首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
Analysis of the genome sequence of Caulobacter crescentus predicts 67 TonB-dependent outer membrane proteins. To demonstrate that among them are proteins that transport nutrients other than chelated Fe(3+) and vitamin B(12)-the substrates hitherto known to be transported by TonB-dependent transporters-the outer membrane protein profile of cells grown on different substrates was determined by two-dimensional electrophoresis. Maltose induced the synthesis of a hitherto unknown 99.5-kDa protein, designated here as MalA, encoded by the cc2287 genomic locus. MalA mediated growth on maltodextrins and transported [(14)C]maltodextrins from [(14)C]maltose to [(14)C]maltopentaose. [(14)C]maltose transport showed biphasic kinetics, with a fast initial rate and a slower second rate. The initial transport had a K(d) of 0.2 microM, while the second transport had a K(d) of 5 microM. It is proposed that the fast rate reflects binding to MalA and the second rate reflects transport into the cells. Energy depletion of cells by 100 microM carbonyl cyanide 3-chlorophenylhydrazone abolished maltose binding and transport. Deletion of the malA gene diminished maltose transport to 1% of the wild-type malA strain and impaired transport of the larger maltodextrins. The malA mutant was unable to grow on maltodextrins larger than maltotetraose. Deletion of two C. crescentus genes homologous to the exbB exbD genes of Escherichia coli abolished [(14)C]maltodextrin binding and transport and growth on maltodextrins larger than maltotetraose. These mutants also showed impaired growth on Fe(3+)-rhodotorulate as the sole iron source, which provided evidence of energy-coupled transport. Unexpectedly, a deletion mutant of a tonB homolog transported maltose at the wild-type rate and grew on all maltodextrins tested. Since Fe(3+)-rhodotorulate served as an iron source for the tonB mutant, an additional gene encoding a protein with a TonB function is postulated. Permeation of maltose and maltotriose through the outer membrane of the C. crescentus malA mutant was slower than permeation through the outer membrane of an E. coli lamB mutant, which suggests a low porin activity in C. crescentus. The pores of the C. crescentus porins are slightly larger than those of E. coli K-12, since maltotetraose supported growth of the C. crescentus malA mutant but failed to support growth of the E. coli lamB mutant. The data are consistent with the proposal that binding of maltodextrins to MalA requires energy and MalA actively transports maltodextrins with K(d) values 1,000-fold smaller than those for the LamB porin and 100-fold larger than those for the vitamin B(12) and ferric siderophore outer membrane transporters. MalA is the first example of an outer membrane protein for which an ExbB/ExbD-dependent transport of a nutrient other than iron and vitamin B(12) has been demonstrated.  相似文献   

3.
Homogenous maltoporin (lamB protein), an Escherichia coli outer membrane spanning protein, was incorporated in phospholipid planar bilayers. It generates aqueous channels distinct from those formed by the non-specific porin (OmpF) or by phosphoporin (phoE protein). The single conductance, 150 pS in 1 M NaCl, is much smaller than that of the porins. The channels, which are poorly selective for cations and voltage independent, are specifically inhibited by maltose and maltodextrins. This inhibition, observed in the absence of maltose binding protein, demonstrates that the selectivity of maltoporin for maltose and maltodextrins is an intrinsic property of the protein.  相似文献   

4.
W J Rocque  E J McGroarty 《Biochemistry》1990,29(22):5344-5351
Escherichia coli K-12 strain RAM122 contains a mutation in the ompC gene that results in an eight amino acid deletion, delta 103-110, in the porin protein. Since this strain is capable of growing on maltodextrins in the absence of a functional lamB gene, the mutant protein is thought to have a larger channel size. The stability and structure/function properties of the mutant OmpC porin were investigated and compared to wild-type porin. Isolated unheated RAM122 porin was characterized as a trimer on sodium dodecyl sulfate-polyacrylamide gels. The RAM122 trimer was less stable to temperature when compared to the wild-type porin. In addition, the overall enthalpy for thermal denaturation was lower for the mutant than the wild-type porin as determined by using differential scanning microcalorimetry. Both the proteins' secondary structures, monitored by circular dichroism, were high in beta-sheet content, but the spectra were slightly different in their crossover points as well as their minima. When the proteins were reconstituted and channel activity was assayed by using a liposome swelling technique, the size-exclusion limit of the mutant porin was twice that of the wild-type porin. Conductance measurements across bilayer lipid membranes showed that the mutant porin was voltage gated at much lower membrane potentials, 50 and 75 mV, than the wild-type sample. The closing events of the mutant porin were predominantly of monomer size. The channels detected by using the mutant protein were larger in size than those measured for the wild-type porin monomer. These data suggest that the OmpC mutant porin has a channel size capable of allowing maltodextrins to enter and that this channel is highly voltage regulated.  相似文献   

5.
The conjugative plasmid pRSD2 carries a raf operon that encodes a peripheral raffinose metabolic pathway in enterobacteria. In addition to the previously known raf genes, we identified another gene, rafY, which in Escherichia coli codes for an outer membrane protein (molecular mass, 53 kDa) similar in function to the known glycoporins LamB (maltoporin) and ScrY (sucrose porin). Sequence comparisons with LamB and ScrY revealed no significant similarities; however, both lamB and scrY mutants are functionally complemented by RafY. Expressed from the tac promoter, RafY significantly increases the uptake rates for maltose, sucrose, and raffinose at low substrate concentrations; in particular it shifts the apparent K(m) for raffinose transport from 2 mM to 130 microM. Moreover, RafY permits diffusion of the tetrasaccharide stachyose and of maltodextrins up to maltoheptaose through the outer membrane of E. coli. A comparison of all three glycoporins in regard to their substrate selectivity revealed that both ScrY and RafY have a broad substrate range which includes alpha-galactosides while LamB seems to be restricted to malto-oligosaccharides. It supports growth only on maltodextrins but not, like the others, on raffinose and stachyose.  相似文献   

6.
In Escherichia coli K12 the product of gene lamB is an outer membrane protein involved in the transport of maltose and maltodextrins and serving as a receptor for several bacteriophages including lambda. About 30 to 40% of this protein can be recovered associated to peptidoglycan when the cells are dissolved in sodium dodecyl sulfate in the presence of 2 mM Mg2+ ions. The bound protein can then be quantitatively eluted from peptidoglycan by incubating the complex in Triton X-100 and EDTA, or sodium dodecyl sulfate and NaCl. The protein eluted in such ways is still totally active in its phage-neutralizing activity. Two other membrane proteins known to behave similarly to the lamB protein are proteins Ia and Ib. However the binding of these proteins to peptidoglycan appears tighter, in several respects, than that of the lamB protein. The lamB protein may span the outer membrane since it appears to interact with the peptidoglycan on the inner side of this membrane while it is known to be accessible to both phages and antibodies at the cell surface.  相似文献   

7.
lamB is the structural gene for the lambda receptor, an oligomeric outer membrane protein from Escherichia coli K12 involved in phage lambda adsorption. We show that, under certain conditions, in a strain diploid for gene lamB, all the missense lamB mutations conferring lambda resistance that we have tested are dominant with respect to wild-type. We propose a model which allows a quantitative interpretation of the data. It is based on negative complementation at the level of oligomerisation. Wild-type and mutant subunits would assemble at random forming homo- and hetero-oligomers. Only wild-type homo-oligomers would be efficient for phage inactivation. For some classes of missense mutations the hetero-oligomers would have the capacity to bind, but not to inactivate the phage. The model confirms that active lambda receptor is a trimer and implies that for this secreted protein there is no preferential assembly of subunits originating from the same polysome.  相似文献   

8.
The function of CymA, 1 of the 10 gene products involved in cyclodextrin uptake and metabolism by Klebsiella oxytoca, was characterized. CymA is essential for growth on cyclodextrins, but it can also complement the deficiency of a lamB (maltoporin) mutant of Escherichia coli for growth on linear maltodextrins, indicating that both cyclic and linear oligosaccharides are accepted as substrates. CymA was overproduced in E. coli and purified to apparent homogeneity. CymA is a component of the outer membrane, is processed from a signal peptide-containing precursor, and possesses a high content of antiparallel beta-sheet. Incorporation of CymA into lipid bilayers and conductance measurements revealed that it forms ion-permeable channels, which exhibit a substantial current noise. CymA-induced membrane conductance decreased considerably upon addition of alpha-cyclodextrin. Titration experiments allowed the calculation of a half-saturation constant, K(S), of 28 microM for its binding to CymA. CymA assembled in vitro to two-dimensionally crystalline tubular membranes, which, on electron microscopy, are characterized by a p1-related two-sided plane group. The crystallographic unit cell contains four monomeric CymA molecules showing a central pore. The lattice parameters are a = 16.1 nm, b = 3.8 nm, gamma = 93 degrees. CymA does not form trimeric complexes in lipid membranes and shows no tendency to trimerize in solution. CymA thus is an atypical porin with novel properties specialized to transfer cyclodextrins across the outer membrane.  相似文献   

9.
lamB is the structural gene for the bacteriophage lambda receptor, a multifunctional protein located in the outer membrane of Escherichia coli K-12. We present a method for deletion mapping of any lamB mutations with a recognizable pheno-type. This method involves a transducing phage constructed by in vitro recombination which can also be used for complementation, deoxyribonucleic acid sequence, and in vitro protein synthesis studies with the mutated lamB gene. Using this method, we mapped 18 lamB missense mutations which confer resistance to phage lambda h+ (wild-type host range). The main results were the following. (i) None of the 18 mutations was located in the first 4 deletion intervals out of the 11 of the genetic map. (ii) These mutations were clustered according to their phenotype as follows. (a) Class I mutations, which allow growth of lambda h and lambda hh* (one-step and two-step host range mutants of lambda, respectively), were located in three regions--three in interval V, four in interval VIII-IX, and three in interval X-XI. Only the last three mutations still allowed growth of phage K10 which also uses the lambda receptor, and two of them still allowed reversible binding of lambda h+. (b) All seven class II mutations allowed only growth of lambda hh* and mapped in interval V. These results are discussed in the frame of a genetic approach to the functional topology of the lambda receptor.  相似文献   

10.
Abstract We have constructed a multicopy plasmid vector (pAMH62) expressing lamB , the gene coding for the phage λ receptor protein in Escherichia coli . In this construction, the lamB structural gene was fused to the ompR promoter of E. coli . The ompR promoter was employed because: (i) it can function in other gram negative bacteria; (ii) it expresses lamB in a multicopy state at a level comparable to that of maltose-induced chromosomal lamB in E. coli . The vector pAMH62 was tested in E. coli and Salmonella typhimurium . In both cases the LamB protein was produced in similar amounts, was properly integrated to the outer membrane and was functional as phage λ receptor. Thus pAMH62 should provide a useful tool for extending the host range of phage λ and λ-derived vectors to other Gram-negative bacteria.  相似文献   

11.
B. A. Sampson  R. Misra    S. A. Benson 《Genetics》1989,122(3):491-501
Using a genetic selection for mutations which allow large maltodextrins to cross the outer membrane of Escherichia coli in the absence of the LamB maltoporin, we have obtained and characterized two mutations that define a new locus of E. coli. We have designated this locus imp for increased membrane permeability. Mapping studies show that the imp gene resides at approximately 1.2 min on the E. coli chromosome. The mutations alter the permeability of the outer membrane resulting in increased sensitivity to detergents, antibiotics and dyes. The mutations are nonreverting and codominant. Genetic analysis of the mutations suggest that the imp gene is an essential gene. We describe a general cloning strategy that can be used to clone both dominant and recessive alleles. Using this technique, we have cloned the wild-type and mutant imp alleles onto a low copy number plasmid.  相似文献   

12.
Proteins destined for either the periplasm or the outer membrane of Escherichia coli are translocated from the cytoplasm by a common mechanism. It is generally assumed that outer membrane proteins, such as LamB (maltoporin or lambda receptor), which are rich in beta-structure, contain additional targeting information that directs proper membrane insertion. During transit to the outer membrane, these proteins may pass, in soluble form, through the periplasm or remain membrane associated and reach their final destination via sites of inner membrane-outer membrane contact (zones of adhesion). We report lamB mutations that slow signal sequence cleavage, delay release of the protein from the inner membrane, and interfere with maltoporin biogenesis. This result is most easily explained by proposing a soluble, periplasmic LamB assembly intermediate. Additionally, we found that such lamB mutations confer several novel phenotypes consistent with an abortive attempt by the cell to target these tethered LamB molecules. These phenotypes may allow isolation of mutants in which the process of outer membrane protein targeting is altered.  相似文献   

13.
14.
The electrical properties of Escherichia coli cells were examined by the patch-clamp technique. Giant cells or giant spheroplasts were generated by five different methods. By electron micrographic and other criteria we determined that the patches are most likely from the outer membrane. We regularly observed currents through at least two types of channels in this membrane. The first current is mechanosensitive and voltage-dependent, and can be observed in single gene mutants of the known major porins (ompF, ompC, phoE, lamB); this channel may represent a minor porin or a new class of outer membrane protein. The possible identity of the second, voltage-sensitive channel with one of the known outer membrane proteins is being explored. The high-resistance seals consistently formed on these patches and the presence of gated ion channels suggest that most of the pores of the outer membrane are not statically open, as commonly held, but are closed at rest and may be openable by physiological stimuli.  相似文献   

15.
Chemotaxis towards maltose is specifically defective in many strains of Escherichia coli carrying mutations affecting lamB, the gene coding for the outer membrane receptor for bacteriophage lambda. However, with one exception, the most extreme effect of lamB mutants on the maltose response as determined in the capillary assay is a shift to higher sugar concentrations and a reduction in the number of bacteria accumulated to about 25% of the wild-type level. The severity of the taxis defect is strongly correlated with reduced ability of the cells to take up the maltose present at 1 and 10 muM. Evidence presented here and in the accompanying paper indicates that the lambda receptor is involved in the transport of maltose at these concentrations. The effects of lamB mutations on maltose taxis can be explained by postulating that the high-affinity maltose transport system in which the lambda receptor participates transfers maltose from the surrounding medium across the outer membrane and into the periplasmic space. If the maltose chemoreceptor detects sugar present in the periplasmic space, and not molecules external to the outer membrane, then defective transport of low concentrations of maltose into the periplasm would result in the observed apparent reduction in the sensitivity of the maltose receptor. Thus, the lambda receptor protein would participate in maltose chemorecepton only indirectly through its role in maltose transport.  相似文献   

16.
In order to identify sequences involved in the localization of LamB, an outer membrane protein from E coli K12, mutagenesis by linker insertion has been performed on a lamB gene copy carried on a plasmid devised for this purpose. An analysis of the first set of 16 clones constructed by this technique shows that, in these clones, the lamB protein is altered either by frameshift mutations leading to abnormal COOH terminal (usually premature termination) or by in-phase deletions or small insertions. Except for two in-phase linker insertions, which only slightly changed the behavior of the protein, the modified proteins are either toxic to cell growth or unstable. In all cases examined so far, the modified proteins were in the outer membrane. We suggest that toxicity is due to incorrect folding, which leads to disruption of the outer membrane. The nature of the genetic alterations leads to the hypothesis that the first 183 amino acids of the LamB mature protein contain, together with the signal sequence, all the instructions needed for proper localization.  相似文献   

17.
Isolation of an ompC-like outer membrane protein gene from Salmonella typhi   总被引:3,自引:0,他引:3  
We have isolated the structural gene for an outer membrane protein of Salmonella typhi, from a genomic library constructed in bacteriophage lambda 1059, using the Escherichia coli ompC gene as a heterologous probe. E. coli ompC codes for an outer membrane pore protein (porin) that is induced preferentially at high osmolarity and high temperature. The S. typhi ompC-like gene was subcloned in pBR322 and introduced into E. coli HB101 and into P678-54, a minicell-producing strain. In both strains it expressed a 38.5-kDa protein, which was incorporated into the outer membrane envelope and comigrated with an S. typhi outer membrane protein which was expressed both at low and high osmolarity in vivo.  相似文献   

18.
We describe the isolation and characterization of mutations in ompF that alter the pore properties of the OmpF porin. The selection makes use of the fact that maltodextrins larger than maltotriose are too large to diffuse through the normal OmpF pore. By demanding growth on maltodextrins (Dex+) in the absence of the LamB protein, which is normally required for the uptake of these large sugars, we are able to obtain ompF mutations. These include transversions, transitions and small deletions. We obtained almost exclusively ompF mutations in spite of the fact that analogous alterations in ompC can result in similar phenotypes. Fifteen independent point mutations identify residues R42, R82, D113 and R132 of the mature peptide as important in pore function. The alterations result in uncharged amino acids being substituted for charged amino acids. Growth tests, antibiotic sensitivities and rates of [14C]maltose uptake suggest that the alterations result in an increased pore size. Small deletions of six to 15 amino acid residues in the region between A108 and V133 of mature OmpF dramatically alter outer membrane permeability to hydrophobic antibiotics and detergents as well as conferring a Dex+ phenotype. We suggest that these mutations affect both the pore function and interactions with other outer membrane components. A model of OmpF protein structure based on general rules for folding membrane proteins and these mutations is presented.  相似文献   

19.
lamB is the structural gene for the bacteriophage lambda receptor in Escherichia coli K-12. In vivo and in vitro studies of the lambda receptor from lamB missence mutants selected as resistant to phage lambda h+ showed the following. (i) Resistance was not due to a change in the amount of lambda receptor protein present in the outer membrane but rather to a change in activity. All of the mutants were still sensitive to phage lambda hh*, a two-step host range mutant of phage lambda h+. Some (10/16) were still sensitive to phage lambda h, a one-step host range mutant. (ii) Resistance occurred either by a loss of binding ability or by a block in a later irreversible step. Among the 16 mutations, 14 affected binding of lambda h+. Two (lamB106 and lamB110) affected inactivation but not binding; they represented the first genetic evidence for a role of the lambda receptor in more than one step of phage inactivation. Similarly, among the six mutations yielding resistance to lambda h, five affected binding and one (lamB109) did not. (iii) The pattern of interactions between the mutated receptors and lambda h+ and its host range mutants were very similar, although not identical, in vivo and in vitro. Defects were usually more visible in vitro than in vivo, the only exception being lamB109. (iv) The ability to use dextrins as a carbon source was not appreciably affected in the mutants. Possible working models and the relations between phage infection and dextrins transport were briefly discussed.  相似文献   

20.
Maltoporin (lambda receptor) is part of the maltose transport system in Escherichia coli and is necessary for the facilitated diffusion of maltose and maltodextrins across the outer membrane. Maltoporin also allows the diffusion of nonmaltodextrin substrates, albeit with less efficiency. The preference of maltoporin for maltodextrins in vivo is thought to be the result of an interaction of maltoporin with the maltose-binding protein, the malE gene product. In a recent report Heuzenroeder and Reeves (J. Bacteriol. 144:431-435, 1980) suggested that this interaction establishes a gating mechanism which inhibits the diffusion of nonmaltodextrin substrates, such as lactose. To reinvestigate this important conclusion, we constructed ompR malTc strains carrying either the malE+ gene, the nonpolar malE444 deletion, or the malE254 allele, which specifies an interaction-deficient maltose-binding protein. Lactose uptake was measured at different concentrations below the Km of this transport system and under conditions where transport was limited by the diffusion through maltoporin. We found no difference in the kinetics of lactose uptake irrespective of the malE allele. We conclude that the maltose-binding protein does not modulate the activity of maltoporin as a general outer membrane porin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号