首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
He G  Kwok CK  Lam SL 《FEBS letters》2011,585(24):3953-3958
It has long been recognized that T·T mismatches can adopt two different modes of exchangeable wobble base pairs in which no preferential pairing mode has been observed. In this study, we have performed a systematic nuclear magnetic resonance (NMR) investigation to study the sequence context effect on the pairing modes of T·T mismatches. Our results reveal for the first time that preferential pairing mode does exist in T·T mismatches with specific type of flanking base pairs.  相似文献   

2.
3.

Background

The role of TCF/β-catenin signalling in T cell development is well established, but important roles in mature T cells have only recently come to light.

Methodology/Principal Findings

Here we have investigated the signalling pathways that are involved in the regulation of β-catenin in primary human T cells. We demonstrate that β-catenin expression is upregulated rapidly after T cell receptor (TCR) stimulation and that this involves protein stabilisation rather than an increase in mRNA levels. Similar to events in Wnt signalling, the increase in β-catenin coincides with an inhibition of GSK3, the kinase that is required for β-catenin degradation. β-catenin stabilisation in T cells can also be induced by the activation of PKC with phorbol esters and is blocked by inhibitors of phosphatidylinositol 3-kinase (PI3K) and phospholipase C (PKC). Upon TCR signalling, β-catenin accumulates in the nucleus and, parallel to this, the ratio of TCF1 isoforms is shifted in favour of the longer β-catenin binding isoforms. However, phosphorylated β-catenin, which is believed to be inactive, can also be detected and the expression of Wnt target genes Axin2 and dickkopf is down regulated.

Conclusions/Significance

These data show that in mature human T cells, TCR signalling via PI3K and PKC can result in the stabilisation of β-catenin, allowing β-catenin to migrate to the nucleus. They further highlight important differences between β-catenin activities in TCR and Wnt signalling.  相似文献   

4.
The effect of native α-fetoprotein (AFP) on the expression of T-regulatory lymphocyte (Treg) markers by activated CD4+ lymphocytes with different proliferative status was studied. α-Fetoprotein did not affect the ratio of proliferating and non-proliferating activated CD4+ cells. In the study of Treg differentiation, it was found that AFP at concentrations of 50 and 100 μg/mL significantly inhibited the number of nonproliferating CD4+FOXP3+ and CD4+FOXP3+HELIOS+ lymphocytes without affecting the expression of Treg markers by proliferating CD4+ lymphocytes.  相似文献   

5.
Recent reports have provided evidence for cross-talk between regulatory T (Treg) cells and natural killer T (NKT) cells. However, it is unclear whether NKT cells play a role in the differentiation of Treg cells. By employing NKT cell-abundant Vα14 TCR transgenic (Tg) and NKT cell-deficient CD1d knock-out (KO) mice, we examined the effects of NKT cells on the in vitro differentiation of induced Treg (iTreg) cells with IL2 and TGFβ. We found that iTreg induction from CD1d KO mice was significantly increased compared to the control. Also, the addition of isolated NKT cells from Vα14 TCR Tg mice to naïve CD4+ T cells from CD1d KO mice during iTreg differentiation caused a remarkable reduction of iTreg cells. Through IFNγ neutralization, we showed that this reduction was mediated by IFNγ. Furthermore, the main source of IFNγ during iTreg differentiation was NK1.1CD4+Foxp3 T cells. This finding implied that early-activated NKT cells induced Th1-type cells and subsequently underwent apoptosis. Taken together, our results suggest that NKT cells inhibit the in vitro development of iTreg cells by increasing IFNγ.  相似文献   

6.
Tumor-specific expression of Qa-2k antigen coded by the Q5k gene on various mouse tumor cells and immunological response of the host mice to the antigen have been demonstrated [Seo et al. (1992) J Exp Med 175: 547; Tanino et al. (1992) Cancer Immunol Immunother 35: 230]. The possibility was examined that Qa-2 antigen is one of the recognition target molecules of immunopotentiator-induced, H-2-nonrestricted tumoricidal lymphocytes of Qa-2 mice. Lymphocytes stimulated in vivo withP. acnes or culture-induced anomalous killers of B6.K1 mice did not exhibit significant in vitro cytotoxicity against B6.K1 lymphoblasts but lysed their Qa-2,3-congenic counterpart B6 lymphoblasts. To demonstrate the Qa-2 specificity of such cytotoxic cells more precisely, an L cell transformant clone (LQ7b/Kb), which expressed the 1 and 2 domains of the Qa-2 antigen (Q7b gene product), was generated by transfecting a cloned plasmid DNA containing a hybrid gene constructed from the 5 half of the Q7b gene and the 3 half of the H-2Kb gene (pQ7b/Kb). Using LQ7b/Kb cells as the target cells and the nylon-wool-nonadherent fraction of lymphocytes fromP. acnes-stimulated (C3H/He × B6.K1)F1 mice (H-2k, Qa-2) as the effector cells of the in vitro cytotoxicity reaction, the presence of cytotoxic cells that recognize the 1/2 region of the Q7b gene product was demonstrated. The cytotoxic activity was dependent on T cells bearing T cell receptors of the / type (TCR/). The (C3H/He × B6.K1)F1 effector cells, as well as the B6.K1 effector cells also lysed BW5147 lymphoma cells (Qa-2k+) derived from AKR mice (Qa-2, H-2k). By target-competition experiments it was shown that some of the effector cells lytic to BW5147 were identical to those that lysed LQ7b/Kb. Therefore some of the tumoricidal cells induced by the immunopotentiator interact with the target tumor cells through recognition of the 1/2 region of the Qa-2k tumor antigen by TCR/.  相似文献   

7.
Previous studies have demonstrated that Bcl10 (B-cell leukemia/lymphoma 10) is essential for T cell receptor-mediated NF-kappaB activation and subsequent proliferation and interleukin 2 (IL2) production. However, here we demonstrate that, contrary to expectations, Bcl10 is differentially required for T cell activation, including for both proliferation and cytokine production. When CD4+ and CD8+ T cells were divided based on expression levels of CD44, which distinguishes na?ve cells (CD44lo) versus those that are antigen-experienced (CD44hi), IL2 production by and proliferation of CD4+CD44lo na?ve cells and both subpopulations of CD8+ T cells were clearly Bcl10-dependent, whereas these same functional properties of CD4+CD44hi T cells occurred largely independent of Bcl10. As with the other subpopulations of T cells, CD4+CD44hi T cells did not activate the NF-kappaB pathway in the absence of Bcl10; nevertheless, these CD4+CD44hi antigen-experienced T cells efficiently secreted IL2 after T cell receptor stimulation. Strikingly, therefore, T cell receptor-mediated IL2 production in these cells is NF-kappaB-independent. Our studies suggest that antigen-experienced CD4+ T cells differ from their na?ve counterparts and from CD8+ T cells in their ability to achieve activation independent of the Bcl10/NF-kappaB pathway.  相似文献   

8.
Summary Streptomyces viridochromogenes Tü494 produces the antibiotic phosphinothricyl-alanyl-alanine (Ptt). Ptt-non-producing mutants were isolated following N-methyl-N-nitro-N-nitrosoguanidine (NTG) or UV light treatment of spore suspensions. In co-synthesis and bioconversion experiments the mutational blocks in the biosynthetic pathway were localized. The mutant NTG1 was analysed in detail. This mutant acts as a secretor for all other mutants. From bioconversion experiments with presumptive precursors circumstantial evidence was obtained that NTG1 is mutated in a gene involved in the alanylation of N-acetyl-demethyl-phosphinothricin. Using a cosmid gene library the DNA region complementing the defective gene of mutant NTG1 was isolated on a 4-kb BamHI fragment. Subcloning experiments showed that a 3-kb BglII/BamHI fragment is sufficient for complementation of mutant NTG1.Formerly Susanne MüllerOffprint requests to: W. Wohlleben  相似文献   

9.
Because T cell differentiation leads to an expanded repertoire of chemokine receptors, a subgroup of G protein-coupled receptors, we hypothesized that the repertoire of G proteins might be altered in parallel. We analyzed the abundance of mRNA and/or protein of six G protein α-subunits in human CD4+ and CD8+ T cell subsets from blood. Although most G protein α-subunits were similarly expressed in all subsets, the abundance of Gαo, a protein not previously described in hematopoietic cells, was much higher in memory versus naive cells. Consistent with these data, activation of naive CD4+ T cells in vitro significantly increased the abundance of Gαo in cells stimulated under nonpolarizing or TH17 (but not TH1 or TH2)-polarizing conditions. In functional studies, the use of a chimeric G protein α-subunit, Gαqo5, demonstrated that chemokine receptors could couple to Gαo-containing G proteins. We also found that Gαi1, another α-subunit not described previously in leukocytes, was expressed in naive T cells but virtually absent from memory subsets. Corresponding to their patterns of expression, siRNA-mediated knockdown of Gαo in memory (but not naive) and Gαi1 in naive (but not memory) CD4+ T cells inhibited chemokine-dependent migration. Moreover, although even in Gαo- and Gαi1-expressing cells mRNAs of these α-subunits were much less abundant than Gαi2 or Gαi3, knockdown of any of these subunits impaired chemokine receptor-mediated migration similarly. Together, our data reveal a change in the repertoire of Gαi/o subunits during T cell differentiation and suggest functional equivalence among Gαi/o subunits irrespective of their relative abundance.  相似文献   

10.
The 3′ half molecule of yeast tRNAAla (nucleotides 36–75) was hybridized with a DNA fragment (5′GGAATCGAACC 3′) and the hybrid was then digested withE. coli RNase H (from Boehringer). The enzyme can specifically cleave the 3′ half molecule at the 3′ side of nucleotide Ψ55, thus a fragment C3655 was prepared. The 3′-terminal T or TΨ of this fragment was removed by one or two cycles of periodate oxidation and β-elimination. The products were fragments C36-T54 and C36-G53. Three yeast tRNAAla fragments C56-A76, U55-A76 (with Ψ55 replaced by U), U54-A76 (with T54Ψ55 replaced by UU) were synthesized and ligated with three prepared fragments (C3655, C36-T54 and C36-G53) respectively by T4 RNA ligase. The products were further ligated with the 5′ half molecule (nu-cleotides 1–35). Using this method, one reconstituted yeast tRNAAla (tRNAr) and two yeast tRNAALa analogs: (i) tRNAa with U55 instead of Ψ55; (ii) tRNAb with U54U55 instead of T54Ψ55 were synthesized. The charging and incorporation activities of these three tRNAs were determined. In comparison with the reconstituted tRNA, the charging activity was 75% for tRNAa and 45% for tRNAb and the incorporation activity was 65% for tRNAa and 70% for tRNAb. These results suggest that the modified nucleotides T54 and Ψ55 play an important role in yeast tRNAAla function.  相似文献   

11.
The dye eriochromblack T (erio T), added to an aqueous suspension of bovine retinal outer segments solubilized by digitonin, shows a light-induced absorption-increase at =645 nm. Erio T is shown to directly interact with micellar metarhodopsm I and metarhodopsin II. The absorption-changes of erio T can be regarded as an indication of the transition from the metarhodopsin I conformation (with associated Ca2+) to the metarhodopsin II conformation (with associated H+).Thanks are due to the Deutsche Forschungsgemeinschaft for financial support (Em 18/1-4).  相似文献   

12.
Attempts to harness mouse type I NKT cells in different therapeutic settings including cancer, infection, and autoimmunity have proven fruitful using the CD1d-binding glycolipid α-galactosylceramide (α-GalCer). In these different models, the effects of α-GalCer mainly relied on the establishment of a type I NKT cell-dependent immune cascade involving dendritic cell, NK cell, B cell, or conventional CD4(+) and CD8(+) T cell activation/regulation as well as immunomodulatory cytokine production. In this study, we showed that γδ T cells, another population of innate-like T lymphocytes, displayed a phenotype of activated cells (cytokine production and cytotoxic properties) and were required to achieve an optimal α-GalCer-induced immune response. Using gene-targeted mice and recombinant cytokines, a critical need for IL-12 and IL-18 has been shown in the α-GalCer-induced IFN-γ production by γδ T cells. Moreover, this cytokine production occurred downstream of type I NKT cell response, suggesting their bystander effect on γδ T cells. In line with this, γδ T cells failed to directly recognize the CD1d/α-GalCer complex. We also provided evidence that γδ T cells increase their cytotoxic properties after α-GalCer injection, resulting in an increase in killing of tumor cell targets. Moreover, using cancer models, we demonstrated that γδ T cells were required for an optimal α-GalCer-mediated anti-tumor activity. Finally, we reported that immunization of wild-type mice with α-GalCer enhanced the adaptive immune response elicited by OVA, and this effect was strongly mediated by γδ T cells. We conclude that γδ T cells amplify the innate and acquired response to α-GalCer, with possibly important outcomes for the therapeutic effects of this compound.  相似文献   

13.
Spreading of T cells on antigen presenting cells is a crucial initial step in immune response. Spreading occurs through rapid morphological changes concomitant with the reorganization of surface receptors and of the cytoskeleton. Ligand mobility and frictional coupling of receptors to the cytoskeleton were separately recognized as important factors but a systematic study to explore their biophysical role in spreading was hitherto missing. To explore the impact of ligand mobility, we prepared chemically identical substrates on which molecules of anti-CD3 (capable of binding and activating the T cell receptor complex), were either immobilized or able to diffuse. We quantified the T cell spreading area and cell edge dynamics using quantitative reflection interference contrast microscopy, and imaged the actin distribution. On mobile ligands, as compared to fixed ligands, the cells spread much less, the actin is centrally, rather than peripherally distributed and the edge dynamics is largely altered. Blocking myosin-II or adding molecules of ICAM1 on the substrate largely abrogates these differences. We explain these observations by building a model based on the balance of forces between activation-dependent actin polymerization and actomyosin-generated tension on one hand, and on the frictional coupling of the ligand-receptor complexes with the actin cytoskeleton, the membrane and the substrate, on the other hand. Introducing the measured edge velocities in the model, we estimate the coefficient of frictional coupling between T Cell receptors or LFA-1 and the actin cytoskeleton. Our results provide for the first time, to our knowledge, a quantitative framework bridging T cell-specific biology with concepts developed for integrin-based mechanisms of spreading.  相似文献   

14.
《Cell calcium》2016,59(6):598-605
TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.  相似文献   

15.
Selective proliferation of human γδ T cells in vitro   总被引:1,自引:0,他引:1  
The effect of monoethylphosphate (MEP,commercial available or synthesized) together with IL-2 on the selective proliferation of human γδT cells in vitro from peripheral blood mononuclear cells (PBMC) of healthy donors and of cancer patients was investigated.The γδT cells were stimulated by MEP to proliferate in a dose-dependent manner.The effect of synthesized MEP was 10 times greater than that of commercial MEP.When the PBMCs of healthy donors were cultured for 25 d in the medium containing different concentrations of MEP,the total cell number increased about 1000-3000 fold;and the ratio of γδT cells reached to 70-80%.The selective expansion of γδT cells depended on the synergic action of MEP and IL-2.The bulk cultured γδT cells exhibited obvious cytotoxic activities against allogenic tumor cell lines (SQ-5,K562 and Daudi) and autologous tumor cells.The culture system described here not only offers a simple method for obtaining a large number of γδT cells which may become a new effector in the adoptive immunotherapy,but also provides a useful model for the further studies of the structure and function of γδT cells in vitro.  相似文献   

16.
Spleen cells derived from tumor-bearing mice prove useful for the elucidation of the mechanism determining how tumor cells evade cytotoxic T lymphocytes (CTL) in tumor-bearing hosts. Our data indicate that inactive CTL or precursor CTL specific for tumor antigens are present among lymphocytes of tumor-bearing mice. However, their activity is inhibited by a soluble factor produced by other cells present in the same source. Inhibition of the cytolytic reaction was also detected in the culture supernatant of spleen cells obtained from normal mice, precultured in the presence of tumor cell culture supernatant and interleukin-2 (IL-2). Cell-depletion and cell-purification studies let us conclude that cells that produced the CTL-inhibitory factor (CTL-IF) were / T cells. The / T cells that were activated in vivo in tumor bearers were able to produce CTL-IF after isolation and in vitro culture. Maximum activation of / T cells was achieved by antigenic stimulation and by suppression of cells that interfered with the activation of / T cells. CTL-IF, which was assayed by use of CTL clones, did not show antigen specificity. Inhibition depended on a relatively heat- and acidstable, but alkali-labile molecule with a molecular mass of less than 10 kDa. The latter characteristics imply that CTL-IF does not resemble any of the known lymphokines produced by / T cells. These observations emphasize the crucial role of the / T cells in the escape of tumor cells from the attack of tumorspecific CTL.  相似文献   

17.
18.
A 74-year-old woman with documented coronary artery disease presented with symptoms of angina at rest. During these episodes of angina, the initial abnormal terminal negative T waves converted to normal positive T waves. In this article the significance of pseudonormalisation as a sign of ischaemia is reviewed. The underlying electropathological basis of this phenomenon is discussed as well. (Neth Heart J 2007;15:257-9.)  相似文献   

19.
Infections with cytomegalovirus (CMV) can cause severe disease in immunosuppressed patients and infected newborns. Innate as well as cellular and humoral adaptive immune effector functions contribute to the control of CMV in immunocompetent individuals. None of the innate or adaptive immune functions are essential for virus control, however. Expansion of γδ T cells has been observed during human CMV (HCMV) infection in the fetus and in transplant patients with HCMV reactivation but the protective function of γδ T cells under these conditions remains unclear. Here we show for murine CMV (MCMV) infections that mice that lack CD8 and CD4 αβ-T cells as well as B lymphocytes can control a MCMV infection that is lethal in RAG-1-/- mice lacking any T- and B-cells. γδ T cells, isolated from infected mice can kill MCMV infected target cells in vitro and, importantly, provide long-term protection in infected RAG-1-/- mice after adoptive transfer. γδ T cells in MCMV infected hosts undergo a prominent and long-lasting phenotypic change most compatible with the view that the majority of the γδ T cell population persists in an effector/memory state even after resolution of the acute phase of the infection. A clonotypically focused Vγ1 and Vγ2 repertoire was observed at later stages of the infection in the organs where MCMV persists. These findings add γδ T cells as yet another protective component to the anti-CMV immune response. Our data provide clear evidence that γδ T cells can provide an effective control mechanism of acute CMV infections, particularly when conventional adaptive immune mechanisms are insufficient or absent, like in transplant patient or in the developing immune system in utero. The findings have implications in the stem cell transplant setting, as antigen recognition by γδ T cells is not MHC-restricted and dual reactivity against CMV and tumors has been described.  相似文献   

20.
Disruption of circulating γδ T-cell populations is an early and common outcome of HIV infection. T-cell receptor (TCR)-γ2δ2 cells (expressing the Vγ2 and Vδ2 chains of the γδ TCR) are depleted, even though they are minimally susceptible to direct HIV infection, and exemplify indirect cell depletion mechanisms that are important in the progression to AIDS. Among individuals with common or normally progressing HIV disease, the loss of TCR-γ2δ2 cells has a broad impact on viral immunity, control of opportunistic pathogens and resistance to malignant disease. Advanced HIV disease can result in complete loss of TCR-γ2δ2 cells that are not recovered even during antiretroviral therapy with complete virus suppression. However, normal levels of TCR-γ2δ2 were observed among natural virus suppressors (low or undetectable virus without antiretroviral therapy) irrespective of their MHC haplotype, consistent with their disease-free status. The pattern of loss and recovery of TCR-γ2δ2 cells revealed their unique features and functional capacities, and encourage the development of immune-based therapies to activate and expand this T-cell subset. New research has identified drugs that might reconstitute the TCR-γ2δ2 population, recover their functional contributions, and improve control of HIV replication and disease. Here, we review research on HIV and TCR-γδ T cells to highlight the consequences of depleting this subset and the unique features of TCR-γδ biology that argue in favor of clinical strategies to reconstitute this T-cell subset in individuals with HIV/AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号