfer to NPr) remains unperturbed while its stability is modulated by deuteration. In particular, the deuterated form exhibits a reduction of approximately 4 °C in thermal stability, enhanced oligomerization propensity, as well as increased sensitivity to proteolysis in vitro. We investigated tertiary, secondary, and local structural changes, both in the absence and presence of PEP, using near- and far-UV circular dichroism and Trp fluorescence spectroscopy. Our data demonstrate that the aromatic residues are particularly sensitive probes for detecting effects of deuteration with an enhanced quantum yield upon PEP binding and apparent decreases in tertiary contacts for Tyr and Trp side chains. Trp mutagenesis studies showed that the region around Trp522 responds to binding of both PEP and NPr. The significance of these results in the context of structural analysis of EINtr are evaluated.  相似文献   

18.
When manganese stabilizing protein (MSP) was treated with 0.5 mM N-succinimidyl propionate (NSP), the rebinding ability and oxygen-releasing capabilities of the modified MSP were not altered, in spite of changes of MSP surface Lys residues. Furthermore, far-ultraviolet circular dichroism and intrinsic fluorescence spectra analysis revealed that 0.5 mM NSP-modified MSP retained most of its native secondary and tertiary structure. Mapping of the sites of NSP modification by Staphylococcus V8 protease digestion of the modified protein, as well as analysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry, indicated that seven Lys residues were modified. The results suggested that these residues are not absolutely essential to the structure and function of MSP. However, when the NSP concentration was increased to 4 mM, the modified MSP was unable to bind photosystem Ⅱ and completely lost its reactivating capability. Both far-ultraviolet circular dichroism and intrinsic fluorescence spectra analysis revealed a clear conformational change in MSP after 4 mM NSP treatment, suggesting that some Lys residues are involved in maintaining the structure and function of MSP. Analysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry indicated that another six Lys residues, namely Lys20, Lys 101, Lys196, Lys207, Lysl30 (or Lys137) and Lys66 (or Lys76), were modified by 4 mM NSP. Therefore, these six Lys residues are crucial in maintaining the structure and function of soluble MSP.  相似文献   

19.
J Horwitz  D Bok 《Biochemistry》1987,26(25):8092-8098
The conformational properties of the main intrinsic polypeptide (MIP26) isolated from lens plasma membranes were studied by using near- and far-ultraviolet circular dichroism. The far-ultraviolet spectrum of MIP26 solubilized with octyl beta-D-glucopyranoside indicates an alpha-helical content of approximately 50% and a beta-structure content of approximately 20%. A detergent-free membrane suspension of MIP26 produced a typically distorted far-ultraviolet spectrum which was caused by differential light scattering and absorption flattening. However, decreasing the size of the membrane fragments by sonication produced a far-ultraviolet spectrum free of distortion, and with a rotatory strength profile similar to that obtained for MIP26 solubilized with octyl beta-D-glucopyranoside. This implies similar secondary structure properties for the protein in both the suspension and the sugar detergent. The cleavage of MIP26 with Staphylococcus aureus protease, which results in removal of a 5-kilodalton peptide and which mimics the age-dependent posttranslational changes that take place in the lens, did not significantly affect the conformation of the core protein as judged by the near-ultraviolet circular dichroism spectra.  相似文献   

20.
Dissociation, denaturation, and deactivation of aldolase from rabbit muscle in the acid pH range have been investigated using sedimentation analysis, fluorescence, circular dichroism, and activity tests. Under comparable experimental conditions the pH-dependent profiles of deactivation and denaturation parallel the dissociation of the enzyme. In the range of dissociation at pH4-5tetramers and monomers are in equilibrium. Intrinsic chromophores and far-ultraviolet circular dichroism suggest the transition to be a complex multistep process. At pH approximately 2.3 the enzyme is split into its fully inactive monomers which still contain some residual secondary structure. After reassociation under optimum conditions (0.2 M phosphate buffer pH 7.6, 1 mM EDTA, 0.1 mM dithiothreitol, 0 degrees C, enzyme concentration 0.4-59 mug/ml) up to 95% enzymic activity is recovered which belongs to a renatured tetrameric species indistinguishable from the native enzyme by all available biochemical and physicochemical criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号