首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of chemoreflexes originating from carotid body and central chemoreceptors in the regulation of cervical preganglionic sympathetic nerve (PSN) activity was studied in anesthetized and spontaneously breathing cats. PSN efferents which responded to hypoxia were selected for the study. The PSN activity, breath-by-breath inspiratory tidal volume, tracheal PO2 and PCO2, and arterial systemic blood pressure were recorded simultaneously. The responses of PSN efferents to transient changes in and steady-state levels of arterial PO2 and PCO2 and to graded bolus injections of intravenous sodium cyanide (50-100 micrograms), nicotine (50-100 micrograms), and dopamine hydrochloride (30-60 micrograms) were compared before and after bilateral section of carotid sinus nerves (CSN). CSN section raised the base-line PSN activity and practically eliminated the responses to brief pharmacological stimuli, but it did not eliminate the responses to transient changes in and steady-state levels of arterial PO2 and PCO2. However, CSN section diminished PSN responses and abolished ventilatory responses to hypoxia. Thus the PSN response to hypoxia was partly independent of peripheral chemoreflex and of respiratory drive. We conclude that carotid body chemoreflex elicits fast PSN responses and that a moderate decline in arterial PO2 causes an additional slow, direct excitation of sympathetic nervous system. The latter indicates O2 chemosensitivity of the system in the physiological range of arterial PO2. This O2-sensing property may allow sympathetic nervous system to initiate chemoreflex responses independent of the peripheral chemoreceptors.  相似文献   

2.
Phenibut, a nonspecific GABA derivative, is clinically used as an anxiolytic and tranquilizer in psychosomatic conditions. A GABA-ergic inhibitory pathway is engaged in respiratory control at both central and peripheral levels. However, the potential of phenibut to affect the O2-related chemoreflexes has not yet been studied. In this study we seek to determine the ventilatory responses to changes in inspired O2 content in anesthetized, spontaneously-breathing rats. Steady-state 5-min responses to 10% O2 in N2 and 100% O2 were taken in each animal before and 1 h after phenibut administration in a dose 450 mg/kg, i.p. Minute ventilation and its frequency and tidal components were obtained from the respiratory flow signal. We found that after a period of irregular extension of the respiratory cycle, phenibut stabilized resting ventilation at a lower level [20.0±3.3 (SD) vs 31.1±5.2 ml/min before phenibut; P<0.01]. The ventilatory depressant effect of phenibut was not reflected in the hypoxic response. In relative terms, this response was actually accentuated after phenibut; the peak hypoxic ventilation increased by 164% from baseline vs the 100% increase before phenibut. Regarding hyperoxia, its inhibitory effect on breathing was more expressed after phenibut. In conclusion, the GABA-mimetic phenibut did not curtail hypoxic ventilatory responsiveness, despite the presence of GABA-ergic pathways in both central and peripheral, carotid body mechanisms mediating the hypoxic chemoreflex. Thus, GABA-mediated synaptic inhibition may be elaborated in a way to sustain the primarily defensive ventilatory chemoreflex.  相似文献   

3.
cAMP plays an important role in peripheral chemoreflex function in animals. We tested the hypothesis that the phosphodiesterase inhibitor and inotropic medication enoximone increases peripheral chemoreflex function in humans. In a single-blind, randomized, placebo-controlled crossover study of 15 men, we measured ventilatory, muscle sympathetic nerve activity, and hemodynamic responses to 5 min of isocapnic hypoxia, 5 min of hyperoxic hypercapnia, and 3 min of isometric handgrip exercise, separated by 1 wk, with enoximone and placebo administration. Enoximone increased cardiac output by 120 +/- 3.7% from baseline (P < 0.001); it also increased the ventilatory response to acute hypoxia [13.6 +/- 1 vs. 11.2 +/- 0.7 l/min at 5 min of hypoxia, P = 0.03 vs. placebo (by ANOVA)]. Despite a larger minute ventilation and a smaller decrease in O(2) desaturation (83 +/- 1 vs. 79 +/- 2%, P = 0.003), the muscle sympathetic nerve response to hypoxia was similar between enoximone and placebo (123 +/- 6 and 117 +/- 6%, respectively, P = 0.28). In multivariate regression analyses, enoximone enhanced the ventilatory (P < 0.001) and sympathetic responses to isocapnic hypoxia. Hyperoxic hypercapnia and isometric handgrip responses were not different between enoximone and placebo (P = 0.13). Enoximone increases modestly the chemoreflex responses to isocapnic hypoxia. Moreover, this effect is specific for the peripheral chemoreflex, inasmuch as central chemoreflex and isometric handgrip responses were not altered by enoximone.  相似文献   

4.
This paper uses a steady-state modeling approach to describe the effects of changes in acid-base balance on the chemoreflex control of breathing. First, a mathematical model is presented, which describes the control of breathing by the respiratory chemoreflexes; equations express the dependence of pulmonary ventilation on Pco(2) and Po(2) at the central and peripheral chemoreceptors. These equations, with Pco(2) values as inputs to the chemoreceptors, are transformed to equations with hydrogen ion concentrations [H(+)] in brain interstitial fluid and arterial blood as inputs, using the Stewart approach to acid-base balance. Examples illustrate the use of the model to explain the regulation of breathing during acid-base disturbances. They include diet-induced changes in sodium and chloride, altitude acclimatization, and respiratory disturbances of acid-base balance due to chronic hyperventilation and carbon dioxide retention. The examples demonstrate that the relationship between Pco(2) and [H(+)] should not be neglected when modeling the chemoreflex control of breathing. Because pulmonary ventilation controls Pco(2) rather than the actual stimulus to the chemoreceptors, [H(+)], changes in their relationship will alter the ventilatory recruitment threshold Pco(2), and thereby the steady-state resting ventilation and Pco(2).  相似文献   

5.
Li YC  Wang H  Cao Y  Tang D  Wang GM  Yu SY  Song G  Zhang H 《生理学报》2005,57(3):395-399
本工作旨在观察脑干孤束核内蛋白酪氨酸激酶(protein tyrosine kinase,PTK)是否参与了外周化学感受性反射的呼吸反应调节。实验采用电生理和微量注射相结合的方法,以膈神经放电为观察指标,观察呼吸变化。通过吸入10%氧气(10%O2,90%N2)引导出外周化学感受性反射。在孤束核(nucleus tractus solitarius,NTS)处分别微量注射蛋白酪氨酸激酶的抑制剂,genistein和其非活动性抑制剂daidzein以及AMPA受体阻断剂CNQX,观察这些药物对外周化学感受性反射的影响。结果显示,吸入低氧混合气后,动物呼吸加深加快;在NTS处微量注射CNQX或genistein都会不同程度削弱外周化学感受性反射引起的通气反应,而微量注射daidzein后对反射没有影响。另外,在NTS处微量注射CNQx后再注射genistein,其削弱外周化学感受性反射的作用与单独微量注射CNQx或genistein基本相同,二者并无协同作用。结果提示,NTS处的蛋白酪氨酸激酶对外周化学感受性反射具有一定的调节作用,并且NTS处磷酸化修饰,AMPA受体可能是PTK发挥这种调节作用的途径之一。  相似文献   

6.
7.
In poikilothermic animals body temperature varies with environmental temperature, and this results in a change in metabolic activity (Q10 of enzymatic reactions typically is around 2-3). Temperature changes also modify gas transport in body fluids. While the diffusion coefficient increases with increasing temperatures, physical solubility and also hemoglobin oxygen affinity decrease. Therefore, an increase in temperature typically requires adjustments in cardiac activity because ventilatory and convectional transport of respiratory gases usually are tightly coupled in adults in order to meet the oxygen demand of body tissues. Hypoxic conditions also provoke adaptations in the central circulatory system, like the hypoxic bradycardia, which has been described for many adult lower vertebrates, combined with an increase in stroke volume and peripheral resistance. In embryos and larvae the situation is much more complicated, because nervous control of the heart is established only late during development, and because the site of gas exchange changes from mainly cutaneous gas exchange during early development to mainly pulmonary or branchial gas exchange in late stages. In addition, recent studies in amphibian and fish embryos and larvae reveal, that at least in very early stages convectional gas transport of the hemoglobin is not essential, which means that in these early stages ventilatory and convectional gas transport are not yet coupled. Accordingly, in early stages of fish and amphibians the central cardiac system often does not respond to hypoxia, although in some species behavioral adaptations indicate that oxygen sensors are functional. If a depression of cardiac activity is observed, it most likely is a direct effect of oxygen deficiency on the cardiac myocytes. Regulated cardiovascular responses to hypoxia appear only in late stages and are similar to those found in adult species.  相似文献   

8.
To clarify the diabetes mellitus (DM)-associated changes in the respiratory neuronal control system, acute ventilatory responses to progressively increasing hypercapnia (6%) and hypoxia (10%) were compared between normal (N) and streptozotocin (60 mg/kg, i.v.) -DM rats for a long period up to 28 weeks. The same comparison was conducted during the anesthetic state induced with pentobarbital (35 mg/kg, i.p.). During the conscious state, basic ventilatory parameters, such as respiratory rate, tidal volume and minute ventilation, were not impaired in DM rats, but ventilatory responses to hypercapnia and hypoxia were reduced significantly at 16 weeks and later after streptozotocin injection. The reduced responses in DM rats were not recovered by insulin treatment (5-6 U/body, s.c., daily). During the anesthetic state, both hypoxic and hypercapnic responses were depressed more intensely in N rats than in DM rats, resulting in an equivalent level of the response in the two groups. The present study demonstrated that ventilatory responses to hypercapnia and hypoxia were reduced in a long-term DM condition. This may be derived from the impairment of the peripheral and central chemosensitivity. The reduction in ventilatory responses was exaggerated during the anesthetic state.  相似文献   

9.
We tested the hypothesis that estradiol modifies respiratory control in pregnant rats and participates in the development of respiratory chemoreflexes in fetuses. Pregnant rats (n = 12) received daily subcutaneous injections of vehicle (Veh, n = 6) or 4-androsten-4-ol-3,17-dione acetate (ATD; inhibitor of estradiol synthesis; n = 6; 5 mg/day in vehicle) from gestational day 16 (G16) to delivery. Baseline ventilation (whole body plethysmography) and metabolic rate [oxygen consumption (Vo(2))] were determined at G14 and G20, in pups [on postnatal day 3 (P3) and P20] and in adult rats (on P70) born to Veh- or ATD-treated mothers. Hypoxic chemoreflex was assessed in P3 rats by acute exposure to 60% O(2) and in P20 or P70 rats by moderate hypoxia (12% O(2), 30 min). ATD treatment reduced circulating estradiol in pregnant dams at G20 without producing changes in the circulating level of estradiol precursors (testosterone and androstenedione). ATD-treated dams showed impaired respiratory adjustment to late gestation. Pups born to ATD mothers had higher resting Vo(2) (+23% at P3, +21% at P20), respiratory frequency (+15% at P3, +12% at P20), and minute ventilation (+11% at P3, +18% at P20) than pups from Veh mothers. Respiratory decrease during acute hyperoxic exposure at P3 was -9.7% in Veh (P < 0.05 vs. room air) and only -2.6% (P = not significant) in ATD pups. In P20 ATD rats, hypoxic ventilatory response was attenuated compared with Veh. In P20 and P70 rats, the drop of Vo(2) in hypoxia (-31% in P70, P < 0.0001) was not observed in ATD rats. We conclude that estradiol secreted during late gestation is necessary for respiratory adjustment to pregnancy and is required for adequate development of respiratory and metabolic control in the offspring.  相似文献   

10.
Evidence of a role for catecholamines in the control of breathing in fish   总被引:1,自引:0,他引:1  
Summary Our current knowledge of the control of ventilation in fish is incomplete at all levels. The respiratory rhythm originates in a medullary central pattern generator (CPG), which has yet to be clearly identified and characterized. Its activity is directly modulated by inputs from elsewhere in the CNS and from peripheral mechanoreceptors. The central location of respiratory motoneurones, innervating the various respiratory muscles, has been described in detail for some fish, particularly elasmobranchs. We are still unclear, however, about the link between the CPG and the sequential firing of the motoneurones, which result in coordinated contractions of the respiratory muscles, and about the mechanisms that result in recruitment of feeding muscles into forced ventilation. In teleosts, ventilation is matched to oxygen requirements by stimulation of gill chemoreceptors, which seem to respond to oxygen content or supply. There is little evidence of a role for these receptors in elasmobranchs.Chemoreceptor stimulation evokes a number of reflex changes in the respiratory and cardiovascular systems of fish that are rapid in onset and seem adaptive (e.g. increased ventilation and a bradycardia in response to hypoxia). Conditions that result in hypoxaemia and the consequent ventilatory changes also cause an elevation in circulating catecholamine levels. We have explored the possibility of a causal relationship between these levels and the ventilatory response. Strong evidence for this relationship arises from experiments on hypoxia and acid infusion, which trigger a ventilatory increase and a rise in circulating catecholamines. Both ventilatory responses are blocked by an injection of propranolol, indicating that adrenoreceptors are involved in the response.The ventilatory response to hypoxia, in teleosts at least, occurs very rapidly, perhaps before any marked increase in circulating catecholamines and almost certainly before any blood-borne catecholamines could reach the respiratory neurones. This argues for an immediate neuronal reflex based on chemoreceptors in the gill region responding to hypoxia. Clearly, circulating catecholamines also affect ventilation through some action in the medulla and could act in concert with a direct neuronal chemoreceptive drive during hypoxia. The studies on acid infusion during hyperoxia, where there is an acidosis but no increase in ventilation or blood catecholamines, would argue against any hydrogen ion receptor, either peripheral or central, being involved in the reflex ventilatory response to acidotic conditions in fish.The release of catecholamines into the circulation, therefore, seems to be an absolute requirement for the ventilatory response to acidosis in fish. Present evidence supports a role for -adrenergic receptors on respiratory neurones, stimulated by changes in the levels of circulating catecholamines, in the control of ventilatory responses to marked changes in oxygen availability in fish, such as those occurring in the post-exercise acidotic state.  相似文献   

11.
The aims of this study were to determine 1) whether ventilatory adaptation occurred over a 5-day exposure to a constant elevation in end-tidal PCO2 and 2) whether such an exposure altered the sensitivity of the chemoreflexes to acute hypoxia and hypercapnia. Ten healthy human subjects were studied over a period of 13 days. Their ventilation, chemoreflex sensitivities, and acid-base status were measured daily before, during, and after 5 days of elevated end-tidal PCO2 at 8 Torr above normal. There was no major adaptation of ventilation during the 5 days of hypercapnic exposure. There was an increase in ventilatory chemosensitivity to acute hypoxia (from 1.35 +/- 0.08 to 1.70 +/- 0.07 l/min/%; P < 0.01) but no change in ventilatory chemosensitivity to acute hypercapnia. There was a degree of compensatory metabolic alkalosis. The results do not support the hypothesis that the ventilatory adaptation to chronic hypercapnia would be much greater with constant elevation of alveolar PCO2 than with constant elevation of inspired PCO2, as has been used in previous studies and in which the feedback loop between ventilation and alveolar PCO2 is left intact.  相似文献   

12.
Caffeine is widely used to treat apneas of prematurity during the neonatal period; however, the potential consequences of administering a neonatal caffeine treatment (NCT) during a critical period for respiratory control development are unknown. The present study therefore determined whether NCT in rats alters the hypoxic respiratory chemoreflex measured at adulthood. Newborn rats received either caffeine (15 mg/kg) or water (control) each day from postnatal day 3 to 12. The ventilatory response to a hypoxic challenge (inspired O(2) fraction = 0.12) was first evaluated in awake adult female and male rats using whole body plethysmography. Results showed that NCT increased the initial phase of the breathing frequency response to hypoxia in males only. This result was confirmed in anesthetized and artificially ventilated adult male rats where NCT also increased the phrenic burst frequency response to hypoxia. RT-PCR assessment of mRNA encoding for adenosine A(1A) and A(2A) receptors, dopamine D(2) receptors, and tyrosine hydroxylase in the rat carotid bodies showed that NCT enhanced mRNA expression levels of adenosine A(2A), dopamine D(2) receptors, and tyrosine hydroxylase of males but not females. Subsequent experiments on awake male rats showed that injection of the adenosine A(2A) receptor antagonist ZM2413855 (1 mg/kg ip) before ventilatory measurements abolished, in NCT rats, the enhanced respiratory frequency response observed during the early phase of hypoxia. We propose that NCT elicits a sex-specific increase in the hypoxic respiratory chemoreflex, which is related, at least partially, to an enhancement in adenosine A(2A) receptors in the rat carotid body.  相似文献   

13.
The ventilatory responses to CO(2) of high-altitude (HA) natives and patients with chronic mountain sickness (CMS) were studied and compared with sea-level (SL) natives living at SL. A multifrequency binary sequence (MFBS) in end-tidal Pco(2) was employed to separate the fast (peripheral) and slow (central) components of the chemoreflex response. MFBS was imposed against a background of both euoxia (end-tidal Po(2) of 100 Torr) and hypoxia (52.5 Torr). Both total and central chemoreflex sensitivity to CO(2) in euoxia were higher in HA and CMS subjects compared with SL subjects. Peripheral chemoreflex sensitivity to CO(2) in euoxia was higher in HA subjects than in SL subjects. Hypoxia induced a greater increase in total chemoreflex sensitivity to CO(2) in SL subjects than in HA and CMS subjects, but peripheral chemoreflex sensitivity to CO(2) in hypoxia was no greater in SL subjects than in HA and CMS subjects. Values for the slow (central) time constant were significantly greater for HA and CMS subjects than for SL subjects.  相似文献   

14.
Resting respiratory parameters and respiratory responses to acute changes in end-tidal O2 and CO2 pressure (PETO2 and PETCO2) were investigated in Peru in 23 newborn and 4 older infants at 3.850 m and in 13 newborns at 800 m. The study was done with the subjects asleep in a thermoneutral environment. The transient increase in ventilation in both high- and low-altitude newborns was followed by a decrease in response to acute hypoxia. During hyperoxia the two groups showed a slight but not clearly significant decrease in ventilation, whereas older high-altitude infants showed a sustained decrease. All subjects showed a prompt and clear response to CO2 inhalation during hyperoxia. We conclude that ventilatory peripheral chemoreflex is not fully developed in newborns regardless of altitude. The weak link in the reflex arc may reside in the afferent component because CO2 response was not impaired. Since hypoxic response became persistent in older infants its blunting in adult high-altitude natives is not a legacy of newborns.  相似文献   

15.
Ventilatory responses to hypoxia and hypercapnia were measured by indirect plethysmography in unanesthetized unrestrained adult rats injected neonatally with capsaicin (50 mg/kg) or vehicle. Such capsaicin treatment ablates a subpopulation of primary afferent fibers containing substance P and various other neuropeptides. Ventilation was measured while the rats breathed air, 12% O2 in N2, 8% O2 in N2, 5% CO2 in O2, or 8% CO2 in O2. Neonatal treatment with capsaicin caused marked alterations in both the magnitude and composition of the hypoxic but not hypercapnic ventilatory response. The increase in minute ventilation evoked by hypoxia in the vehicle-treated rats resulted entirely from an increase in respiratory frequency. In the capsaicin-treated rats the hypoxic ventilatory response was significantly reduced owing to an attenuation of the frequency response. Although both groups responded to hypoxia with a shortening in inspiratory and expiratory times, rats treated with capsaicin displayed less shortening of both respiratory phases. By contrast, hypercapnia induced a brisk ventilatory response in the capsaicin-treated group that was similar in magnitude and pattern to that observed in the vehicle-treated group. Analysis of the components of the hypercapnic ventilatory responses revealed no significant differences between the two groups. We, therefore, conclude that neuropeptide-containing C-fibers are essential for the tachypnic component of the ventilatory response to hypoxia but not hypercapnia.  相似文献   

16.
Chronic intermittent hypoxia (CIH) contributes to the development of hypertension in patients with obstructive sleep apnea and animal models. However, the early cardiovascular changes that precede CIH-induced hypertension are not completely understood. Nevertheless, it has been proposed that one of the possible contributing mechanisms to CIH-induced hypertension is a potentiation of carotid body (CB) hypoxic chemoreflexes. Therefore, we studied the dynamic responses of heart rate, blood pressure, and their variabilities during acute exposure to different levels of hypoxia after CIH short-term preconditioning (4 days) in cats. In addition, we measured baroreflex sensitivity (BRS) on the control of heart rate by noninvasive techniques. To assess the relationships among these indexes and CB chemoreflexes, we also recorded CB chemosensory discharges. Our data show that short-term CIH reduced BRS, potentiated the increase in heart rate induced by acute hypoxia, and was associated with a dynamic shift of heart rate variability (HRV) spectral indexes toward the low-frequency band. In addition, we found a striking linear correlation (r = 0.97) between the low-to-high frequency ratio of HRV and baseline. CB chemosensory discharges in the CIH-treated cats. Thus, our results suggest that cyclic hypoxic stimulation of the CB by short-term CIH induces subtle but clear selective alterations of HRV and BRS in normotensive cats.  相似文献   

17.
Heart transplantation does not normalize exercise capacity or the ventilatory response to exercise. We hypothesized that excessive muscle reflex activity, as assessed by the muscle sympathetic nerve activity (MSNA) response to handgrip exercise, persists after cardiac transplantation and that this mechanism is related to exercise hyperpnea in heart transplant recipients (HTRs). We determined the MSNA, ventilatory, and cardiovascular responses to isometric and dynamic handgrips in 11 HTRs and 10 matched control subjects. Handgrips were followed by a post-handgrip ischemia to isolate the metaboreflex contribution to exercise responses. HTRs and control subjects also underwent recordings during isocapnic hypoxia and a maximal, symptom-limited, cycle ergometer exercise test. HTRs had higher resting MSNA (P < 0.01) and heart rate (P < 0.01) than the control subjects. Isometric handgrip increased MSNA in HTRs more than in the controls (P = 0.003). Dynamic handgrip increased MSNA only in HTRs. During post-handgrip ischemia, MSNA and ventilation remained more elevated in HTRs (P < 0.05). The MSNA and ventilatory responses to hypoxia were also higher in HTRs (both P < 0.04). In HTRs, metaboreflex overactivity was related to the ventilatory response to exercise, characterized by the regression slope relating ventilation to CO(2) output (r = +0.8; P < 0.05) and a lower peak ventilation (r = +0.81; P < 0.05) during cycle ergometer exercise tests. However, increased chemoreflex sensitivity (r = +0.91; P < 0.005), but not metaboreflex activity, accounted for the lower peak ventilation during exercise in a stepwise regression analysis. In conclusion, heart transplantation does not normalize muscle metaboreceptor activity; both increased metaboreflex and chemoreflex control are related to exercise intolerance in HTRs.  相似文献   

18.
Presympathetic neurons in the different anteroposterior aspects of rostral ventrolateral medulla (RVLM) are colocalized with expiratory [B?tzinger complex (B?tC)] and inspiratory [pre-B?tzinger complex (pre-B?tC)] neurons of ventral respiratory column (VRC), suggesting that this region integrates the cardiovascular and respiratory chemoreflex responses. In the present study, we evaluated in different anteroposterior aspects of RVLM of awake rats the role of ionotropic glutamate and purinergic receptors on cardiorespiratory responses to chemoreflex activation. The bilateral ionotropic glutamate receptors antagonism with kynurenic acid (KYN) (8 nmol/50 nl) in the rostral aspect of RVLM (RVLM/B?tC) enhanced the tachypneic (120 ± 9 vs. 180 ± 9 cpm; P < 0.01) and attenuated the pressor response (55 ± 2 vs. 15 ± 1 mmHg; P < 0.001) to chemoreflex activation (n = 7). On the other hand, bilateral microinjection of KYN into the caudal aspect of RVLM (RVLM/pre-B?tC) caused a respiratory arrest in four awake rats used in the present study. Bilateral P2X receptors antagonism with PPADS (0.25 nmol/50 nl) in the RVLM/B?tC reduced chemoreflex tachypneic response (127 ± 6 vs. 70 ± 5 cpm; P < 0.001; n = 6), but did not change the chemoreflex pressor response. In addition, PPADS into the RVLM/B?tC attenuated the enhancement of the tachypneic response to chemoreflex activation elicited by previous microinjections of KYN into the same subregion (188 ± 2 vs. 157 ± 3 cpm; P < 0.05; n = 5). Our findings indicate that: 1) L-glutamate, but not ATP, in the RVLM/B?tC is required for pressor response to peripheral chemoreflex and 2) both transmitters in the RVLM/B?tC are required for the processing of the ventilatory response to peripheral chemoreflex activation in awake rats.  相似文献   

19.
Cyclic ventilatory instabilities are widely attributed to an increase in the sensitivity or loop gain of the chemoreflex feedback loop controlling ventilation. A major limitation in the conventional characterization of this feedback loop is the need for labor-intensive methodologies. To overcome this limitation, we developed a method based on trivariate autoregressive modeling using ventilation, end-tidal Pco(2) and Po(2); this method provides for estimation of the overall "loop gain" of the respiratory control system and its components, chemoreflex gain and plant gain. Our method was applied to recordings of spontaneous breathing in 15 anesthetized, tracheostomized, newborn lambs before and after administration of domperidone (a dopamine D(2)-receptor antagonist that increases carotid body sensitivity). We quantified the known increase in hypoxic ventilatory sensitivity in response to domperidone; controller gain for O(2) increased from 0.06 (0.03, 0.09) l·min(-1)·mmHg(-1) to 0.09 (0.08, 0.13) l·min(-1)·mmHg(-1); median (interquartile-range). We also report that domperidone increased the loop gain of the control system more than twofold [0.14 (0.12, 0.22) to 0.40 (0.15, 0.57)]. We observed no significant changes in CO(2) controller gain, or plant gains for O(2) and CO(2). Furthermore, our estimate of the cycle duration of periodic breathing compared favorably with that observed experimentally [measured: 7.5 (7.2, 9.1) vs. predicted: 7.9 (7.0, 9.2) breaths]. Our results demonstrate that model-based analysis of spontaneous breathing can 1) characterize the dynamics of the respiratory control system, and 2) provide a simple tool for elucidating an individual's propensity for ventilatory instability, in turn allowing potential therapies to be directed at the underlying mechanisms.  相似文献   

20.
It has often been assumed that under normoxia, closed-loop ventilatory responses to transient CO2 stimulation (i.e., lasting for 1-3 breaths) are less likely to be mediated by the slow-responding central (medullary) chemoreflex. This assumption, however, has not been quantitatively examined in humans. We hypothesized that in the closed-loop respiratory chemical feedback system [in which the centrally mediated ventilatory response to transient changes in the arterial PCO2 levels (PaCO2) will in turn affect the pulmonary CO2 and hence PaCO2], the contribution of the central chemoreflex pathways to brief disturbances in blood gases may be more important than considered previously. Using the technique of pseudorandom binary CO2 stimulation, we quantified the ventilatory response of normal humans to brief disturbances in arterial CO2 during hyperoxia. Tidal volume (VI), inspiratory ventilation (VI), inspiratory time (TI), expiratory time (TE), and end-tidal CO2 fraction (FETCO2) were measured in subjects who inhaled a mixture that was pseudorandomly switched between 95% O2-5% CO2 and 100% O2 (63 breath sequences). From these data, we calculated the responses of VI, VI, TI, TE, and FETCO2 to a single-breath inhalation of 1% CO2 in O2. Our results showed that in response to a brief increase of 0.75 Torr in alveolar CO2, VI showed a transient increase (average peak response of 0.12 1/min) that persisted for greater than or equal to 80 s in every subject. The response of VI was similar to that of VI, whereas TI and TE showed no consistent changes. Using these results we calculated that central chemoreflex pathways may contribute significantly to typical transient CO2 stimulation tests in hyperoxic and normoxic humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号