首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different carbon sources, sterilized by autoclaving or filter-sterilization, were tested during induction, maintenance, and plant regeneration of embryogenic Miscanthus x ogiformis Honda `Giganteus' callus, derived from various explant types. Explants from small immature inflorescences, between 2.5 and 8 mm, produced more embryogenic callus than explants from shorter or longer inflorescences, shoot apices or leaf explants. On medium containing mannitol or sorbitol, only small amounts of callus were induced and no embryogenic callus was formed. Callus induction and embryogenic callus formation on shoot apices and immature inflorescences did not differ significantly between media containing sucrose, glucose, fructose, maltose or a mixture of glucose and fructose. However, callus induction and embryogenic callus formation from leaf explants were best on glucose. A higher percentage of leaf explants formed callus on autoclaved sucrose, as opposed to the other carbon sources where filter-sterilization in general resulted in a higher callus percentage. The growth rate of embryogenic callus was influenced both by carbon source and sterilization method when less than 1 g of callus was inoculated. None of the tested carbon sources could considerably improve plant regeneration from M. `Giganteus' callus, but a higher number of plants tended to be regenerated per callus piece from filter-sterilized carbon sources. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Root and embryo derived callus tissues of rice grown on sucrose alone as carbon source lost their ability to organise shoots by 75 and 100 days in culture respectively. Along with 2% sucrose, either 3% sorbitol or 3% mannitol was found to be necessary in the growth medium for the callus to regenerate whole plants over a period of 1400 days without any decline in the shoot forming ability. Our results indicated that incorporation of sorbitol or mannitol in the callus proliferating medium provides long-term totipotent rice cultures with a high frequency (50–60%) of shoot differentiation.  相似文献   

3.
4.
Induction, maintenance, differentiation and embryogenic capacity of callus obtained from immature embryos by culture on induction medium, proliferation medium, maturation medium and regeneration medium, respectively, were compared for two inbred lines of maize, i.e. A188 and A632. The callus of inbred line A188 was embryogenic and maintained embryogenic capacity for at least 1 year. Immature embryos of inbred line A632 formed callus that was not embryogenic. It only produced roots. When sucrose was replaced by sorbitol to induce or improve embryogenesis, again only A188 formed embryogenic callus. Subculture of this callus, however, allowed 4 week intervals in stead of 2 week intervals without loss of embryogenic capacity. When A188 was pollinated with A632 pollen, embryogenic callus was obtained from cultured immature "F1" embryos, showing that embryogenic capacity was inherited, maternally. The callus did not differ from the embryogenic callus generated on selfed A188 embryos. When A632 was pollinated with A188 pollen, embryogenic callus was obtained too, showing that embryogenic capacity was also inherited paternally, though the embryogenic capacity diminished quickly, and the stability of the callus was lower than in the reciprocal cross. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
6.
Growth of Pseudomonas cepacia on fructose, mannitol, or sorbitol depended on formation of an inducible fructokinase (forming fructose-6-phosphate) and the presence of enzymes of the Entner-Doudoroff pathway. Mutants deficient in any of these enzymes failed to utilize the aforementioned carbohydrates. Fructokinase deficiency did not affect growth of the bacteria on glucose. Fructose was accumulated intracellularly by active transport. Mutants blocked in transport of fructose grew normally on mannitol or sorbitol despite their inability to utilize fructose. Growth on either of these hexitols or on galactitol was accompanied by induction of two hexitol dehydrogenases, one active primarily with mannitol and the other active with sorbitol and galactitol. As expected, a mutant deficient in mannitol dehydrogenase failed to utilize mannitol as a carbon and energy source but grew normally on sorbitol and galactitol. Extracts of bacteria grown on fructose, mannitol, or sorbitol and higher levels of phosphoglucose isomerase than extracts of bacteria grown on alternate carbon sources such as citrate or phthalate. The higher levels were due to appearance of a second phosphoglucose isomerase species not present in cells with the lower activity. The results indicate that the initial steps in fructose utilization by P. cepacia differ from those of most other pseudomonads, which transport fructose by phosphoenolpyruvate-dependent translocation, forming fructose-1-phosphate, and suggest that degradation of fructose, mannitol, and sorbitol occurs primarily via the Entner-Doudoroff pathway.  相似文献   

7.
The embryogenic callus was induced from shoot apex tissues of Oncidium ‘Gower Ramsey’, and the derived callus cultures maintained more than 5 years were viable in growth and exhibited high regeneration capability. Combination levels of exogenous 2,4-dichlorophenoxyacetic acid (2,4-D) and thidiazuron (TDZ) could stepwise change granular and yellow callus into more friable or compact morphotypes. In the 16-h photoperiod culture, the influences of various carbohydrate sources including sucrose, maltose and trehalose were assessed on formation and development of protocorm-like body (PLB) from the embryogenic callus. Histological observations showed a unicellular origin for these PLBs. The growth of plantlets regenerated on half-strength Murashige and Skoog (MS) medium supplemented with maltose or trehalose was significantly better than those regenerated on sucrose. Approximately, 6000 PLBs could be generated in 2 months from an initial culture of 1 g callus fresh weight, and then more than half of the PLBs developed into plants in 4 months after two subcultures on the medium supplemented with 20 g/l trehalose.  相似文献   

8.
探究碳源等主要因素对湿地松胚性愈伤组织增殖的影响,为进一步提高其增殖效率提供技术方法和理论依据。利用优良无性系PEE3-13的胚性愈伤组织,研究不同种类及浓度的碳源、不同pH、有机氮源谷氨酰胺及其替代物丙谷二肽对其增殖的影响。结果发现培养基pH和碳源种类对其增殖的影响显著,实际pH范围为5.68~6.28时,最适宜胚性愈伤组织的生长,使用30 g·L-1白砂糖作为碳源时达到最高增殖率。丙谷二肽不能替代谷氨酰胺,添加450 mg·L-1谷氨酰胺时,胚性愈伤组织的增殖率最高、活力最好。当增殖培养基中使用 30 g·L-1白砂糖、添加450 mg·L-1的谷氨酰胺,实际pH为5.68~6.28时,最适宜该无性系胚性愈伤组织的增殖,增殖率最大可达到851.27%。  相似文献   

9.
Experiments were performed to determine the influence of maturation medium carbohydrate content on the rates of germination and plantlet conversion (root and shoot growth) of somatic embryos from four embryogenic lines derived from leaf or internode explants of Quercus robur L. seedlings. The conversion rate was favoured by high carbohydrate content as long as the maturation medium contained at least 2% sucrose, which was necessary for healthy embryo development. Given this, sorbitol and mannitol favoured the conversion rate more efficiently than sucrose, the highest rate, 32%, being achieved by medium with 6% sorbitol and 3% sucrose. Maturation treatment did not affect the root or shoot lengths of converted embryos. In supplementary experiments, 2 weeks of gibberellic acid treatment between maturation and germination treatments did not improve germination rates, but did reduce root length and the number of leaves per regenerated plantlet. In the four embryogenic lines tested, plant recovery rate was enhanced by inclusion of benzyladenine into the germination medium following culture of the embryos on maturation medium with 6% sorbitol and 2-3% sucrose. In embryogenic systems it is important to assess the uniformity of the regenerants. Random amplified polymorphic DNA (RAPD) analysis using 32 arbitrary oligonucleotide primers was performed to study variability in DNA sequences within and between four embryogenic lines. No intraclonal nor interclonal polymorphism was detected between embryogenic lines originating from different types of explant from the same seedling, but every one of the primers detected enough polymorphism among clones originating from different plants to allow these three origins to be distinguished. No differences in DNA sequences between regenerated plantlets and their somatic embryos of origin were detected, but a nodular callus line that had lost its embryogenic capacity was found to be mutant with respect to three other clones originating from the same plantlet. This study shows that high carbohydrate levels in the maturation medium significantly increase plant conversion of oak somatic embryos, which exhibit no variation in DNA sequences when proliferated by secondary embryogenesis.  相似文献   

10.
Changes in insoluble or cell wall invertase and soluble invertase activity were examined during callus induction from tobacco pith-phloem explants and during callus proliferation on sucrose, glucose and fructose as carbon sources, or on transfer from culture on the hexoses to sucrose. In all cases there was a growth independent transitory increase in cell wall invertase early in culture. The magnitude of the increase was greatest in the presence of sucrose. Cell wall invertase was found to possess catalytic activity in situ, whether or not the tissue was grown on sucrose. It is hypothesized that the transitory increase in cell wall invertase plays a role in sucrose hydrolysis during wound respiration, which takes place early in culture.  相似文献   

11.
Summary The influence of various osmotic agents (carbohydrates) on the morphogenesis and growth of callus ofActinidia deliciosa cv Hayward was studied. Sucrose supported the highest level of growth and the lowest was supported by the sugar alcohols used in the experiments (glycerol, mannitol, sorbitol). The growth and survival of callus were evaluated with different osmotic sources in media containing glycerol, mannitol, or sorbitol at a concentration of 0.2M each for an extended period of eight subcultures (360 days). Two crucial points were identified: until the third subculture (135 days) the vitality seemed to be elevated; whereas the fifth (225 days) seemed to be a “point of no return” for tissues grown in glycerol and mannitol. Pretreatment with osmotic carbohydrates was shown to increase the magnitude of the morphogenetic events of callus subsequently transferred to sucrose-containing medium. Callus grown in the presence of mannitol and sorbitol showed a similar frequency of morphogenetic response. With respect to the media containing glycerol and sucrose, these induced more intense regeneration of shoots. When glycerol was present in the medium, however, we observed a synchronization of the morphogenetic response. Our results suggest that it is possible both to stimulate and to synchronize morphogenesis utilizing osmotic conditioning subcultures.  相似文献   

12.
We developed a new protocol for highly efficient somatic embryogenesis and plantlet conversion of Schisandra chinensis. Friable embryogenic callus was induced from cotyledonary leaves and hypocotyls of germinated zygotic embryos on Murashige and Skoog (MS) agar medium containing 2,4-dichlorophenoxyacetic acid (2,4-D). Preculture of zygotic embryos on 2,4-D-containing medium increased embryogenic callus induction efficiency. The highest embryogenic callus induction frequency of 56.7% was obtained from shoot apical meristem-containing hypocotyl explants from 1-week-old germinated embryos on MS medium containing 4.0 mg l−1 2,4-D. Embryogenic callus proliferation, somatic embryo (SE) formation, and subsequent plantlet conversion occurred under optimal culture conditions. The effects of MS medium strength, sucrose, gibberellic acid (GA3), and 6-benzyladenine (BA) on SE formation and plantlet conversion were evaluated. Low MS medium strength (1/4 to 1/2) was necessary for SE formation, and the optimal sucrose concentration was 2.0%. Supplementing medium with GA3 negatively impacted SE formation and subsequent development. BA significantly increased the number of SEs and the plantlet conversion capacity. One-third-strength MS medium with 1.0% sucrose and 0.5 mg l−1 BA produced the highest number of SEs (309 embryos from 9 mg embryogenic callus) and the highest frequency of plantlet conversion from germinated SEs (52.6%). When transplanted to soil, 90% of the regenerated plants developed into normal plants.  相似文献   

13.
Summary Plants were regenerated from cotyledon tissue of greenhouse grown seedlings of common buckwheat (Fagopyrum esculentum Moench.). Maximum callus regeneration was induced on Murashige and Skoog (MS) medium containing 2,4-D (2.0 mg l−1) and kinetin (KIN) (0.2 mg l−1) and either 3 or 6% sucrose. Friable callus was transferred to MS media containing KIN and benzylaminopurine (BAP) at varied concentrations for embryogenic callus induction. The optimum medium for embryogenic callus induction was found to be MS medium supplemented with 0.2 mg l−1 KIN, 2.0 mg l−1 BAP and 3% (w/v) sucrose. Variation of sucrose from 3 to 6% did not show any significant effect on callus induction or embryogenesis. Regeneration of embryonic callus varied from 13 to 32%. Whole plants were obtained at high frequencies when the embryogenic calluses with somatic embryos and organized shoot primordia were transferred to half-strength MS media with 3% sucrose. Regenerated plants after acclimation were transferred to greenhouse conditions, and both vegetative and floral characteristics were observed for variation. This regeneration system may be valuable for genetic transformation and cell selection in common buckwheat.  相似文献   

14.
An efficient in planta sugarcane-based production system may be realized by coupling the synthesis of alternative products to the metabolic intermediates of sucrose metabolism, thus taking advantage of the sucrose-producing capability of the plant. This was evaluated by synthesizing sorbitol in sugarcane (Saccharum hybrids) using the Malus domestica sorbitol-6-phosphate dehydrogenase gene (mds6pdh). Mature transgenic sugarcane plants were compared with untransformed sugarcane variety Q117 by evaluation of the growth, metabolite levels and extractable activity of relevant enzymes. The average amounts of sorbitol detected in the most productive line were 120 mg/g dry weight (equivalent to 61% of the soluble sugars) in the leaf lamina and 10 mg/g dry weight in the stalk pith. The levels of enzymes involved in sucrose synthesis and cleavage were elevated in the leaves of plants accumulating sorbitol, but this did not affect sucrose accumulation in the culm. The activity of oxidative reactions in the pentose phosphate pathway and the non-reversible glyceraldehyde-3-phosphate dehydrogenase reaction were elevated to replenish the reducing power consumed by sorbitol synthesis. Sorbitol-producing sugarcane generated 30%-40% less aerial biomass and was 10%-30% shorter than control lines. Leaves developed necrosis in a pattern characteristic of early senescence, and the severity was related to the relative quantity of sorbitol accumulated. When the Zymomonas mobilis glucokinase (zmglk) gene was co-expressed with mds6pdh to increase the production of glucose-6-phosphate, the plants were again smaller, indicating that glucose-6-phosphate deficiency was not responsible for the reduced growth. In summary, sorbitol hyperaccumulation affected sugarcane growth and metabolism, but the outcome was not lethal for the plant. This work also demonstrated that impressive yields of alternative products can be generated from the intermediates of sucrose metabolism in Saccharum spp.  相似文献   

15.
Inflorescence meristems and vegetative tissues, excised from noninduced Bougainvillea ‘San Diego Red’ plants, were cultured in vitro in media containing either 3% fructose, glucose or sucrose as carbon sources. Growth and development of young leaves were equivalent whether sucrose or fructose was used whereas floret initiation on inflorescence meristems was much greater when fructose or glucose was the carbon sources. Brief (1-3 days) exposure of inflorescence meristems to fructose at the beginning of culture and subsequent transfer to sucrose did not increase development over continuous culture in sucrose. Longer exposures (4-7 days) to fructose with subsequent transfer to sucrose did, however, increase the percentage of meristems developing florets, but such treatment did not increase development to the same level as those exposed to fructose for the entire period in vitro. During the first 18 days of culture, growth of meristems in sucrose was linear while that in fructose was exponential. There was no difference in carbohydrate requirements for floret initiation on meristems excised from short-day induced or noninduced plants, suggesting that induction does not enhance the ability of meristems to utilize sucrose.  相似文献   

16.
D B Drucker  J Greenman  T H Melville 《Microbios》1976,16(65-66):227-231
Streptococcus mutans NCTC 10832 was grown on synthetic medium in a chemostat, using various major carbon sources, viz, sorbitol, fructose and sucrose. Freeze-dried cells were methylated and the methyl esters analysed by GLC. The fatty acid profiles obtained showed small quantitative change with different sugars, sucrose concentrations and types of growth.  相似文献   

17.
A spontaneously embryogenic cell line of the coumarin producing angelica [Angelica archangelica (L.) subsp. archangelica] was established via callus formation from seedlings grown from sterilized seeds on semi-solid, hormone-free modified B5 medium. The cell line has retained its embryogenic capacity for 5 years. The highest coumarin production for the cell line after 3 weeks of cultivation was achieved in the medium containing 3.0 % sucrose. Jasmonic acid had no statistically significant effect on the biomass or coumarin production. The established embryogenic cell line could be stored using cryopreservation. Plantlets grown in an air-sparged bioreactor were transferred directly to soil and vermiculite, and 63 % of them grew to maturity through two growth seasons. The coumarin content in the regenerated plants was comparable to that in wild plants. Thus this cell line could be used for in vitro propagation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
19.
A double mutant strain (UR3) of Rhizobium meliloti L5-30 was isolated from a phosphoglucose isomerase mutant (UR1) on the basis of its resistance to fructose inhibition when grown on fructose-rich medium. UR3 lacked both phosphoglucose isomerase and fructokinase activity. A mutant strain (UR4) lacking only the fructokinase activity was derived from UR3; it grew on the same carbon sources as the parent strain, but not on fructose, mannitol, or sorbitol. A spontaneous revertant (UR5) of normal growth phenotype contained fructokinase activity. A fructose transport system was found in L5-30, UR4, and UR5 grown in arabinose-fructose minimal medium. No fructose uptake activity was detected when L5-30 and UR5 were grown on arabinose minimal medium, but this activity was present in strain UR4. Free fructose was concentrated intracellularly by UR4 > 200-fold above the external level. A partial transformation of fructose into mannitol and sorbitol was detected by enzymatic analysis of the uptake products. Polyol dehydrogenase activity was detected in UR4 grown in arabinose-fructose minimal medium. The induction pattern of polyol dehydrogenase activities in this strain might be due to slight intracellular fructose accumulation.  相似文献   

20.
The accepted food yeast Saccharomyces fragilis was grown in batch and chemostat culture on coconut water and on a simulated coconut-water medium containing glucose, fructose, sucrose and sorbitol, to provide kinetic data for a feasibility study of microbial protein production. Analyses of growth on individual and mixed carbon substrates were made to determine sugar assimilation patterns in batch and chemostat cultures on coconut water. Growth on the polyol produced a much reduced specific growth rate, assimilation rate, growth yield and productivity compared to growth on the sugars. In mixed substrate fermentations a sequential utilization of the carbohydrates occurred. Both the monosaccharides repressed invertase synthesis and all three sugars repressed sorbitol assimilation. Complete carbon assimilation was only obtained by prolonged batch fermentation or in chemostat cultures at low dilution rates (<0.10 h-1). Supplementation of coconut water with biotin and nicotinic acid increased biomass yields in chemostat cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号