共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Coral Reefs - Symbiont-bearing perforated large benthic foraminifers are vital to the formation of coral reef islands in the Pacific Ocean and are affected by the deterioration of reefal water... 相似文献
3.
Novel metabolites in phenanthrene and pyrene transformation by Aspergillus niger. 总被引:2,自引:1,他引:2
下载免费PDF全文

U Sack T M Heinze J Deck C E Cerniglia M C Cazau W Fritsche 《Applied microbiology》1997,63(7):2906-2909
Aspergillus niger, isolated from hydrocarbon-contaminated soil, was examined for its potential to degrade phenanthrene and pyrene. Two novel metabolites, 1-methoxyphenanthrene and 1-methoxypyrene, were identified by conventional chemical techniques. Minor metabolites identified were 1- and 2-phenanthrol and 1-pyrenol. No 14CO2 evolution was observed in either [14C]phenanthrene or [14C]pyrene cultures. 相似文献
4.
5.
Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria 总被引:1,自引:0,他引:1
Pyrene is a regulated pollutant at sites contaminated with polycyclic aromatic hydrocarbons (PAH). It is mineralized by some bacteria but is also transformed to nonmineral products by a variety of other PAH-degrading bacteria. We examined the formation of such products by four bacterial strains and identified and further characterized the most apparently significant of these metabolites. Pseudomonas stutzeri strain P16 and Bacillus cereus strain P21 transformed pyrene primarily to cis-4,5-dihydro-4,5-dihydroxypyrene (PYRdHD), the first intermediate in the known pathway for aerobic bacterial mineralization of pyrene. Sphingomonas yanoikuyae strain R1 transformed pyrene to PYRdHD and pyrene-4,5-dione (PYRQ). Both strain R1 and Pseudomonas saccharophila strain P15 transform PYRdHD to PYRQ nearly stoichiometrically, suggesting that PYRQ is formed by oxidation of PYRdHD to 4,5-dihydroxypyrene and subsequent autoxidation of this metabolite. A pyrene-mineralizing organism, Mycobacterium strain PYR-1, also transforms PYRdHD to PYRQ at high initial concentrations of PYRdHD. However, strain PYR-1 is able to use both PYRdHD and PYRQ as growth substrates. PYRdHD strongly inhibited phenanthrene degradation by strains P15 and R1 but had only a minor effect on strains P16 and P21. At their aqueous saturation concentrations, both PYRdHD and PYRQ severely inhibited benzo[a]pyrene mineralization by strains P15 and R1. Collectively, these findings suggest that products derived from pyrene transformation have the potential to accumulate in PAH-contaminated systems and that such products can significantly influence the removal of other PAH. However, these products may be susceptible to subsequent degradation by organisms able to metabolize pyrene more extensively if such organisms are present in the system. 相似文献
6.
1. The effect of passing different rates of air or graded concentrationsof CO2, over cultures of A. niger growing on an acetate mediumhas been investigated. 2. There is a rate of aeration or concentration of CO2 whichis optimal for most rapid utilization of acetate. High ratesof air-flow severely depress consumption of acetate, whereasvery slow rates only slightly increase the metabolic period. 3. Production of oxalate is not greatly affected by aerationor by different concentrations of CO2 except where consumptionof acetate is reduced. 4. Citrate formation, is markedly affected by the experimentalconditions. Under optimal treatment citric acid yield is increasedby amounts up to 64 per cent. with controlled aeration and byamounts up to a further i80 per cent. with regulated concentrationof CO2 相似文献
7.
A CASE SAR analysis was performed on a selected database of PAHs to investigate the possible use of the CASE method as an aid for preliminary assessment of carcinogenic potential of untested environmental PAHs. A data set, denoted LEARN, consisting of 78 PAHs and their experimental carcinogenicities was used to 'train' the CASE method and derive the CASE fragments. 8 activating fragments and 4 inactivating fragments were identified. These fragments predicted the activities of 94% of the LEARN set correctly. The biological significance of several of these fragments are rationalized in light of the current theories of PAH carcinogenesis. Using these fragments, the potential activities of a database of 106, mostly untested PAHs, denoted TEST, were predicted. These were compared to 'expert judgement' predictions based on mechanistic considerations in order to evaluate the extent of concordance between these two methods and their respective strengths and weaknesses. Initial poor agreement (64%) was attributed to limitations of the LEARN database involving inadequate representation of 2- and 3-ring PAH subclasses. When these subclasses were excluded from the TEST database, the concordance improved to 90%. The CASE fragments were also used to predict the activities of a database of 24 PAHs, denoted VALIDATE (not included in the LEARN set) for which carcinogenicity data were available. The total prediction accuracy of 75% (89% of the actives correctly identified), despite the structural diversity of the VALIDATE set, provided independent evidence of the utility of the present CASE results. A close examination of the CASE incorrect predictions was conducted to delineate inadequancies of these CASE results in order to provide cautionary guidance for future application of the method. Finally, the present results were compared to the results of a previous CASE analysis based on a more limited PAH data set, and were found to be of greater general utility. It is concluded that the CASE fragments derived in the current study should provide a useful tool for assisting and complementing 'expert judgement' in the preliminary screening of PAHs for carcinogenic activity. 相似文献
8.
Diatoms are unicellular, photosynthetic, eukaryotic algae with a ubiquitous distribution in water environments and they play an important role in the carbon cycle. Molecular or morphological changes in these species under ecological stress conditions are expected to serve as early indicators of toxicity and can point to a global impact on the entire ecosystem. Thalassiosira pseudonana, a marine diatom and the first with a fully sequenced genome has been selected as an aquatic model organism for ecotoxicological studies using molecular tools. A customized DNA microarray containing probes for the available gene sequences has been developed and tested to analyze the effects of a common pollutant, benzo(a)pyrene (BaP), at a sub-lethal concentration. This approach in diatoms has helped to elucidate pathway/metabolic processes involved in the mode of action of this pollutant, including lipid metabolism, silicon metabolism and stress response. A dose-response of BaP on diatoms has been made and the effect of this compound on the expression of selected genes was assessed by quantitative real time-PCR. Up-regulation of the long-chain acyl-CoA synthetase and the anti-apoptotic transmembrane Bax inhibitor, as well as down-regulation of silicon transporter 1 and a heat shock factor was confirmed at lower concentrations of BaP, but not the heat-shock protein 20. The study has allowed the identification of molecular biomarkers to BaP to be later on integrated into environmental monitoring for water quality assessment. 相似文献
9.
Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species 总被引:2,自引:0,他引:2
Polycyclic aromatic hydrocarbons (PAH) known to produce carcinogenic and mutagenic effects have been shown to contaminate waters, sediments and soils. While it is accepted that metabolites of these compounds are responsible for most of their biological effects in mammals, their metabolism, and to a large extent their bioactivity, in aquatic plants have not been explored. Cultures of photosynthetic algal species were assayed for their ability to metabolize benzo[a]pyrene (BaP), a carcinogenic PAH under conditions which either permitted (white light) or disallowed (gold light) photooxidation of the compound. Growth of Selenastrum capricornutum, a fresh-water green alga, was completely inhibited when incubated in white light with 160 micrograms BaP/l medium. By contrast concentrations at the upper limit of BaP solubility in aqueous medium had no effect on algal growth when gold light was used. BaP quinones and phenol derivatives were found to inhibit growth of Selenastrum under white light incubation. BaP phototoxicity and metabolism were observed to be species-specific. All 3 tested species of the order Chlorococcales were growth-inhibited by BaP in white light whereas neither the green alga Chlamydomonas reinhardtii nor a blue-green, a yellow-green or an euglenoid alga responded in this fashion. Assays of radiolabeled BaP metabolism in Selenastrum showed that the majority of radioactivity associated with BaP was found in media as opposed to algal cell pellets, that the extent of metabolism was BaP concentration dependent, and that the proportion of various metabolites detected was a function of the light source. After gold light incubation, BaP diols predominated while after white light treatment at equal BaP concentrations, the 3,6-quinone was found in the highest concentration. Extracted material from algal cell pellets and from media was tested for mutagenicity in a forward mutation suspension assay in Salmonella typhimurium using resistance to 8-azaguanine for selection. Direct-acting mutagens were detected in extracted media from incubation of Selenastrum with 400 micrograms BaP/l for 1 day in gold light. Extracts of media from algae incubated in gold light from 1 to 4 days with 1200 micrograms BaP/l were found to have direct-acting mutagens as well as those requiring further metabolism. Media extracts from white light incubations of BaP were mutagenic upon addition of rat liver homogenates. Activity of these materials from white light treatment are largely attributable to unmetabolized BaP. 相似文献
10.
A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via 4-hydroxybenzoylformate, 4-hydroxybenzaldehyde, and 4-hydroxybenzoate. 相似文献
11.
The polycyclic aromatic hydrocarbon carcinogens are formed in the inefficient combustion of organic matter and contaminate foods through direct deposition from the atmosphere or during cooking or smoking of foods. These potent carcinogens and mutagens require metabolism to dihydrodiol epoxide metabolites in order to express their biological activities. In vitro studies show that these reactive metabolites can react with the bases in DNA with different specificities depending upon the hydrocarbon from which they are derived. Thus, the more potent carcinogens react more extensively with adenine residues in DNA than do the less potent carcinogens, with the result that mutation at A . T base pairs is enhanced for the more potent carcinogens. In the past few years, considerable clarification of the mechanism of metabolic activation have been achieved and the focus for the immediate future is expected to be on how the reactive metabolites actually bring about biological responses. 相似文献
12.
13.
J B Sutherland J P Freeman A J Williams J Deck 《Journal of industrial microbiology & biotechnology》1998,21(4-5):225-227
Cultures of the fungi Cunninghamella elegans and Aspergillus niger were grown in fluid Sabouraud medium at 28°C for 3 days and then dosed with cinnoline (1,2-diazanaphthalene). After 3 more days, metabolites were extracted from the cultures with ethyl acetate, separated by high-performance liquid chromatography, and identified by mass spectrometry and proton nuclear magnetic resonance spectroscopy. Both fungi oxidized 2–10% of the added cinnoline to mixtures of cinnoline 2-oxide and cinnoline 1-oxide. Received 10 June 1998/ Accepted in revised form 25 September 1998 相似文献
14.
15.
16.
A polycyclic aromatic hydrocarbon (PAH)-degrading culture enriched from contaminated river sediments and a Mycobacterium sp. isolated from the enrichment were tested to investigate the possible synergistic and antagonistic interactions affecting the degradation of pyrene in the presence of low molecular weight PAHs. The Mycobacterium sp. was able to mineralize 63% of the added pyrene when it was present as a sole source of carbon and energy. When the enrichment culture and the isolated bacterium were exposed to phenanthrene, de novo protein synthesis was not required for the rapid mineralization of pyrene, which reached 52% in chloramphenicol-treated cultures and 44% in the absence of the protein inhibitor. In the presence of chloramphenicol, < 1% of the added pyrene was mineralized by the mixed culture after exposure to anthracene and naphthalene. These compounds did not inhibit pyrene utilization when present at the same time as pyrene. Concurrent mineralization of pyrene and phenanthrene after exposure to either compound was observed. Cross-acclimation between ring classes of PAHs may be a potentially important interaction influencing the biodegradation of aromatic compounds in contaminated environments. 相似文献
17.
A preliminary investigation of the kinetic properties of 3-carboxy-cis,cis-muconate cyclase (EC 5.5.1.5) has been performed. The initial velocity of the reaction was shown to be proportional to the concentration of the enzyme in the assay system adopted and the apparent Km was found to be 57 muM at pH 6.0 and 30 degrees C but at concentrations exceeding 70 muM, substrate inhibition was apparent. At pH 6.0 the Ki for the substrate was 0.45 mM. Plots of V and Km against pH showed inflexions at pH 5.3 and pH 6.4. The enzyme was inhibited by a variety of inorganic anions and by a number of dicarboxylic and tricarboxylic acids. The degree of inhibition exerted by these acids was found to be proportional to the proximity of their carboxyl groups, the cis configuration being a more effective inhibitor than the trans configuration. As inhibition was competitive in each case, the presence of an anion-sensitive substrate-binding site has been postulated. The cis-cis, cis-trans and trans-trans isomers of muconate, 3-chloromuconate and 3-carboxy-cis-trans-muconate, close analogues of natural substrate but not attacked by the enzyme, were also found to be competitive inhibitors. The variation in pKi with pH was determined in the case of cis,cis-muconate and cis-aconitate, both of which gave curves suggesting the importance of a group with a pKa of approximately 6.4 responsible for increasing the inhibition of the enzyme. Modification by ethoxyformic anhydride and the kinetics of Rose-Bengal-sensitized photo-oxidation suggested the participation of a histidine residue in the catalytic reaction. These results are discussed in the light of recent work on enzymes catalysing analogous reactions; a likely reaction mechanism has been proposed. 相似文献
18.
Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria 总被引:30,自引:0,他引:30
Polycyclic aromatic hydrocarbons (PAHs), which consist of two or more fused aromatic rings, are widespread in the environment and persist over long periods of time. The decontamination of a PAH-polluted environment is of importance because some PAHs are toxic, mutagenic, and carcinogenic and therefore are health hazards. As part of the efforts to establish remediation processes, the use of aerobic bacteria has been extensively studied, and both enzymologic and genetic studies are underway for the purpose of effective biodegradation. In the last two decades, one highly conserved group of PAH-catabolic genes from Pseudomonas species, called the nah-like genes, has been well investigated, and much has been found, including the structure-function relationships and the evolutionary trails of the catabolic enzymes. However, recently, PAH-catabolic genes, which are evolutionarily different from the nah-like genes, have been characterized from both Gram-negative bacteria other than Pseudomonas species and Gram-positive bacteria, and the information about these genes is expanding. This review is an outline of genetic knowledge about bacterial PAH catabolism. 相似文献
19.
Polycyclic aromatic hydrocarbon (PAH) o-quinone reductase (PQR) plays a crucial role in the detoxification of PAH o-quinones by reducing them to catechols. Two constitutive PQRs were found in cell extracts of a pyrene-degrading Mycobacterium sp. strain PYR100. The enzymes had an activity towards 9,10-phenanthrenequinone (PQ) and/or 4,5-pyrenequinone (PyQ), and the relative amounts varied with the pH of the culture media. PQR1, containing an FAD cofactor, was a monomer (20.1 kDa), and PQR2, with no flavin cofactor, was a homodimer (26.5 kDa subunits). There was no homology between the N-terminal sequences of PQR1 and PQR2. Dicumarol and quercetin inhibited PQR2 more strongly than PQR1. PQR1 had much lower specificity constants (k(cat)/K(m), 10(5)M(-1)s(-1)) for menadione (0.80) and PQ (5.19) than PQR2 (13.9 for menadione and 176 for PQ). Additionally, PQR2 exhibited a broad substrate specificity with high specificity constants for 1,4-naphthalenequinone, 1,2-naphthalenequinone, and PyQ. 相似文献
20.
Ní Chadhain SM Norman RS Pesce KV Kukor JJ Zylstra GJ 《Applied and environmental microbiology》2006,72(6):4078-4087
The degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria has been widely studied. While many pure cultures have been isolated and characterized for their ability to grow on PAHs, limited information is available on the diversity of microbes involved in PAH degradation in the environment. We have designed generic PCR primers targeting the gene fragment encoding the Rieske iron sulfur center common to all PAH dioxygenase enzymes. These Rieske primers were employed to track dioxygenase gene population shifts in soil enrichment cultures following exposure to naphthalene, phenanthrene, or pyrene. PAH degradation was monitored by gas chromatograph with flame ionization detection. DNA was extracted from the enrichment cultures following PAH degradation. 16S rRNA and Rieske gene fragments were PCR amplified from DNA extracted from each enrichment culture and an unamended treatment. The PCR products were cloned and sequenced. Molecular monitoring of the enrichment cultures before and after PAH degradation using denaturing gradient gel electrophoresis and 16S rRNA gene libraries suggests that specific phylotypes of bacteria were associated with the degradation of each PAH. Sequencing of the cloned Rieske gene fragments showed that different suites of genes were present in soil microbe populations under each enrichment culture condition. Many of the Rieske gene fragment sequences fell into clades which are distinct from the reference dioxygenase gene sequences used to design the PCR primers. The ability to profile not only the bacterial community but also the dioxygenases which they encode provides a powerful tool for both assessing bioremediation potential in the environment and for the discovery of novel dioxygenase genes. 相似文献