首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Oquendo  E Hundt  J Lawler  B Seed 《Cell》1989,58(1):95-101
Erythrocytes infected with P. falciparum express knob-like adhesion structures that allow the infected cells to cling to the postcapilliary endothelium of characteristic host organs. At present, the mechanism of cytoadherence is not fully understood. While parasitized erythrocytes have been shown to specifically bind to the platelet/matrix molecule thrombospondin, adherence to suitable target cells can also be blocked by monoclonal antibody OKM5, which recognizes a surface molecule expressed by hematopoietic cells and endothelium. In apparent reconciliation of these findings, it has been reported that the OKM5 antigen (CD36) is a receptor for thrombospondin. Here we report that expression of a CD36 cDNA clone in COS cells supports cytoadherence of parasitized erythrocytes but does not support increased binding of purified human thrombospondin.  相似文献   

2.
Transport of long-chain fatty acids into rat adipocytes was previously shown to be inhibited by the reactive derivative sulfosuccinimidyl oleate consequent to its binding to a membrane protein FAT, which is homologous to CD36. In this report, the ability of the purified protein to bind native fatty acids was investigated. CD36 was isolated from rat adipocytes by phase partitioning into Triton X-114 followed by chromatography on DEAE and then on wheat germ agglutinin. Fatty acid binding was determined by incubating CD36, solubilized in buffer containing 0.1 Triton X-100, with fatty acids at 37°C, and then by adsorbing the unbound ligand with Lipidex 1,000 at 0°C. Bovine serum albumin was used as a positive control and gelatin, a protein that does not bind fatty acids, as a negative control. Measurements with albumin yielded reproducible binding values which were not altered by the presence of 0.1% Triton X-100. Under the same conditions, gelatin yielded reproducibly negative measurements that did not differ significantly from zero. CD36 bound various long-chain fatty acids at low ligand to protein ratios. Warming the protein-FA-Lipidex mixture to 37°C removed the FA off the protein. Thus, binding was reversible and distinct from the palmitoylation of the protein known to occur on an extracellular domain. Comparison of the predicted secondary sequence of CD36 with that of human muscle fatty acid binding protein suggested that a potential binding site for the fatty acid on CD36 may exist in its extracellular segment between residues 127 and 279. Received: 17 January 1996/Revised: 8 May 1996  相似文献   

3.
The scavenger receptor CD36 plays important roles in malaria, including the sequestration of parasite-infected erythrocytes in microvascular capillaries, control of parasitemia through phagocytic clearance by macrophages, and immunity. Although the role of CD36 in the parasite sequestration and clearance has been extensively studied, how and to what extent CD36 contributes to malaria immunity remains poorly understood. In this study, to determine the role of CD36 in malaria immunity, we assessed the internalization of CD36-adherent and CD36-nonadherent Plasmodium falciparum-infected red blood cells (IRBCs) and production of pro-inflammatory cytokines by DCs, and the ability of DCs to activate NK, and T cells. Human DCs treated with anti-CD36 antibody and CD36 deficient murine DCs internalized lower levels of CD36-adherent IRBCs and produced significantly decreased levels of pro-inflammatory cytokines compared to untreated human DCs and wild type mouse DCs, respectively. Consistent with these results, wild type murine DCs internalized lower levels of CD36-nonadherent IRBCs and produced decreased levels of pro-inflammatory cytokines than wild type DCs treated with CD36-adherent IRBCs. Further, the cytokine production by NK and T cells activated by IRBC-internalized DCs was significantly dependent on CD36. Thus, our results demonstrate that CD36 contributes significantly to the uptake of IRBCs and pro-inflammatory cytokine responses by DCs, and the ability of DCs to activate NK and T cells to produce IFN-γ. Given that DCs respond to malaria parasites very early during infection and influence development of immunity, and that CD36 contributes substantially to the cytokine production by DCs, NK and T cells, our results suggest that CD36 plays an important role in immunity to malaria. Furthermore, since the contribution of CD36 is particularly evident at low doses of infected erythrocytes, the results imply that the effect of CD36 on malaria immunity is imprinted early during infection when parasite load is low.  相似文献   

4.
D E Greenwalt  K W Watt  O Y So  N Jiwani 《Biochemistry》1990,29(30):7054-7059
PAS IV is a 78-kDa (bovine) to 80-kDa (human) integral membrane glycoprotein of unknown function which is found in mammary epithelial cells. We now report the purification of human PAS IV and native bovine PAS IV from the milk fat globule membrane (MFGM), a preparation of apical plasmalemma from epithelial cells of lactating mammary tissue. N-Terminal sequence analyses of human and bovine PAS IV revealed homology to the N-terminal sequence of the 88-kDa human endothelial and platelet glycoprotein CD36. The similarity of MFGM PAS IV to platelet CD36 was further established by immunoblots of purified platelet CD36 and MFGM PAS IV with MFGM PAS IV specific antiserum. The removal of N-linked oligosaccharides from PAS IV and CD36 by treatment with endoglycosidase F reduced the apparent Mr of both proteins to approximately 57,000. These data suggest that PAS IV and CD36 are similar if not identical polypeptides that undergo cell type specific glycosylation.  相似文献   

5.
CD36: implications in cardiovascular disease   总被引:4,自引:0,他引:4  
CD36 is a broadly expressed membrane glycoprotein that acts as a facilitator of fatty acid uptake, a signaling molecule, and a receptor for a wide range of ligands, including apoptotic cells, modified forms of low density lipoprotein, thrombospondins, fibrillar beta-amyloid, components of Gram positive bacterial walls and malaria infected erythrocytes. CD36 expression on macrophages, dendritic and endothelial cells, and in tissues including muscle, heart, and fat, suggest diverse roles, and indeed, this is truly a multi-functional receptor involved in both homeostatic and pathological conditions. Despite an impressive increase in our knowledge of CD36 functions, in depth understanding of the mechanistic aspects of this protein remains elusive. This review focuses on CD36 in cardiovascular disease-what we know, and what we have yet to learn.  相似文献   

6.
CD36 and atherosclerosis   总被引:8,自引:0,他引:8  
CD36 has been associated with diverse normal and pathologic processes. These include scavenger receptor functions (uptake of apoptotic cells and modified lipid), lipid metabolism and fatty acid transport, adhesion, angiogenesis, modulation of inflammation, transforming growth factor-beta activation, atherosclerosis, diabetes and cardiomyopathy. Although CD36 was identified more than 25 years ago, it is only with the advent of recent genetic technology that in-vivo evidence has emerged for its physiologic and pathologic relevance. As these in-vivo studies are expanded, we will gain further insight into the mechanism(s) by which CD36 transmits a cellular signal, and this will allow the design of specific therapeutics that impact on a particular function of CD36.  相似文献   

7.
The cytoadhesion of Plasmodium falciparum-infected erythrocytes (IEs) in organ microvessels is a key event in the pathogenesis of cerebral malaria and pulmonary edema. Identification of the molecules involved in the interaction between IEs and endothelial cells has been a major goal of research into severe forms of malaria. In contrast, the consequences of cytoadhesion for endothelial cells have been largely ignored. By combining phenotypic selection, cytoadhesion assays and flow cytometry, we demonstrated that the cytoadhesion of CSA-binding IEs inhibited the cytoadhesion of CD36-binding IEs. We identified CD44 as a signal receptor for CSA-binding IEs cytoadhesion, and demonstrated that the signal was transduced to CD36 through a pathway involving the Src-kinase family and MEK. CD36-mediated cytoadhesion was modulated independently of changes in CD36 expression. These results provide the first evidence that some IEs can downregulate the cytoadhesion of IEs of another phenotype, by modifying endothelial cells via a signaling pathway relating CD44 to CD36. Mimicking this phenomenon may constitute an interesting therapeutic strategy for inhibiting the adhesion of CD36-binding IEs -- the most abundant phenotype among field isolates -- and promoting their degradation in the spleen.  相似文献   

8.
CD36 is an 88-kDa glycoprotein that has been identified on platelets, monocytes, and some endothelial cells. Experimental evidence suggests that CD36 mediates the binding of Plasmodium falciparum-infected RBC to a variety of cells, and therefore may play a role in the vascular complications associated with malaria. Additionally, CD36 may also bind the extracellular matrix proteins thrombospondin and collagen. Human umbilical vein endothelial cells have been used in in vitro models examining the binding of P. falciparum RBC to endothelial cells, but they do not consistently express cell surface CD36. Inasmuch as human dermal microvascular endothelial cells (HDMEC) differ in a variety of ways from large vessel endothelial cells, we have examined HDMEC for cell surface expression of CD36 in vivo and in vitro. Direct immunofluorescence of skin showed bright staining of HDMEC with antibody recognizing CD36 and flow cytometric analysis of cultured HDMEC revealed cell surface expression. In contrast, large vessel endothelial cells were not stained with antibody recognizing CD36 in vivo and cultured cells derived from umbilical vein failed to express cell surface CD36 in vitro. Western immunoblots of lysates of HDMEC but not human umbilical vein endothelial cells demonstrated an 88-kDa protein that comigrated with CD36 from platelets. Functional studies demonstrated that adherence of PRBC to HDMEC was inhibited up to 66% by mAb recognizing CD36. Furthermore, the expression of CD36 on HDMEC was increased in a dose- and time-dependent manner by IFN-gamma, and was decreased by protein kinase C agonists. These data demonstrate that HDMEC express functionally active CD36 and this expression can be positively and negatively regulated by soluble factors. This study demonstrates that HDMEC are useful in the study of CD36-mediated binding of PRBC to endothelial cells in vitro and provides further evidence of distinct phenotypic differences between HDMEC and large vessel endothelial cells.  相似文献   

9.
10.
11.
Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding.   总被引:3,自引:0,他引:3  
To clarify the role of CD36 as a TSP receptor and to investigate the mechanisms of the TSP-CD36 interaction, transfection studies were performed using CD36-cDNA in a CDM8 plasmid. Jurkat cells transfected with CD36 cDNA express an 88kD membrane surface protein and acquire the ability to bind thrombospondin. The TSP amino acid sequence, CSVTCG, mediates the interaction of thrombospondin with CD36. CD36 transfectants but not control transfectants bind radiolabeled tyrosinated peptide (YCSVTCG). The hexapeptide inhibits thrombospondin expression on activated human platelets and results in diminished platelet aggregation. CSVTCG-albumin conjugates support CD36-dependent adhesion of tumor cells. We conclude that the CSVTCG repeat sequence is a crucial determinant of CD36 thrombospondin binding.  相似文献   

12.
 Macrophages are key players in many aspects of human physiology and disease. It has been hypothesized that in a given microenvironment monocytes differentiate into specific subpopulations with distinct functions. In order to study the role of macrophage heterogeneity in atherogenesis, we established a novel isolation and culture technique for human monocyte-derived macrophages. The present technique does not select for monocyte subpopulations prior to the onset of differentiation. Monocytes were cultured for 2 weeks in the presence of autologous lymphocytes before being plated quantitatively. They differentiated into mature macrophages in terms of morphology, lipid composition, and biological activity. Based on phagocytic activity as well as on the expression of CD14, CD36, and the low-density lipoprotein (LDL) receptor, we have identified macrophage subpopulations that may play distinct roles in atherogenesis. While virtually all adherence-purified monocytes expressed CD14, CD36, and the LDL-R, we characterized three subpopulations of macrophages based on the expression of these antigens: CD36+CD14LDL-R (58±12%), CD36+CD14+LDL-R+(18±5%), the remaining cells being CD36CD14LDL-R. The first two subsets decreased in size during further differentiation (51±12% and 8±3%, respectively). Our culture technique may also serve as a good model for studying the implications of macrophage heterogeneity in diseases other than atherosclerosis. Accepted: 13 February 1998  相似文献   

13.
CD36 (glycoprotein IV or IIIB) is an integral plasma membrane protein of wide cellular distribution and functions as a receptor site for thrombospondin (TSP), an adhesive protein important in cell-cell and cell-matrix interactions. OKM5, a monoclonal anti-CD36 antibody, has been reported to block CD36 cell adhesive functions suggesting that the OKM5 epitope on CD36 is functionally important. A panel of 10 synthetic CD36 peptides was made. One peptide, P139-155, specifically inhibited the immunoadsorption of CD36 by OKM5, and P139-155 was directly immunoadsorbed by OKM5, indicating that CD36 sequence 139-155 represents part of the OKM5 epitope. TSP bound to immobilized P139-155 in a dose-dependent and saturable manner. Surprisingly, P139-155 significantly augmented, instead of inhibited, binding of CD36 to TSP. This peptide did not induce platelet aggregation but augmented ADP- and collagen-induced aggregation in platelet-rich plasma. Another CD36 peptide, P93-110, which had no effect on OKM5 immunoadsorption, blocked binding of CD36 to immobilized TSP and partially inhibited collagen-induced platelet aggregation. P93-110 by itself did not bind to TSP; however, in the presence of P139-155, there was a marked enhancement of P93-110 binding to TSP, with a stoichiometry consistent with the trimeric nature of TSP. The data suggest that CD36-TSP interaction is a two-step process; the sequence 139-155 region of CD36 binds first to TSP, triggering a change in TSP to reveal a second site, which binds the 93-110 region of CD36 with high affinity. CD36 peptides can be used as stimulators or inhibitors in cellular adhesive events involving TSP-CD36 interaction. Conformational changes leading to the exposure or activation of high affinity binding sites may occur in both the receptor and the ligand upon cell-cell and cell-matrix adhesion.  相似文献   

14.
Thrombospondin (TSP) is a multifunctional matrix and platelet glycoprotein that interacts with cell surfaces and may play a role in mediating cell adhesion, platelet aggregation, platelet-monocyte interactions, cell proliferation, angiogenesis, tumor metastasis, and protease generation. To clarify and confirm the function of CD36 (glycoprotein IV) as a TSP receptor, we now describe a transfected cell model using human melanoma cells genetically manipulated by sense or antisense cDNA transfection to express either high or near zero levels of CD36. Surface expression was confirmed by flow cytometry with monoclonal anti-CD36 IgG and quantified by measuring radiolabeled antibody binding. Bowes melanoma cells, which in their wild type did not express CD36 and did not bind radiolabeled TSP, when transfected with the sense construct bound TSP in a 1:1 stoichiometric ratio with CD36 expression. Conversely, C32 melanoma cells, which in their wild type expressed high levels of CD36 and bound radiolabeled TSP at a 1:1 stoichiometric ratio, did not express CD36 and did not bind TSP when transfected with an antisense construct. In addition, transfected Bowes cells and wild type C32 cells, unlike wild type Bowes cells, adhered to activated platelets in a TSP-dependent manner. These data, i.e. the gain of function with sense cDNA transfection and loss of function with antisense transfection, strongly support the TSP receptor function of CD36. The distribution of this protein in vascular cells and tissues and observations that it may participate in signal transduction events suggest that TSP-CD36 interactions may play a role in mediating some of the pathophysiological processes associated with TSP.  相似文献   

15.
CD36 is a membrane glycoprotein expressed by several cell types, and play a role as a receptor for different physiological and pathological ligands. An immunodominant domain of CD36 has been described in the amino acidic region 155-183, where many ligands and monoclonal antibodies (MoAbs) react. MoAbs against CD36 have proved useful in structural as well as functional studies. One of these antibodies, MoAb NL07, recognizes a conformational epitope that is acquired in the late steps of the CD36 maturation. The NL07 epitope appears to be functionally relevant and blocks CD36-mediated binding to red blood cells infected with the malaria parasite Plasmodium falciparum (IRBC). In this work a mutant COS-7 clone expressing NL07-negative CD36 molecules on the cell surface was investigated. In the mutant, the methionine in position 156 of the wild type CD36 sequence was replaced by a valine. It was determined that methionine 156 was essential for NL07 reactivity, mapping the NL07 epitope to the vicinity of the functionally important immunodominant domain (aa 155-183) of CD36. Although methionine 156 is located in this region, the CD36V156 mutated molecule was apparently functional and able to bind IRBC and oxidized LDL.  相似文献   

16.
CD36 is a membrane glycoprotein expressed by several cell types, and play a role as a receptor for different physiological and pathological ligands. An immunodominant domain of CD36 has been described in the amino acidic region 155-183, where many ligands and monoclonal antibodies (MoAbs) react. MoAbs against CD36 have proved useful in structural as well as functional studies. One of these antibodies, MoAb NL07, recognizes a conformational epitope that is acquired in the late steps of the CD36 maturation. The NL07 epitope appears to be functionally relevant and blocks CD36-mediated binding to red blood cells infected with the malaria parasite Plasmodium falciparum (IRBC). In this work a mutant COS-7 clone expressing NL07-negative CD36 molecules on the cell surface was investigated. In the mutant, the methionine in position 156 of the wild type CD36 sequence was replaced by a valine. It was determined that methionine 156 was essential for NL07 reactivity, mapping the NL07 epitope to the vicinity of the functionally important immunodominant domain (aa 155-183) of CD36. Although methionine 156 is located in this region, the CD36V156 mutated molecule was apparently functional and able to bind IRBC and oxidized LDL.  相似文献   

17.
Oxidized low density lipoprotein (LDL) (Ox-LDL) plays an important role in the pathogenesis of atherosclerosis. Oxidized LDL is taken up by macrophages via scavenger receptors. CD36 is an 88 kDa glycoprotein expressed on platelets, monocyte-macrophages, microvascular endothelial cells, adipose tissue, skeletal muscles and heart. We found patients with CD36 deficiency and identified several mutations in the CD36 gene. We also reported that CD36-deficient macrophages showed a 50% reduction in the binding of Ox-LDL, suggesting that CD36 is one of the major receptors for Ox-LDL. CD36 was expressed on macrophages in the atherosclerotic lesions of human aorta and coronary arteries especially on foamed macrophages. The distribution of CD36 expression was slightly different from that of scavenger receptor class A types I and II. The expression of CD36 on macrophages was up-regulated by Ox-LDL and down-regulated by interferon gamma. Since CD36 is a transporter of long-chain fatty acids (LCFA), CD36-deficient patients showed a defect in the uptake of an LCFA analog, BMIPP, by the heart. Furthermore, the secretion of IL-1beta and TNF-alpha from monocyte-derived macrophages induced by Ox-LDL was markedly reduced and the activation of NF-kappaB was attenuated in CD36-deficient subjects compared with controls, suggesting that CD36-mediated signaling is also impaired in CD36 deficiency.To elucidate the roles of CD36 in vivo, we characterized the clinical profile of CD36-deficient patients. Most of them were accompanied by hyperlipidemia (mainly hypertriglyceridemia), increased remnant lipoproteins and mild elevation of fasting plasma glucose level and blood pressure. Glucose clamp technique revealed mean whole body glucose uptake was reduced in CD36-deficient patients, indicating the presence of insulin resistance. The frequency of CD36 deficiency was higher in patients with coronary heart disease (CHD) than in control subjects. Taken together, CD36 deficiency is accompanied by (1) hyperlipidemia and increased remnant lipoproteins, (2) impaired glucose metabolism based upon insulin resistance, and (3) mild hypertension, and comprises one of the genetic backgrounds of the metabolic syndrome, leading to the development of CHD.  相似文献   

18.
The adhesion of infected red blood cells (IRBCs) to the cell lining of microvasculature is thought to play a central role in the pathogenesis of severe malaria. Individual IRBC can bind to more than one host receptor and parasites with multiple binding phenotypes may cause severe disease more frequently. However, as most clinical isolates are multiclonal, previous studies were hampered by the difficulty to distinguish whether a multiadherent phenotype was due to one or more parasite population(s). We have developed a tool, based on cytoadhesion assay and GeneScan genotyping technology, which enabled us to assess on fresh isolates the capacity of adherence of individual P. falciparum genotypes to human receptors expressed on CHO transfected cells. The cytoadhesion to ICAM-1 and CD36 of IRBCs from uncomplicated and severe malaria attacks was evaluated using this methodology. In this preliminary series conducted in non immune travelers, IRBCs from severe malaria appeared to adhere more frequently and/or strongly to ICAM-1 and CD36 in comparison with uncomplicated cases. In addition, a majority genotype able to strongly adhere to CD36 was found more frequently in isolates from severe malaria cases. Further investigations are needed to confirm the clinical relevance of these data.  相似文献   

19.
Thrombospondin-1 (TSP-1) is a naturally occurring inhibitor of angiogenesis that is able to make normal endothelial cells unresponsive to a wide variety of inducers. Here we use both native TSP-1 and small antiangiogenic peptides derived from it to show that this inhibition is mediated by CD36, a transmembrane glycoprotein found on microvascular endothelial cells. Both IgG antibodies against CD36 and glutathione-S-transferase–CD36 fusion proteins that contain the TSP-1 binding site blocked the ability of intact TSP-1 and its active peptides to inhibit the migration of cultured microvascular endothelial cells. In addition, antiangiogenic TSP-1 peptides inhibited the binding of native TSP-1 to solid phase CD36 and its fusion proteins, as well as to CD36-expressing cells. Additional molecules known to bind CD36, including the IgM anti-CD36 antibody SM, oxidized (but not unoxidized) low density lipoprotein, and human collagen 1, mimicked TSP-1 by inhibiting the migration of human microvascular endothelial cells. Transfection of CD36-deficient human umbilical vein endothelial cells with a CD36 expression plasmid caused them to become sensitive to TSP-1 inhibition of their migration and tube formation. This work demonstrates that endothelial CD36, previously thought to be involved only in adhesion and scavenging activities, may be essential for the inhibition of angiogenesis by thrombospondin-1.  相似文献   

20.
Dyslipidemia is associated with a prothrombotic phenotype; however, the mechanisms responsible for enhanced platelet reactivity remain unclear. Proatherosclerotic lipid abnormalities are associated with both enhanced oxidant stress and the generation of biologically active oxidized lipids, including potential ligands for the scavenger receptor CD36, a major platelet glycoprotein. Using multiple mouse in vivo thrombosis models, we now demonstrate that genetic deletion of Cd36 protects mice from hyperlipidemia-associated enhanced platelet reactivity and the accompanying prothrombotic phenotype. Structurally defined oxidized choline glycerophospholipids that serve as high-affinity ligands for CD36 were at markedly increased levels in the plasma of hyperlipidemic mice and in the plasma of humans with low HDL levels, were able to bind platelets via CD36 and, at pathophysiological levels, promoted platelet activation via CD36. Thus, interactions of platelet CD36 with specific endogenous oxidized lipids play a crucial role in the well-known clinical associations between dyslipidemia, oxidant stress and a prothrombotic phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号