首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study determined whether "living high-training low" (LHTL)-simulated altitude exposure increased the hypoxic ventilatory response (HVR) in well-trained endurance athletes. Thirty-three cyclists/triathletes were divided into three groups: 20 consecutive nights of hypoxic exposure (LHTLc, n = 12), 20 nights of intermittent hypoxic exposure (four 5-night blocks of hypoxia, each interspersed with 2 nights of normoxia, LHTLi, n = 10), or control (Con, n = 11). LHTLc and LHTLi slept 8-10 h/day overnight in normobaric hypoxia (approximately 2,650 m); Con slept under ambient conditions (600 m). Resting, isocapnic HVR (DeltaVE/DeltaSp(O(2)), where VE is minute ventilation and Sp(O(2)) is blood O(2) saturation) was measured in normoxia before hypoxia (Pre), after 1, 3, 10, and 15 nights of exposure (N1, N3, N10, and N15, respectively), and 2 nights after the exposure night 20 (Post). Before each HVR test, end-tidal PCO(2) (PET(CO(2))) and VE were measured during room air breathing at rest. HVR (l. min(-1). %(-1)) was higher (P < 0.05) in LHTLc than in Con at N1 (0.56 +/- 0.32 vs. 0.28 +/- 0.16), N3 (0.69 +/- 0.30 vs. 0.36 +/- 0.24), N10 (0.79 +/- 0.36 vs. 0.34 +/- 0.14), N15 (1.00 +/- 0.38 vs. 0.36 +/- 0.23), and Post (0.79 +/- 0.37 vs. 0.36 +/- 0.26). HVR at N15 was higher (P < 0.05) in LHTLi (0.67 +/- 0.33) than in Con and in LHTLc than in LHTLi. PET(CO(2)) was depressed in LHTLc and LHTLi compared with Con at all points after hypoxia (P < 0.05). No significant differences were observed for VE at any point. We conclude that LHTL increases HVR in endurance athletes in a time-dependent manner and decreases PET(CO(2)) in normoxia, without change in VE. Thus endurance athletes sleeping in mild hypoxia may experience changes to the respiratory control system.  相似文献   

2.
We hypothesized that the increased blood glucose disappearance (Rd) observed during exercise and after acclimatization to high altitude (4,300 m) could be attributed to net glucose uptake (G) by the legs and that the increased arterial lactate concentration and rate of appearance (Ra) on arrival at altitude and subsequent decrease with acclimatization were caused by changes in net muscle lactate release (L). To evaluate these hypotheses, seven healthy males [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg], on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-D2]glucose (Brooks et al., J. Appl. Physiol. 70: 919-927, 1991) and [3-13C]lactate (Brooks et al., J. Appl. Physiol. 71:333-341, 1991) and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 uptake (65 +/- 2% of both acute altitude and acclimatization peak O2 uptake). Glucose and lactate arteriovenous differences across the legs and arms and leg blood flow were measured. Leg G increased during exercise compared with rest, at altitude compared with sea level, and after acclimatization. Leg G accounted for 27-36% of Rd at rest and essentially all glucose Rd during exercise. A shunting of the blood glucose flux to active muscle during exercise at altitude is indicated. With acute altitude exposure, at 5 min of exercise L was elevated compared with sea level or after acclimatization, but from 15 to 45 min of exercise the pattern and magnitude of L from the legs varied and followed neither the pattern nor the magnitude of responses in arterial lactate concentration or Ra. Leg L accounted for 6-65% of lactate Ra at rest and 17-63% during exercise, but the percent Ra from L was not affected by altitude. Tracer-measured lactate extraction by legs accounted for 10-25% of lactate Rd at rest and 31-83% during exercise. Arms released lactate under all conditions except during exercise with acute exposure to high altitude, when the arms consumed lactate. Both active and inactive muscle beds demonstrated simultaneous lactate extraction and release. We conclude that active skeletal muscle is the predominant site of glucose disposal during exercise and at high altitude but not the sole source of blood lactate during exercise at sea level or high altitude.  相似文献   

3.
The purpose of this study was to investigate the effects of high-intensity interval training (3 days/wk for 5 wk), provoking large changes in muscle lactate and pH, on changes in intracellular buffer capacity (betam(in vitro)), monocarboxylate transporters (MCTs), and the decrease in muscle lactate and hydrogen ions (H+) after exercise in women. Before and after training, biopsies of the vastus lateralis were obtained at rest and immediately after and 60 s after 45 s of exercise at 190% of maximal O2 uptake. Muscle samples were analyzed for ATP, phosphocreatine (PCr), lactate, and H+; MCT1 and MCT4 relative abundance and betam(in vitro) were also determined in resting muscle only. Training provoked a large decrease in postexercise muscle pH (pH 6.81). After training, there was a significant decrease in betam(in vitro) (-11%) and no significant change in relative abundance of MCT1 (96 +/- 12%) or MCT4 (120 +/- 21%). During the 60-s recovery after exercise, training was associated with no change in the decrease in muscle lactate, a significantly smaller decrease in muscle H+, and increased PCr resynthesis. These results suggest that increases in betam(in vitro) and MCT relative abundance are not linked to the degree of muscle lactate and H+ accumulation during training. Furthermore, training that is very intense may actually lead to decreases in betam(in vitro). The smaller postexercise decrease in muscle H+ after training is a further novel finding and suggests that training that results in a decrease in H+ accumulation and an increase in PCr resynthesis can actually reduce the decrease in muscle H+ during the recovery from supramaximal exercise.  相似文献   

4.
We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects (n = 10; age = 25.6 +/- 1.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials (same absolute workload, 65% of old VO2 peak; and same relative workload, 65% of new VO2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3, 3-2H]glycerol. An additional nine subjects (age 25.4 +/- 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 9.4 +/- 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65% VO2 peak (Ra: 8.14 +/- 1.28 vs. 6.64 +/- 0.46, Rd: 8. 03 +/- 1.28 vs. 6.42 +/- 0.41 mol. kg-1. min-1) (P 相似文献   

5.
We hypothesized that the increased exercise arterial lactate concentration on arrival at high altitude and the subsequent decrease with acclimatization were caused by changes in blood lactate flux. Seven healthy men [age 23 +/- 2 (SE) yr, wt 72.2 +/- 1.6 kg] on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-2D]glucose (Brooks et al. J. Appl. Physiol. 70:919-927, 1991) and [3-13C]lactate and rested for a minimum of 90 min followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 consumption (VO2peak; 65 +/- 2% of both acute altitude and acclimatization). During rest at sea level, lactate appearance rate (Ra) was 0.52 +/- 0.03 mg.kg-1.min-1; this increased sixfold during exercise to 3.24 +/- 0.19 mg.kg-1.min-1. On acute exposure, resting lactate Ra rose from sea level values to 2.2 +/- 0.2 mg.kg-1.min-1. During exercise on acute exposure, lactate Ra rose to 18.6 +/- 2.9 mg.kg-1.min-1. Resting lactate Ra after acclimatization (1.77 +/- 0.25 mg.kg-1.min-1) was intermediate between sea level and acute exposure values. During exercise after acclimatization, lactate Ra (9.2 +/- 0.7 mg.kg-1.min-1) rose from resting values but was intermediate between sea level and acute exposure values. The increased exercise arterial lactate concentration response on arrival at high altitude and subsequent decrease with acclimatization are due to changes in blood lactate appearance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In a previous study [G. C. M. Beaufort-Krol, J. Takens, M. C. Molenkamp, G. B. Smid, J. J. Meuzelaar, W. G. Zijlstra, and J. R. G. Kuipers. Am. J. Physiol. 275 (Heart Circ. Physiol. 44): H1503-H1512, 1998], a lower systemic O2 supply was found in lambs with aortopulmonary left-to-right shunts. To determine whether the lower systemic O2 supply results in increased anaerobic metabolism, we used [1-13C]lactate to investigate lactate kinetics in eight 7-wk-old lambs with shunts and eight control lambs, at rest and during moderate exercise [treadmill; 50% of peak O2 consumption (VO2)]. The mean left-to-right shunt fraction in the shunt lambs was 55 +/- 3% of pulmonary blood flow. Arterial lactate concentrations and the rate of appearance (Ra) and disappearance (Rd) of lactate were similar in shunt and control lambs, both at rest (lactate: 1, 201 +/- 76 vs. 1,214 +/- 151 micromol/l; Ra = Rd: 12.97 +/- 1.71 vs. 12.55 +/- 1.25 micromol. min-1. kg-1) and during a similar relative workload. We found a positive correlation between Ra and systemic blood flow, O2 supply, and VO2 in both groups of lambs. In conclusion, shunt lambs have similar lactate kinetics as do control lambs, both at rest and during moderate exercise at a similar fraction of their peak VO2, despite a lower systemic O2 supply.  相似文献   

7.
To determine whether the reduced blood lactate concentrations [La] during submaximal exercise in humans after endurance training result from a decreased rate of lactate appearance (Ra) or an increased rate of lactate metabolic clearance (MCR), interrelationships among blood [La], lactate Ra, and lactate MCR were investigated in eight untrained men during progressive exercise before and after a 9-wk endurance training program. Radioisotope dilution measurements of L-[U-14C]lactate revealed that the slower rise in blood [La] with increasing O2 uptake (VO2) after training was due to a reduced lactate Ra at the lower work rates [VO2 less than 2.27 l/min, less than 60% maximum VO2 (VO2max); P less than 0.01]. At power outputs closer to maximum, peak lactate Ra values before (215 +/- 28 mumol.min-1.kg-1) and after training (244 +/- 12 mumol.min-1.kg-1) became similar. In contrast, submaximal (less than 75% VO2max) and peak lactate MCR values were higher after than before training (40 +/- 3 vs. 31 +/- 4 ml.min-1.kg-1, P less than 0.05). Thus the lower blood [La] values during exercise after training in this study were caused by a diminished lactate Ra at low absolute and relative work rates and an elevated MCR at higher absolute and all relative work rates during exercise.  相似文献   

8.
To evaluate the effects of endurance training on the expression of monocarboxylate transporters (MCT) in human vastus lateralis muscle, we compared the amounts of MCT1 and MCT4 in total muscle preparations (MU) and sarcolemma-enriched (SL) and mitochondria-enriched (MI) fractions before and after training. To determine if changes in muscle lactate release and oxidation were associated with training-induced changes in MCT expression, we correlated band densities in Western blots to lactate kinetics determined in vivo. Nine weeks of leg cycle endurance training [75% peak oxygen consumption (VO(2 peak))] increased muscle citrate synthase activity (+75%, P < 0.05) and percentage of type I myosin heavy chain (+50%, P < 0.05); percentage of MU lactate dehydrogenase-5 (M4) isozyme decreased (-12%, P < 0.05). MCT1 was detected in SL and MI fractions, and MCT4 was localized to the SL. Muscle MCT1 contents were consistent among subjects both before and after training; in contrast, MCT4 contents showed large interindividual variations. MCT1 amounts significantly increased in MU, SL, and MI after training (+90%, +60%, and +78%, respectively), whereas SL but not MU MCT4 content increased after training (+47%, P < 0.05). Mitochondrial MCT1 content was negatively correlated to net leg lactate release at rest (r = -0.85, P < 0.02). Sarcolemmal MCT1 and MCT4 contents correlated positively to net leg lactate release at 5 min of exercise at 65% VO(2 peak) (r = 0.76, P < 0.03 and r = 0. 86, P < 0.01, respectively). Results support the conclusions that 1) endurance training increases expression of MCT1 in muscle because of insertion of MCT1 into both sarcolemmal and mitochondrial membranes, 2) training has variable effects on sarcolemmal MCT4, and 3) both MCT1 and MCT4 participate in the cell-cell lactate shuttle, whereas MCT1 facilitates operation of the intracellular lactate shuttle.  相似文献   

9.
Previously, the decline in glycemia in individuals with type 1 diabetes has been shown to be less with intermittent high-intensity exercise (IHE) compared with continuous moderate-intensity exercise (MOD) despite the performance of a greater amount of total work. The purpose of the present study was to determine whether this lesser decline in glycemia can be attributed to a greater increment in endogenous glucose production (Ra) or attenuated glucose utilization (Rd). Nine individuals with type 1 diabetes were tested on two separate occasions, during which either a 30-min MOD or IHE protocol was performed under conditions of a euglycemic clamp in combination with the infusion of [6,6-(2)H]glucose. MOD consisted of continuous cycling at 40% VO2 peak, whereas IHE involved a combination of continuous exercise at 40% VO2 peak interspersed with additional 4-s maximal sprint efforts performed every 2 min to simulate the activity patterns of intermittent sports. During IHE, glucose Ra increased earlier and to a greater extent compared with MOD. Similarly, glucose Rd increased sooner during IHE, but the increase by the end of exercise was comparable with that elicited by MOD. During early recovery from IHE, Rd rapidly declined, whereas it remained elevated after MOD, a finding consistent with a lower glucose infusion rate during early recovery from IHE compared with MOD (P<0.05). The results suggest that the lesser decline in glycemia with IHE may be attributed to a greater increment in Ra during exercise and attenuated Rd during exercise and early recovery.  相似文献   

10.
Active muscle and whole body lactate kinetics after endurance training in men.   总被引:10,自引:0,他引:10  
We evaluated the hypotheses that endurance training decreases arterial lactate concentration ([lactate](a)) during continuous exercise by decreasing net lactate release () and appearance rates (R(a)) and increasing metabolic clearance rate (MCR). Measurements were made at two intensities before [45 and 65% peak O(2) consumption (VO(2 peak))] and after training [65% pretraining VO(2 peak), same absolute workload (ABT), and 65% posttraining VO(2 peak), same relative intensity (RLT)]. Nine men (27.4 +/- 2.0 yr) trained for 9 wk on a cycle ergometer, 5 times/wk at 75% VO(2 peak). Compared with the 65% VO(2 peak) pretraining condition (4.75 +/- 0.4 mM), [lactate](a) decreased at ABT (41%) and RLT (21%) (P < 0.05). decreased at ABT but not at RLT. Leg lactate uptake and oxidation were unchanged at ABT but increased at RLT. MCR was unchanged at ABT but increased at RLT. We conclude that 1) active skeletal muscle is not solely responsible for elevated [lactate](a); and 2) training increases leg lactate clearance, decreases whole body and leg lactate production at a given moderate-intensity power output, and increases both whole body and leg lactate clearance at a high relative power output.  相似文献   

11.
To study the effect of increasing amounts of exercising muscle mass on the relationship between glucose mobilization and peripheral glucose uptake, seven young men (23-28 yr) bicycled for 70 min at a work load of 55-60% VO2max. From minute 30 to 50, arm cranking was added and total work load increased to 82 +/- 4% VO2max. During leg exercise, hepatic glucose production (Ra) increased in parallel with peripheral glucose uptake (Rd) and euglycemia was maintained. During arm + leg exercise, Ra increased more than Rd and accordingly plasma glucose increased from 5.11 +/- 0.22 to 8.00 +/- 0.66 mmol/l (P less than 0.05). Plasma catecholamines increased three- to four-fold more during arm + leg exercise than during leg exercise. Leg glucose uptake increased with time regardless of arm cranking. Net leg lactate release during leg exercise was reverted to a net leg lactate uptake during arm + leg exercise. The rate of glycogen breakdown in exercising leg muscle was not altered by addition of arm cranking. In conclusion, when large amounts of muscle mass are active, plasma catecholamines increase sharply and mobilization of glucose exceeds peripheral glucose uptake. This indicates that mechanisms other than feedback regulation to maintain euglycemia are involved in hormonal and substrate mobilization during intense exercise in humans.  相似文献   

12.
Maximal dynamic exercise results in a postexercise hyperglycemia in healthy young subjects. We investigated the influence of maximal exercise on glucoregulation in non-insulin-dependent diabetic subjects (NIDDM). Seven NIDDM and seven healthy control males bicycled 7 min at 60% of their maximal O2 consumption (VO2max), 3 min at 100% VO2max, and 2 min at 110% VO2max. In both groups, glucose production (Ra) increased more with exercise than did glucose uptake (Rd) and, accordingly, plasma glucose increased. However, in NIDDM subjects the increase in Ra was hastened and Rd inhibited compared with controls, so the increase in glucose occurred earlier and was greater [147 +/- 21 to 169 +/- 19 (30 min postexercise) vs. 90 +/- 4 to 100 +/- 5 (SE) mg/dl (10 min postexercise), P less than 0.05]. Glucose levels remained elevated for greater than 60 min postexercise in both groups. Glucose clearance increased during exercise but decreased postexercise to or below (NIDDM, P less than 0.05) basal levels, despite increased insulin levels (P less than 0.05). Plasma epinephrine and glucagon responses to exercise were higher in NIDDM than in control subjects (P less than 0.05). By use of the insulin clamp technique at 40 microU.m-2.min-1 of insulin with plasma glucose maintained at basal levels, glucose disposal in NIDDM subjects, but not in controls, was enhanced 24 h after exercise. It is concluded that, because of exaggerated counter-regulatory hormonal responses, maximal dynamic exercise results in a 60-min period of postexercise hyperglycemia and hyperinsulinemia in NIDDM. However, this event is followed by a period of increased insulin effect on Rd that is present 24 h after exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Supercompensated muscle glycogen can be achieved by using several carbohydrate (CHO)-loading protocols. This study compared the effectiveness of two "modified" CHO-loading protocols. Additionally, we determined the effect of light cycle training on muscle glycogen. Subjects completed a depletion (D, n = 15) or nondepletion (ND, n = 10) CHO-loading protocol. After a 2-day adaptation period in a metabolic ward, the D group performed a 120-min cycle exercise at 65% peak oxygen uptake (VO2 peak) followed by 1-min sprints at 120% VO2 peak to exhaustion. The ND group performed only 20-min cycle exercise at 65% VO2 peak. For the next 6 days, both groups ate the same high-CHO diets and performed 20-min daily cycle exercise at 65% VO2 peak followed by a CHO beverage (105 g of CHO). Muscle glycogen concentrations of the vastus lateralis were measured daily with 13C magnetic resonance spectroscopy. On the morning of day 5, muscle glycogen concentrations had increased 1.45 (D) and 1.24 (ND) times baseline (P < 0.001) but did not differ significantly between groups. However, on day 7, muscle glycogen of the D group was significantly greater (p < 0.01) than that of the ND group (130 +/- 7 vs. 104 +/- 5 mmol/l). Daily cycle exercise decreased muscle glycogen by 10 +/- 2 (D) and 14 +/- 5 mmol/l (ND), but muscle glycogen was equal to or greater than preexercise values 24 h later. In conclusion, a CHO-loading protocol that begins with a glycogen-depleting exercise results in significantly greater muscle glycogen that persists longer than a CHO-loading protocol using only an exercise taper. Daily exercise at 65% VO2 peak for 20 min can be performed throughout the CHO-loading protocol without negatively affecting muscle glycogen supercompensation.  相似文献   

14.
We determined changes in rat plantaris, diaphragm, and intercostal muscle metabolites following exercise of various intensities and durations, in normoxia and hypoxia (FIO2 = 0.12). Marked alveolar hyperventilation occurred during all exercise conditions, suggesting that respiratory muscle motor activity was high. [ATP] was maintained at rest levels in all muscles during all normoxic and hypoxic exercise bouts, but at the expense of creatine phosphate (CP) in plantaris muscle and diaphragm muscle following brief exercise at maximum O2 uptake (VO2max) in normoxia. In normoxic exercise plantaris [glycogen] fell as exercise exceeded 60% VO2max, and was reduced to less than 50% control during exhaustive endurance exercise (68% VO2max for 54 min and 84% for 38 min). Respiratory muscle [glycogen] was unchanged at VO2max as well as during either type of endurance exercise. Glucose 6-phosphate (G6P) rose consistently during heavy exercise in diaphragm but not in plantaris. With all types of exercise greater than 84% VO2max, lactate concentration ([LA]) in all three muscles rose to the same extent as arterial [LA], except at VO2max, where respiratory muscle [LA] rose to less than half that in arterial blood or plantaris. Exhaustive exercise in hypoxia caused marked hyperventilation and reduced arterial O2 content; glycogen fell in plantaris (20% of control) and in diaphragm (58%) and intercostals (44%). We conclude that respiratory muscle glycogen stores are spared during exhaustive exercise in the face of substantial glycogen utilization in plantaris, even under conditions of extreme hyperventilation and reduced O2 transport. This sparing effect is due primarily to G6P inhibition of glycogen phosphorylase in diaphragm muscle. The presence of elevated [LA] in the absence of glycogen utilization suggests that increased lactate uptake, rather than lactate production, occurred in the respiratory muscles during exhaustive exercise.  相似文献   

15.
3-14C-lactate and 6-3H-glucose were infused to determine rates of plasma lactate appearance (Ra), disappearance (Rd) and conversion to plasma glucose following ingestion of 75 g glucose in 10 healthy volunteers. Lactate Ra (mumol/kg/min) increased from 10.2 +/- 0.9 to a peak of 15.7 +/- 0.8 at 60 min (p less than 0.01). Lactate Rd increased from 10.2 +/- 0.9 to a peak of 15.9 +/- 4.2 at 120 min (p less than 0.001). During the 3-hour experiment, 15.0 +/- 1.1 g of lactate appeared in plasma, and 14.1 +/- 1.2 g disappeared from plasma. Of lactate Rd, approximately 20% (2.8 +/- 0.2 g) was converted to plasma glucose leaving a maximum 11.3 +/- 0.8 g lactate available for indirect-pathway glycogen synthesis. The present data indicate that in man the indirect pathway could account for about 40% of hepatic glycogen repletion via uptake of circulating gluconeogenic precursors.  相似文献   

16.
This study tested the hypothesis that women would have blunted physiological responses to acute hypoxic exercise compared with men. Fourteen women taking oral contraceptives (28 +/- 0.9 yr of age) and 15 men (30 +/- 1.0 yr of age) with similar peak O(2) consumption (VO(2 peak)) values (56 +/- 1.1 vs. 57 +/- 0.8 ml x kg fat-free mass(-1) x min(-1)) were studied under hypoxic (H; fraction of inspired oxygen = 13%) vs. normoxic (fraction of inspired oxygen = 20.93%) conditions. Cardiopulmonary, metabolic, and neuroendocrine measures were taken before, during, and 30 min after three 5-min consecutive workloads at 30, 45, and 60% VO(2 peak). In women compared with men, glucose levels were greater during recovery from H (P < 0.05) and lactate levels were lower at 45% VO(2 peak), 60% VO(2 peak), and up to 20 min of recovery (P < 0.05), regardless of trial (P < 0.0001). Although the women had greater baseline levels of cortisol and growth hormone (P < 0.0001), gender did not affect these hormones during H or exercise. Catecholamine responses to H were also similar between genders. Thus the endocrine response to hypoxia per se was not blunted in women as we had hypothesized. Other mechanisms must be at play to cause the gender differences in metabolic substrates in response to hypoxia.  相似文献   

17.
The production of reactive oxygen species in skeletal muscle is linked with muscle fatigue. This study investigated the effects of the antioxidant compound N-acetylcysteine (NAC) on muscle cysteine, cystine, and glutathione and on time to fatigue during prolonged, submaximal exercise in endurance athletes. Eight men completed a double-blind, crossover study, receiving NAC or placebo before and during cycling for 45 min at 71% peak oxygen consumption (VO2 peak) and then to fatigue at 92% VO2 peak. NAC was intravenously infused at 125 mg.kg(-1).h(-1) for 15 min and then at 25 mg.kg(-1).h(-1) for 20 min before and throughout exercise. Arterialized venous blood was analyzed for NAC, glutathione status, and cysteine concentration. A vastus lateralis biopsy was taken preinfusion, at 45 min of exercise, and at fatigue and was analyzed for NAC, total glutathione (TGSH), reduced glutathione (GSH), cysteine, and cystine. Time to fatigue at 92% VO2 peak was reproducible in preliminary trials (coefficient of variation 5.6 +/- 0.6%) and with NAC was enhanced by 26.3 +/- 9.1% (NAC 6.4 +/- 0.6 min vs. Con 5.3 +/- 0.7 min; P <0.05). NAC increased muscle total and reduced NAC at both 45 min and fatigue (P <0.005). Muscle cysteine and cystine were unchanged during Con, but were elevated above preinfusion levels with NAC (P <0.001). Muscle TGSH (P <0.05) declined and muscle GSH tended to decline (P=0.06) during exercise. Both were greater with NAC (P <0.05). Neither exercise nor NAC affected whole blood TGSH. Whereas blood GSH was decreased and calculated oxidized glutathione increased with exercise (P <0.05), both were unaffected by NAC. In conclusion, NAC improved performance in well-trained individuals, with enhanced muscle cysteine and GSH availability a likely mechanism.  相似文献   

18.
This study examined the influence of the respiratory alkalosis of acute altitude (AL) exposure alone or in combination with metabolic acid-base manipulations on exercise performance and muscle and blood lactate accumulation. Four subjects exercised for 10 min at 50% and 75% and to exhaustion at 90% of ground level (GL) VO2max, and at the same relative exercise intensities during three exposures to a simulated altitude of 4200 m; (i) normal (NAL), (ii) following 0.2 g.kg-1 ingestion of sodium bicarbonate (BAL), and (iii) following 0.5 g.day-1 ingestion of acetazolamide for 2 days prior to exposure (AAL). Muscle and blood lactate values were similar throughout exercise for GL and NAL. Although muscle lactates were similar among AL conditions blood lactate was reduced for AAL and increased following exhaustive exercise for BAL compared with NAL. Time to exhaustion at 90% VO2max was increased for NAL (10.4 +/- 1.6 min) compared with GL (7.1 +/- 0.2 min). Performance time was decreased for AAL (6.3 +/- 2.8 min) compared with NAL and BAL (12.4 +/- 4.2 min). These data suggest that the induced respiratory alkalosis of acute AL exposure may enhance exercise performance at high relative intensities. In contrast, the ingestion of acetazolamide before AL exposure would have detrimental effects on performance. The mechanism responsible for these changes may relate to the possible influence of altered extracellular acid-base states on intracellular hydrogen ion accumulation and lactate release.  相似文献   

19.
The aim of this study was to determine whether the decreased muscle and blood lactate during exercise with hyperoxia (60% inspired O2) vs. room air is due to decreased muscle glycogenolysis, leading to decreased pyruvate and lactate production and efflux. We measured pyruvate oxidation via PDH, muscle pyruvate and lactate accumulation, and lactate and pyruvate efflux to estimate total pyruvate and lactate production during exercise. We hypothesized that 60% O2 would decrease muscle glycogenolysis, resulting in decreased pyruvate and lactate contents, leading to decreased muscle pyruvate and lactate release with no change in PDH activity. Seven active male subjects cycled for 40 min at 70% VO2 peak on two occasions when breathing 21 or 60% O2. Arterial and femoral venous blood samples and blood flow measurements were obtained throughout exercise, and muscle biopsies were taken at rest and after 10, 20, and 40 min of exercise. Hyperoxia had no effect on leg O2 delivery, O2 uptake, or RQ during exercise. Muscle glycogenolysis was reduced by 16% with hyperoxia (267 +/- 19 vs. 317 +/- 21 mmol/kg dry wt), translating into a significant, 15% reduction in total pyruvate production over the 40-min exercise period. Decreased pyruvate production during hyperoxia had no effect on PDH activity (pyruvate oxidation) but significantly decreased lactate accumulation (60%: 22.6 +/- 6.4 vs. 21%: 31.3 +/- 8.7 mmol/kg dry wt), lactate efflux, and total lactate production over 40 min of cycling. Decreased glycogenolysis in hyperoxia was related to an approximately 44% lower epinephrine concentration and an attenuated accumulation of potent phosphorylase activators ADPf and AMPf during exercise. Greater phosphorylation potential during hyperoxia was related to a significantly diminished rate of PCr utilization. The tighter metabolic match between pyruvate production and oxidation resulted in a decrease in total lactate production and efflux over 40 min of exercise during hyperoxia.  相似文献   

20.
To evaluate the effects of endurance training on gluconeogenesis and blood glucose homeostasis, trained as well as untrained short-term-fasted rats were injected with mercaptopicolinic acid (MPA), a gluconeogenic inhibitor, or the injection vehicle. Glucose kinetics were assessed by primed-continuous venous infusion of [U-14C]- and [6-3H]glucose at rest and during submaximal exercise at 13.4 m/min on level grade. Arterial blood was sampled for the determination of blood glucose and lactate concentrations and specific activities. In resting untrained sham-injected rats, blood glucose and lactate were 7.6 +/- 0.2 and 1.3 +/- 0.1 mM, respectively; glucose rate of appearance (Ra) was 71.1 +/- 12.1 mumol.kg-1.min-1. MPA treatment lowered blood glucose, raised lactate, and decreased glucose Ra. Trained animals had significantly higher glucose Ra at rest and during exercise. At rest, trained MPA-treated rats had lower blood glucose, higher blood lactate, and similar glucose Ra and disappearance rates (Rd) than trained sham-injected animals. Exercising sham-injected untrained animals had increased blood glucose and glucose Ra compared with rest. Exercising trained sham-injected rats had increased blood glucose and glucose Ra and Rd but no change in blood lactate compared with untrained sham-injected animals. In the trained animals during exercise, MPA treatment increased blood lactate and decreased blood glucose and glucose Ra and Rd. There was no measurable glucose recycling in trained or untrained MPA-treated animals either at rest or during submaximal exercise. There was no difference in running time to exhaustion between trained and untrained MPA-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号