首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mated CF1 (Carworth) female mice were sacrificed at 2 hr intervals between 29 and 43 hr after human chorionic gonadotrophin (HCG) administration. One- and two-cell eggs were incubated in [3H]thymidine for 1 hr. Labeled two-cell embryos were first observed at 31 hr and reached a maximum number at 35 hr. The S period is approximately 6 hr in duration. Although both blastomeres were labeled in most cases, embryos with only one labeled blastomere were more numerous at later times. In vitro labeling was corroborated by injecting [3H]thymidine directly into the isthmic portion of the oviduct. Embryos usually complete the second cleavage division 18–20 hr after onset of DNA synthesis. The cell cycle at the two-cell stage is thus characterized by a G1 of close to 1 hr, a 6 hr S, and a G2 of about 12 hr.Embryos developing in vitro frequently fail to progress beyond the two-cell stage. The block is not due to absence of DNA synthesis since these embryos were found to incorporate [3H]thymidine.  相似文献   

2.
Perrotta AT  Been MD 《Biochemistry》2006,45(38):11357-11365
Activity of the two ribozymes from hepatitis delta virus in monovalent salts was examined and compared to activity in Mg2+. Both ribozymes self-cleaved in high concentrations of monovalent cations, and an active site cytosine was required for cleavage activity under those conditions. Cleavage rates were 30-50-fold higher for reactions in LiCl than for reactions in NaCl or NH4Cl, and a thio effect indicated that chemistry was rate-determining for cleavage of the HDV genomic ribozyme in LiCl. Still, in LiCl, there was a more than 100-fold increase in the rate when MgCl2 was included in the reaction. However, the pH-rate profiles for the reactions in LiCl with and without MgCl2 were both bell-shaped with the pH optima in the neutral range. These findings support the idea that monovalent cations can partially substitute for divalent metal ions in the HDV ribozymes, although a divalent metal ion is more effective in supporting catalysis. The absence of a dramatic change in the general shape of pH-rate profiles in LiCl, relative to the profile for reactions including Mg2+, is in contrast to earlier data for the reactions in NaCl and limits our interpretation of the specific role played by the divalent metal ion in the catalytic mechanism.  相似文献   

3.
4.
The hammerhead cleavage reaction in monovalent cations   总被引:7,自引:3,他引:7       下载免费PDF全文
Recently, Murray et al. (Chem Biol, 1998, 5:587-595) found that the hammerhead ribozyme does not require divalent metal ions for activity if incubated in high (> or =1 M) concentrations of monovalent ions. We further characterized the hammerhead cleavage reaction in the absence of divalent metal. The hammerhead is active in a wide range of monovalent ions, and the rate enhancement in 4 M Li+ is only 20-fold less than that in 10 mM Mg2+. Among the Group I monovalent metals, rate correlates in a log-linear manner with ionic radius. The pH dependence of the reaction is similar in 10 mM Mg2+, 4 M Li+, and 4 M Na+. The exchange-inert metal complex Co(NH3)3+ also supports substantial hammerhead activity. These results suggest that a metal ion does not act as a base in the reaction, and that the effects of different metal ions on hammerhead cleavage rates primarily reflect structural contributions to catalysis.  相似文献   

5.
6.
The properties of the calcium efflux system in the yeast Saccharomyces cerevisiae were investigated. After growing the cells overnight in medium containing 45Ca, the cells were transferred to medium containing glucose, Hepes buffer (pH 5.2) and monovalent cations. The presence of potassium or sodium in the medium induced efflux of calcium from the cells. The magnitude of the efflux was dependent on the concentration of these cations in the medium. The time course of calcium efflux was analyzed, and two types of exchangeable calcium pools, which turned over at different rates, were detected: ‘Fast turnover’ and ‘slow turnover’. Increase in the concentration of monovalent cations in the medium caused an increase in the fraction of cellular calcium which turned over at a fast rate, and activation of calcium efflux from the ‘slow turnover’ calcium pool. The specific changes in the parameters of calcium efflux induced by monovalent cations were different from those reported previously to be induced by divalent cations. Both processes, i.e. activation of calcium efflux by monovalent and by divalent cations, were found to be additive, indicating that they operate via different mechanisms. Experiments using the respiratory inhibitor Antimycin A, showed that stimulation of calcium efflux by monovalent cations is energy dependent. Lanthanum ions which are known to inhibit calcium influx into yeast cells, inhibitted the activation of calcium efflux by both divalent and monovalent cations. Determination of the cationic composition of the cells indicated that the stimulation of calcium efflux was accompanied by influx of potassium or sodium into the cells.  相似文献   

7.
Activation or inactivation of members of the cyclin-dependent kinase family is important during cell cycle progression. However, Cdk5, a member of this family that was originally identified because of its high structural homology to Cdc2, is activated during cell differentiation and cell death but not during cell cycle progression. We previously demonstrated a correlation between the up-regulation of Cdk5 protein and kinase activity and cell death during development and pathogenesis. We report here that cyclophosphamide (CP) induces massive apoptotic cell death in mouse embryos and that Cdk5 is expressed in apoptotic cells displaying fragmented DNA. During CP-induced cell death, Cdk5 protein expression is substantially increased as detected by immunohistochemistry but not by Western blot, while its mRNA level remains the same as control, and its kinase activity is markedly elevated. The up-regulation of Cdk5 during CP-induced cell death is not due to de novo protein synthesis. We also examined p35, a regulatory protein of Cdk5 in neuronal differentiation. Using a yeast two-hybrid system, we isolated p35, a neuronal differentiation specific protein, as a protein that interacts with Cdk5 in CP-treated embryos. p35 mRNA level does not change, but the protein expression of p25, a truncated form of p35, is elevated during cell death in vivo, as established here, as well as during cell death in vitro. Our results suggest a role for Cdk5 and its regulatory proteins during CP induced cell death. These results further support the view that Cdk5 and its regulation may be key players in the execution of cell death regardless of how the cell dies, whether through biological mechanisms, disease states such as Alzheimer's disease, or induction by CP.  相似文献   

8.
Locating monovalent cations in the grooves of B-DNA   总被引:6,自引:0,他引:6  
Here we demonstrate that monovalent cations can localize around B-DNA in geometrically regular, sequence-specific sites in oligonucleotide crystals. Positions of monovalent ions were determined from high-resolution X-ray diffraction of DNA crystals grown in the presence of thallium(I) cations (Tl(+)). Tl(+) has previously been shown to be a useful K(+) mimic. Tl(+) positions determined by refinement of model to data are consistent with positions determined using isomorphous F(Tl) - F(K) difference Fouriers and anomalous difference Fouriers. None of the observed Tl(+) sites surrounding CGCGAATTCGCG are fully occupied by Tl(+) ions. The most highly occupied sites, located within the G-tract major groove, have estimated occupancies ranging from 20% to 35%. The occupancies of the minor groove sites are estimated to be around 10%. The Tl(+) positions in general are not in direct proximity to phosphate groups. The A-tract major groove appears devoid of localized cations. The majority of the observed Tl(+) ions interact with a single duplex and so are not engaged in lattice interactions or crystal packing. The locations of the cation sites are dictated by coordination geometry, electronegative potential, avoidance of electropositive amino groups, and cation-pi interactions. It appears that partially dehydrated monovalent cations, hydrated divalent cations, and polyamines compete for a common binding region on the floor of the G-tract major groove.  相似文献   

9.
Enzymes activated by monovalent cations are abundantly represented in plants and the animal world. They have evolved to exploit Na+ and K+, readily available in biological environments, as major driving forces for substrate binding and catalysis. Recent progress in the structural biology of such enzymes has answered long standing questions about the molecular mechanism of activation and the origin of monovalent cation selectivity. That enables a simple classification of these functionally diverse enzymes and reveals unanticipated connections with ion transporters.  相似文献   

10.
1. Adenylate energy charge (EC) was measured in mouse embryos and showed a significant rise from 0.79 at day 11 of gestation to 0.87 at day 15 (P less than 0.05). 2. The low value of EC between days 11 and 13 corresponds with the predominance of the embryonic hemoglobin fraction E-I which has high affinity and poor cooperativity. 3. The highest value of EC corresponds with the predominance of adult hemoglobin which has lower affinity and cooperative oxygen binding. 4. Weight-specific oxygen uptake rates of isolated embryos decreases with weight gain and it is suggested that the energy charge is a manifestation of metabolic regulatory processes which sustain embryonic growth.  相似文献   

11.
12.
Glutamate oxidation in vitro via deamination and transamination during gramicidin C-induced transport of K+ and Na+ in rat nervous tissue mitochondria was studied. An increase in ammonium production, i.e. in glutamate oxidation due to deamination, was shown to occur with maximal increase of oxygen consumption in the presence of cations. It was found that 1.5 mM Na+ activate oxygen consumption by 15% and accelerate ammonium production from glutamate (by 17%). No changes in aspartate production were observed. 15 mM K+ increase oxygen consumption by 29% and ammonium production by 11% during a decrease in aspartate production as compared to glutamate oxidation in the presence of a lower (10 mM) concentration of K+ in the samples.  相似文献   

13.
The effect of monovalent cations on derepression of phosphate transport was studied. It was found that ammonium, K+ and Rb+ accelerate the derepression of phosphate transport produced by glucose in yeast (Saccharomyces cerevisiae). Na+ and Li+ were ineffective in accelerating derepression; Cs+ produced only a minor stimulation. The concentration range of both K+ and NH4+ that accelerated derepression was similar to that required for transport to occur. In the case of ammonium, the effects seem to depend exclusively on the so-called low-affinity transport system. The effect was strongly dependent on pH, with an optimum around 6; however, the increase in the pH of the medium did not produce in itself a high increase of the depression. Derepression was dependent on the presence of glucose, and it was very low with ethanol as substrate. The mechanism seems to depend on the ability that both K+ and NH4+ have to decrease the membrane potential of the cell while transported, and not on the capacity to produce the alkalinization of the cell interior. In addition, the phenomenon depends on the presence of glucose as substrate, which indicates the involvement of some product of glucose metabolism in the mechanism, and possibly some relation to catabolic repression.  相似文献   

14.
15.
The hepatitis delta virus (HDV) ribozyme catalyzes viral RNA self-cleavage through general acid-base chemistry in which an active-site cytidine and at least one metal ion are involved. Monovalent metal ions support slow catalysis and were proposed to substitute for structural, but not catalytic, divalent metal ions in the RNA. To investigate the role of monovalent cations in ribozyme structure and function, we determined the crystal structure of the precursor HDV ribozyme in the presence of thallium ions (Tl(+)). Two Tl(+) ions can occupy a previously observed divalent metal ion hexahydrate-binding site located near the scissile phosphate, but are easily competed away by cobalt hexammine, a magnesium hexahydrate mimic and potent reaction inhibitor. Intriguingly, a third Tl(+) ion forms direct inner-sphere contacts with the ribose 2'-OH nucleophile and the pro-S(p) scissile phosphate oxygen. We discuss possible structural and catalytic implications of monovalent cation binding for the HDV ribozyme mechanism.  相似文献   

16.
Human erythrocytes were incubated in isotonic solutions of different monovalent cations. The apparent size of the red cells measured on scanning electron microscopic pictures decreases in the order Li+ greater than Na+ = K+ greater than Rb+. These differences in size are abolished after pretreatment with trypsin, which removes a large part of the charges associated with membrane glycoproteins. Shape alterations are also observed. Normal biconcave shapes are visible after Na+ or K+ incubation, whereas Li+ leads to flabby, flattened cells with a certain tendency to crenation, and Rb+ causes more pronounced biconcavity with a certain tendency to cupping. The overall effects of pretreatment with trypsin are similar to those of Li+. Our results provide evidence that the electrostatic repulsion of glycoproteins and other charged membrane components may play an essential role in maintaining red cell shape.  相似文献   

17.
Nigericin, monensin, valinomycin + carbonyl-cyanide-m-chlorophenylhydrazone and gramicidin inhibit the respiration of Bacillus subtilis cells incubated with NAD-dependent substrates or succinate, but not with ascorbate + N,N,N',N'-tetramethyl-p- phenylene-diamine. The level of inhibition was decreased by potassium ions and, in a lower degree, by sodium or ammonium ions. The results obtained suggest that the respiration of Bacillus subtilis depends on the presence of monovalent cations whose effects seem to be directed at complexes I, III and probably complex II of the respiratory chain.  相似文献   

18.
Human erythrocytes were incubated in isotonic solutions of different monovalent cations. The apparent size of the red cells measured on scanning electron microscopic pictures decreases in the order Li+>Na+=K+>Rb+. These differences in size are abolished after pretreatment with trypsin, which removes a large part of the charges associated with membrane glycoproteins. Shape alterations are also observed. Normal biconcave shapes are visible after Na+ or K+ incubation, whereas Li+ leads to flabby, flattened cells with a certain tendency to crenation, and Rb+ causes more pronounced biconcavity with a certain tendency to cupping. The overall effects of pretreatment with trypsin are similar to those of Li+. Our results provide evidence that the electrostatic repulsion of glycoproteins and other charged membrane components may play an essential role in maintaining red cell shape.  相似文献   

19.
20.
Henzl MT  Larson JD  Agah S 《Biochemistry》2000,39(19):5859-5867
The mammalian genome encodes both alpha- and beta-parvalbumin isoforms. The rat beta-parvalbumin (aka "oncomodulin") is more stable than the alpha isoform at physiological pH and ionic strength, despite its substantially higher charge density and truncated C-terminal helix [Henzl, M. T., and Graham, J. S. (1999) FEBS Lett. 442, 241-245]. Reasoning that solvent interactions could contribute to this unexpected finding, we have examined the stabilities of the Ca(2+)-free alpha- and beta-parvalbumins as a function of Na(+) and K(+) concentration. Differential scanning calorimetry data suggest that, at physiological pH and ionic strength, the beta isoform binds roughly 2 equiv of Na(+) or a single equivalent of K(+) with moderate affinity. Under comparable conditions, the alpha isoform apparently binds just 1 equiv of Na(+) and essentially no K(+). Isothermal titration calorimetry experiments suggest that the bound monovalent ions occupy the EF-hand motifs. In 0.15 M K(+), at pH 7.4, the stability of the apo-beta-parvalbumin exceeds that of the alpha isoform by approximately 2.6 kcal/mol at 37 degrees C and by approximately 3.0 kcal/mol at 25 degrees C. The latter value represents a substantial fraction of the difference in Ca(2+)-binding free energies measured in vitro for the two proteins. Significantly, however, these results do not completely explain the paradoxical stability of the beta isoform, which maintains its higher melting temperature under all conditions examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号