共查询到20条相似文献,搜索用时 0 毫秒
1.
BiNoM (Biological Network Manager) is a new bioinformatics software that significantly facilitates the usage and the analysis of biological networks in standard systems biology formats (SBML, SBGN, BioPAX). BiNoM implements a full-featured BioPAX editor and a method of 'interfaces' for accessing BioPAX content. BiNoM is able to work with huge BioPAX files such as whole pathway databases. In addition, BiNoM allows the analysis of networks created with CellDesigner software and their conversion into BioPAX format. BiNoM comes as a library and as a Cytoscape plugin which adds a rich set of operations to Cytoscape such as path and cycle analysis, clustering sub-networks, decomposition of network into modules, clipboard operations and others. AVAILABILITY: Last version of BiNoM distributed under the LGPL licence together with documentation, source code and API are available at http://bioinfo.curie.fr/projects/binom 相似文献
2.
SUMMARY: DrugViz is a Cytoscape plugin that is designed to visualize and analyze small molecules within the framework of the interactome. DrugViz can import drug-target network information in an extended SIF file format to Cytoscape and display the two-dimensional (2D) structures of small molecule nodes in a unified visualization environment. It also can identify small molecule nodes by means of three different 2D structure searching methods, namely isomorphism, substructure and fingerprint-based similarity searches. After selections, users can furthermore conduct a two-side clustering analysis on drugs and targets, which allows for a detailed analysis of the active compounds in the network, and elucidate relationships between these drugs and targets. DrugViz represents a new tool for the analysis of data from chemogenomics, metabolomics and systems biology. AVAILABILITY: DrugViz and data set used in Application are freely available for download at http://202.127.30.184:8080/software.html. 相似文献
3.
BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks 总被引:22,自引:0,他引:22
The Biological Networks Gene Ontology tool (BiNGO) is an open-source Java tool to determine which Gene Ontology (GO) terms are significantly overrepresented in a set of genes. BiNGO can be used either on a list of genes, pasted as text, or interactively on subgraphs of biological networks visualized in Cytoscape. BiNGO maps the predominant functional themes of the tested gene set on the GO hierarchy, and takes advantage of Cytoscape's versatile visualization environment to produce an intuitive and customizable visual representation of the results. 相似文献
4.
Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation 总被引:2,自引:0,他引:2
Cerebral (Cell Region-Based Rendering And Layout) is an open-source Java plugin for the Cytoscape biomolecular interaction viewer. Given an interaction network and subcellular localization annotation, Cerebral automatically generates a view of the network in the style of traditional pathway diagrams, providing an intuitive interface for the exploration of a biological pathway or system. The molecules are separated into layers according to their subcellular localization. Potential products or outcomes of the pathway can be shown at the bottom of the view, clustered according to any molecular attribute data-protein function-for example. Cerebral scales well to networks containing thousands of nodes. AVAILABILITY: http://www.pathogenomics.ca/cerebral 相似文献
5.
Layla Oesper Daniele Merico Ruth Isserlin Gary D Bader 《Source code for biology and medicine》2011,6(1):7
Background
When biological networks are studied, it is common to look for clusters, i.e. sets of nodes that are highly inter-connected. To understand the biological meaning of a cluster, the user usually has to sift through many textual annotations that are associated with biological entities. 相似文献6.
ABSTRACT: BACKGROUND: Cytoscape is a well-developed flexible platform for visualization, integration and analysis of network data. Apart from the sophisticated graph layout and visualization routines, it hosts numerous user-developed plugins that significantly extend its core functionality. Earlier, we developed a network information flow framework and implemented it as a web application, called ITM Probe. Given a context consisting of one or more user-selected nodes, ITM Probe retrieves other network nodes most related to that context. It requires neither user restriction to subnetwork of interest nor additional and possibly noisy information. However, plugins for Cytoscape with these features do not yet exist. To provide the Cytoscape users the possibility of integrating ITM Probe into their workflows, we developed CytoITMprobe, a new Cytoscape plugin. FINDINGS: CytoITMprobe maintains all the desirable features of ITM Probe and adds additional flexibility not achievable through its web service version. It provides access to ITM Probe either through a web server or locally. The input, consisting of a Cytoscape network, together with the desired origins and/or destinations of information and a dissipation coefficient, is specified through a query form. The results are shown as a subnetwork of significant nodes and several summary tables. Users can control the composition and appearance of the subnetwork and interchange their ITM Probe results with other software tools through tab-delimited files. CONCLUSIONS: The main strength of CytoITMprobe is its flexibility. It allows the user to specify as input any Cytoscape network, rather than being restricted to the pre-compiled protein-protein interaction networks available through the ITM Probe web service. Users may supply their own edge weights and directionalities. Consequently, as opposed to ITM Probe web service, CytoITMprobe can be applied to many other domains of network-based research beyond protein-networks. It also enables seamless integration of ITM Probe results with other Cytoscape plugins having complementary functionality for data analysis. 相似文献
7.
8.
Audenaert P Van Parys T Brondel F Pickavet M Demeester P Van de Peer Y Michoel T 《Bioinformatics (Oxford, England)》2011,27(11):1587-1588
SUMMARY: Network motifs in integrated molecular networks represent functional relationships between distinct data types. They aggregate to form dense topological structures corresponding to functional modules which cannot be detected by traditional graph clustering algorithms. We developed CyClus3D, a Cytoscape plugin for clustering composite three-node network motifs using a 3D spectral clustering algorithm. AVAILABILITY: Via the Cytoscape plugin manager or http://bioinformatics.psb.ugent.be/software/details/CyClus3D. 相似文献
9.
10.
Graphical methods are useful for visualizing signaling networks derived from the synthesis of large bodies of literature information or large-scale experimental measurements. Software tools to filter and organize these networks allow the exploration of their inherent biological and structural properties. We have developed NetAtlas, an open-source, Java-based Cytoscape plugin for examining signaling networks in the context of tissue gene expression patterns. The tissue gene expression data available through NetAtlas consists of 79 human tissues, 61 mouse tissues, and 44 combined tissues from 3 rat strains. Users may also import their own tissue gene expression data. The NetAtlas plugin allows the creation of tissue-defined signaling networks by identifying which components are expressed in particular tissues, which components show tissue-specific expression, and which components within the network are coordinately expressed across tissues. The NetAtlas plugin is available at http://sourceforge.net/projects/netatlas/. 相似文献
11.
12.
13.
Ashkenazi M Bader GD Kuchinsky A Moshelion M States DJ 《Bioinformatics (Oxford, England)》2008,24(12):1465-1466
SUMMARY: Cytoscape enhanced search plugin (ESP) enables searching complex biological networks on multiple attribute fields using logical operators and wildcards. Queries use an intuitive syntax and simple search line interface. ESP is implemented as a Cytoscape plugin and complements existing search functions in the Cytoscape network visualization and analysis software, allowing users to easily identify nodes, edges and subgraphs of interest, even for very large networks. Availabiity: http://chianti.ucsd.edu/cyto_web/plugins/ CONTACT: ashkenaz@agri.huji.ac.il. 相似文献
14.
Montojo J Zuberi K Rodriguez H Kazi F Wright G Donaldson SL Morris Q Bader GD 《Bioinformatics (Oxford, England)》2010,26(22):2927-2928
The GeneMANIA Cytoscape plugin brings fast gene function prediction capabilities to the desktop. GeneMANIA identifies the most related genes to a query gene set using a guilt-by-association approach. The plugin uses over 800 networks from six organisms and each related gene is traceable to the source network used to make the prediction. Users may add their own interaction networks and expression profile data to complement or override the default data. Availability and Implementation: The GeneMANIA Cytoscape plugin is implemented in Java and is freely available at http://www.genemania.org/plugin/. 相似文献
15.
Background
Inference of gene networks from expression data is an important problem in computational biology. Many algorithms have been proposed for solving the problem efficiently. However, many of the available implementations are programming libraries that require users to write code, which limits their accessibility.Results
We have developed a tool called CyNetworkBMA for inferring gene networks from expression data that integrates with Cytoscape. Our application offers a graphical user interface for networkBMA, an efficient implementation of Bayesian Model Averaging methods for network construction. The client-server architecture of CyNetworkBMA makes it possible to distribute or centralize computation depending on user needs.Conclusions
CyNetworkBMA is an easy-to-use tool that makes network inference accessible to non-programmers through seamless integration with Cytoscape. CyNetworkBMA is available on the Cytoscape App Store at http://apps.cytoscape.org/apps/cynetworkbma.16.
Cline MS Smoot M Cerami E Kuchinsky A Landys N Workman C Christmas R Avila-Campilo I Creech M Gross B Hanspers K Isserlin R Kelley R Killcoyne S Lotia S Maere S Morris J Ono K Pavlovic V Pico AR Vailaya A Wang PL Adler A Conklin BR Hood L Kuiper M Sander C Schmulevich I Schwikowski B Warner GJ Ideker T Bader GD 《Nature protocols》2007,2(10):2366-2382
Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape. 相似文献
17.
DeJongh M Bockstege B Frybarger P Hazekamp N Kammeraad J McGeehan T 《Bioinformatics (Oxford, England)》2012,28(6):891-892
CytoSEED is a Cytoscape plugin for viewing, manipulating and analyzing metabolic models created using the Model SEED. The CytoSEED plugin enables users of the Model SEED to create informative visualizations of the reaction networks generated for their organisms of interest. These visualizations are useful for understanding organism-specific biochemistry and for highlighting the results of flux variability analysis experiments. 相似文献
18.
Cytoprophet is a software tool that allows prediction and visualization of protein and domain interaction networks. It is implemented as a plug-in of Cytoscape, an open source software framework for analysis and visualization of molecular networks. Cytoprophet implements three algorithms that predict new potential physical interactions using the domain composition of proteins and experimental assays. The algorithms for protein and domain interaction inference include maximum likelihood estimation (MLE) using expectation maximization (EM); the set cover approach maximum specificity set cover (MSSC) and the sum-product algorithm (SPA). After accepting an input set of proteins with Uniprot ID/Accession numbers and a selected prediction algorithm, Cytoprophet draws a network of potential interactions with probability scores and GO distances as edge attributes. A network of domain interactions between the domains of the initial protein list can also be generated. Cytoprophet was designed to take advantage of the visual capabilities of Cytoscape and be simple to use. An example of inference in a signaling network of myxobacterium Myxococcus xanthus is presented and available at Cytoprophet's website. AVAILABILITY: http://cytoprophet.cse.nd.edu. 相似文献
19.
Lionel Spinelli Philippe Gambette Charles E. Chapple Benoît Robisson Anaïs Baudot Henri Garreta Laurent Tichit Alain Guénoche Christine Brun 《Bio Systems》2013
Background and scope
Large networks, such as protein interaction networks, are extremely difficult to analyze as a whole. We developed Clust&See, a Cytoscape plugin dedicated to the identification, visualization and analysis of clusters extracted from such networks.Implementation and performance
Clust&See provides the ability to apply three different, recently developed graph clustering algorithms to networks and to visualize: (i) the obtained partition as a quotient graph in which nodes correspond to clusters and (ii) the obtained clusters as their corresponding subnetworks. Importantly, tools for investigating the relationships between clusters and vertices as well as their organization within the whole graph are supplied. 相似文献20.
GenePro: a Cytoscape plug-in for advanced visualization and analysis of interaction networks 总被引:2,自引:0,他引:2
Vlasblom J Wu S Pu S Superina M Liu G Orsi C Wodak SJ 《Bioinformatics (Oxford, England)》2006,22(17):2178-2179
MOTIVATION: Analyzing the networks of interactions between genes and proteins has become a central theme in systems biology. Versatile software tools for interactively displaying and analyzing these networks are therefore very much in demand. The public-domain open software environment Cytoscape has been developed with the goal of facilitating the design and development of such software tools by the scientific community. RESULTS: We present GenePro, a plugin to Cytoscape featuring a set of versatile tools that greatly facilitates the visualization and analysis of protein networks derived from high-throughput interactions data and the validation of various methods for parsing these networks into meaningful functional modules. AVAILABILITY: The GenePro plugin is available at the website http://genepro.ccb.sickkids.ca. 相似文献