共查询到20条相似文献,搜索用时 0 毫秒
1.
The three-dimensional structure of alpha1-purothionin in solution: combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics
下载免费PDF全文

Clore GM Nilges M Sukumaran DK Brünger AT Karplus M Gronenborn AM 《The EMBO journal》1986,5(10):2729-2735
The determination of the three-dimensional solution structure of α1-purothionin using a combination of metric matrix distance geometry and restrained molecular dynamics calculations based on n.m.r. data is presented. The experimental data comprise complete sequence-specific proton resonance assignments, a set of 310 approximate interproton distance restraints derived from nuclear Overhauser effects, 27 Ø backbone torsion angle restraints derived from vicinal coupling constants, 4 distance restraints from hydrogen bonds and 12 distance restraints from disulphide bridges. The average atomic rms difference between the final nine converged structures and the mean structure obtained by averaging their coordinates is 1.5 ± 0.1 å for the backbone atoms and 2.0 ± 0.1 å for all atoms. The overall shape of α1-purothionin is that of the capital letter L, similar to that of crambin, with the longer arm comprising two approximately parallel α-helices and the shorter arm a strand and a mini anti-parallel β sheet. 相似文献
2.
The solution conformation of potato carboxypeptidase inhibitor (CPI) has been investigated by 1H NMR spectroscopy. The spectrum is assigned in a sequential manner by using two-dimensional NMR techniques to identify through-bond and through-space (less than 5 A) connectivities. A set of 309 approximate interproton distance restraints is derived from the two-dimensional nuclear Overhauser enhancement spectra and used as the basis of a three-dimensional structure determination by a combination of metric matrix distance geometry and restrained molecular dynamics calculations. A total of 11 converged distance geometry structures were computed and refined by using restrained molecular dynamics. The average atomic root mean square (rms) difference between the final 11 structures and the mean structure obtained by averaging their coordinates is 1.4 +/- 0.3 A for residues 2-39 and 0.9 +/- 0.2 A for residues 5-37. The corresponding values for all atoms are 1.9 +/- 0.3 and 1.4 +/- 0.2 A, respectively. The larger values for residues 2-38 relative to those for residues 5-37 arise from the fact that the positions of the N- (residues 1-4) and C- (residues 38-39) terminal tails are rather poorly determined, whereas those of the core of the protein (residues 5-37) are well determined by the experimental interproton distance data. The computed structures are very close to the X-ray structure of CPI in its complex with carboxypeptidase, and the backbone atomic rms difference between the mean of the computed structures and the X-ray structure is only 1.2 A. Nevertheless, there are some real differences present which are evidenced by significant deviations between the experimental upper interproton distance limits and the corresponding interproton distances derived from the X-ray structure. These principally occur in two regions, residues 18-20 and residues 28-30, the latter comprising part of the region of secondary contacts between CPI and carboxypeptidase in the X-ray structure. 相似文献
3.
The conformations of hirudin in solution: a study using nuclear magnetic resonance, distance geometry and restrained molecular dynamics
下载免费PDF全文

The solution conformations of the protein hirudin have been investigated by the combined use of distance geometry and restained molecular dynamics calculations. The basis for the structure determination comprised 359 approximate inter-proton distance restrains and 10 phi backbone torsion angle restrains derived from n.m.r. measurements. It is shown that hirudin is composed of three domains: a central core made up of residues 3-30, 37-46 and 56-57; a protruding 'finger' (residues 31-36) consisting of the tip of an antiparallel beta sheet, and an exposed loop (residues 47-55). The structure of each individual domain is relatively well defined with average backbone atomic r.m.s. differences of <2 A between the final seven converged restrained dynamic structures and the mean structure obtained by averaging their coordinates. The orientation of the two minor domains relative to the central core, however, could not be determined as no long-range (i-h >5) interdomain proton-proton contacts could be observed in the two-dimensional nuclear Overhauser enhancement spectra. From the restrained molecular dynamics calculations it appears that the two minor domains exhibit large rigid-body motions relative to the central core. 相似文献
4.
S C Lee A F Russell W D Laidig 《International journal of peptide and protein research》1990,35(5):367-377
The conformational properties of bradykinin in five molar excess sodium dodecyl sulfate (SDS) micelles have been examined by two-dimensional nuclear magnetic resonance (NMR) techniques at 500 MHz. Detailed structural information for bradykinin in SDS was obtained from quantitative 2-D nuclear Overhauser enhancement (n.O.e.) analyses, distance geometry, and restrained molecular mechanics and dynamics calculations. The conformation of bradykinin in SDS micelles, as determined by these methods, is characterized by a beta-turn-like structure at residues 6-9. A detailed comparison of the structures derived from distance geometry and restrained molecular mechanics and dynamics is also presented. 相似文献
5.
The three-dimensional structure of the sea anemone polypeptide Stichodactyla helianthus neurotoxin I in aqueous solution has been determined using distance geometry and restrained molecular dynamics simulations based on NMR data acquired at 500 MHz. A set of 470 nuclear Overhauser enhancement values was measured, of which 216 were used as distance restraints in the structure determination along with 15 dihedral angles derived from coupling constants. After restrained molecular dynamics refinement, the eight structures that best fit the input data form a closely related family. They describe a structure that consists of a core of twisted, four-stranded, antiparallel beta-sheet encompassing residues 1-3, 19-24, 29-34, and 40-47, joined by three loops, two of which are well defined by the NMR data. The third loop, encompassing residues 7-16, is poorly defined by the data and is assumed to undergo conformational averaging in solution. Pairwise root mean square displacement values for the backbone heavy atoms of the eight best structures are 1.3 +/- 0.2A when the poorly defined loop is excluded and 3.6 +/- 1.0A for all backbone atoms. Refinement using restrained molecular dynamics improved the quality of the structures generated by distance geometry calculations with respect to the number of nuclear Overhauser enhancements violated, the size of the total distance violations and the total potential energies of the structures. The family of structures for S. heliathus neurotoxin I is compared with structures of related sea anemone proteins that also bind to the voltage-gated sodium channel. 相似文献
6.
Crystal and molecular structure of the serine proteinase inhibitor CI-2 from barley seeds 总被引:8,自引:0,他引:8
Chymotrypsin inhibitor 2 (CI-2), a serine proteinase inhibitor from barley seeds, has been crystallized and its three-dimensional structure determined at 2.0-A resolution by the molecular replacement method. The structure has been refined by restrained-parameter least-squares methods to a crystallographic R factor (= sigma parallel Fo magnitude of-Fo parallel/sigma magnitude of Fo) o of 0.198. CI-2 is a member of the potato inhibitor 1 family. It lacks the characteristic stabilizing disulfide bonds of most other members of serine proteinase inhibitor families. The body of CI-2 shows few conformational changes between the free inhibitor and the previously reported structure of CI-2 in complex with subtilisin Novo [McPhalen, C.A., Svendsen, I., Jonassen, I., & James, M.N.G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 7242-7246]. However, the reactive site loop has some significant conformational differences between the free inhibitor and its complexed form. The residues in this segment of polypeptide exhibit relatively large thermal motion parameters and some disorder in the uncomplexed form of the inhibitor. The reactive site bond is between Met-59I and Glu-60I in the consecutive sequential numbering of CI-2 (Met-60-Glu-61 according to the alignment of Svendsen et al. [Svendsen, I., Hejgaard, J., & Chavan, J.K. (1984) Carlsberg Res. Commun. 49, 493-502]). The network of hydrogen bonds and electrostatic interactions stabilizing the conformation of the reactive site loop is much less extensive in the free than in the complexed inhibitor. 相似文献
7.
The complete three-dimensional structure of the alpha-amylase inhibitor Tendamistat in aqueous solution was determined by 1H nuclear magnetic resonance and distance geometry calculations using the program DISMAN. Compared to an earlier, preliminary determination of the polypeptide backbone conformation, stereo-specific assignments were obtained for 41 of the 89 prochiral groups in the protein, and a much more extensive set of experimental constraints was collected, including 842 distance constraints from nuclear Overhauser effects and over 100 supplementary constraints from spin-spin coupling constants and the identification of intramolecular hydrogen bonds. The complete protein molecule, including the amino acid side-chains is characterized by a group of nine structures corresponding to the results of the nine DISMAN calculations with minimal residual error functions. The average of the pairwise minimal root-mean-square distances among these nine structures is 0.85 A for the polypeptide backbone, and 1.52 A for all the heavy atoms. The procedures used for the structure determination are described and a detailed analysis is presented of correlations between the experimental input data and the precision of the structure determination. 相似文献
8.
The solution conformation of the cardiac stimulatory sea anemone polypeptide anthopleurin-A has been characterised using distance geometry and restrained molecular dynamics calculations. A set of 253 approximate interproton distance restraints and 14 peptide backbone torsion angle restraints derived from two-dimensional 1H-NMR spectra at 500 MHz were used as input for these calculations. 13 structures generated by either metric matrix or variable target function distance geometry calculations were refined using energy minimisation and restrained molecular dynamics. The resulting structures contain a region of twisted antiparellel beta-sheet to which two separate regions of unordered chain are linked by three disulphide bonds. Two loops, one including Pro-41 and the other encompassing residues 10-18, are poorly defined by the NOE data. 相似文献
9.
Solution structure of apamin determined by nuclear magnetic resonance and distance geometry 总被引:3,自引:0,他引:3
The solution structure of the bee venom neurotoxin apamin has been determined with a distance geometry program using distance constraints derived from NMR. Twenty embedded structures were generated and refined by using the program DSPACE. After error minimization using both conjugate gradient and dynamics algorithms, six structures had very low residual error. Comparisons of these show that the backbone of the peptide is quite well-defined with the largest rms difference between backbone atoms in these structures of 1.34 A. The side chains have far fewer constraints and show greater variability in their positions. The structure derived here is generally consistent with the qualitative model previously described, with most differences occurring in the loop between the beta-turn (residues 2-5) and the C-terminal alpha-helix (residues 9-17). Comparisons are made with previously derived models from NMR data and other methods. 相似文献
10.
Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry 总被引:22,自引:0,他引:22
A determination of the solution conformation of the proteinase inhibitor IIA from bull seminal plasma (BUSI IIA) is described. Two-dimensional nuclear Overhauser enhancement spectroscopy (NOESY) was used to obtain a list of 202 distance constraints between individually assigned hydrogen atoms of the polypeptide chain, to identify the positions of the three disulfide bridges, and to locate the single cis peptide bond. Supplementary geometric constraints were derived from the vicinal spin-spin couplings and the locations of certain hydrogen bonds, as determined by nuclear magnetic resonance (n.m.r.). Using a new distance geometry program (DISGEO) which is capable of computing all-atom structures for proteins the size of BUSI IIA, five conformers were computed from the NOE distance constraints alone, and another five were computed with the supplementary constraints included. Comparison of the different structures computed from the n.m.r. data among themselves and with the crystal structures of two homologous proteins shows that the global features of the conformation of BUSI IIA (i.e. the overall dimensions of the molecule and the threading of the polypeptide chain) were well-defined by the available n.m.r. data. In the Appendix, we describe a preliminary energy refinement of the structure, which showed that the constraints derived from the n.m.r. data are compatible with a low energy spatial structure. 相似文献
11.
J de Vlieg R M Scheek W F van Gunsteren H J Berendsen R Kaptein J Thomason 《Proteins》1988,3(4):209-218
The technique of two-dimensional nuclear magnetic resonance (2D-NMR) has recently assumed an active role in obtaining information on structures of polypeptides, small proteins, sugars, and DNA fragments in solution. In order to generate spatial structures from the atom-atom distance information obtained by the NMR method, different procedures have been developed. Here we introduce a combined procedure of distance geometry (DG) and molecular dynamics (MD) calculations for generating 3D structures that are consistent with the NMR data set and have reasonable internal energies. We report the application of the combined procedure on the lac repressor DNA binding domain (headpiece) using a set of 169 NOE and 17 "hydrogen bond" distance constraints. Eight of ten structures generated by the distance geometry algorithm were refined within 10 ps MD simulation time to structures with low internal energies that satisfied the distance constraints. Although the combination of DG and MD was designed to combine the good sampling properties of the DG algorithm with an efficient method of lowering the internal energy of the molecule, we found that the MD algorithm contributes significantly to the sampling as well. 相似文献
12.
The polypeptide fold of the globular domain of histone H5 in solution. A study using nuclear magnetic resonance, distance geometry and restrained molecular dynamics. 总被引:5,自引:2,他引:5
下载免费PDF全文

The polypeptide fold of the 79-residue globular domain of chicken histone H5 (GH5) in solution has been determined by the combined use of distance geometry and restrained molecular dynamics calculations. The structure determination is based on 307 approximate interproton distance restraints derived from n.m.r. measurements. The structure is composed of a core made up of residues 3-18, 23-34, 37-60 and 71-79, and two loops comprising residues 19-22 and 61-70. The structure of the core is well defined with an average backbone atomic r.m.s. difference of 2.3 +/- 0.3 A between the final eight converged restrained dynamics structures and the mean structure obtained by averaging their coordinates best fitted to the core residues. The two loops are also well defined locally but their orientation with respect to the core could not be determined as no long range ([i-j[ greater than 5) proton-proton contacts could be observed between the loop and core residues in the two-dimensional nuclear Overhauser enhancement spectra. The structure of the core is dominated by three helices and has a similar fold to the C-terminal DNA binding domain of the cAMP receptor protein. 相似文献
13.
Barthwal R Awasthi P Monica Kaur M Sharma U Srivastava N Barthwal SK Govil G 《Journal of structural biology》2004,148(1):34-50
The 5' d-TpG 3' element is a part of DNA sequences involved in regulation of gene expression and is also a site for intercalation of several anticancer drugs. Solution conformation of DNA duplex d-TGATCA containing this element has been investigated by two-dimensional NMR spectroscopy. Using a total of 12 torsional angles and 121 distance constraints, structural refinement has been carried out by restrained molecular dynamics (rMDs) in vacuum up to 100 ps. The structure is characterized by a large positive roll at TpG/CpA base pair step and large negative propeller twist for AT and TA base pairs. The backbone torsional angle, gamma(O5'-C5'-C4'-C3'), of T1 residue adopts a trans-conformation which is corroborated by short intra nucleotide T1H6-T1H5' (3.7A) distance in nuclear overhauser effect spectroscopy (NOESY) spectra while the backbone torsional angle, beta(P-O5'-C5'-C4'), exists in trans as well as gauche state for T1 and C5 residues. There is evidence of significant flexibility of the sugar-phosphate backbone with rapid inter-conversion between two different conformers at TpG/CpA base pair step. The base sequence dependent variations and local structural heterogeneity have important implications in specific recognition of DNA by ligands. 相似文献
14.
The solution structure of tertiapin, a 21-residue bee venom peptide, has been characterized by circular dichroism (CD), two-dimensional nuclear magnetic resonance (NMR) spectroscopy, and distance geometry. A total of 21 lowest error structures were obtained from distance geometry calculations. Superimposition of these structures shows that the backbone of tertiapin is very well defined. One type-I reverse turn from residue 4 to 7 and an α-helix from residue 12 to 19 exist in the structure of tertiapin. The α-helical region is best defined from both conformational analysis and structural superimposition. The overall three-dimensional structure of tertiapin is highly compact resulting from side chain interactions. The structural information obtained from CD and NMR are compared for both tertiapin and apamin (ref. 3), another bee venom peptide. Tertiapin and apamin have some similar secondary structure, but display different tertiary structures. © 1993 Wiley-Liss, Inc. 相似文献
15.
An automated method, based on the principle of simulated annealing, is presented for determining the three-dimensional structures of proteins on the basis of short (less than 5 A) interproton distance data derived from nuclear Overhauser enhancement (NOE) measurements. The method makes use of Newton's equations of motion to increase temporarily the temperature of the system in order to search for the global minimum region of a target function comprising purely geometric restraints. These consist of interproton distances supplemented by bond lengths, bond angles, planes and soft van der Waals repulsion terms. The latter replace the dihedral, van der Waals, electrostatic and hydrogen-bonding potentials of the empirical energy function used in molecular dynamics simulations. The method presented involves the implementation of a number of innovations over our previous restrained molecular dynamics approach [Clore, G.M., Brünger, A.T., Karplus, M. and Gronenborn, A.M. (1986) J. Mol. Biol., 191, 523-551]. These include the development of a new effective potential for the interproton distance restraints whose functional form is dependent on the magnitude of the difference between calculated and target values, and the design and implementation of robust and fully automatic protocol. The method is tested on three systems: the model system crambin (46 residues) using X-ray structure derived interproton distance restraints, and potato carboxypeptidase inhibitor (CPI; 39 residues) and barley serine proteinase inhibitor 2 (BSPI-2; 64 residues) using experimentally derived interproton distance restraints. Calculations were carried out starting from the extended strands which had atomic r.m.s. differences of 57, 38 and 33 A with respect to the crystal structures of BSPI-2, crambin and CPI respectively. Unbiased sampling of the conformational space consistent with the restraints was achieved by varying the random number seed used to assign the initial velocities. This ensures that the different trajectories diverge during the early stages of the simulations and only converge later as more and more interproton distance restraints are satisfied. The average backbone atomic r.m.s. difference between the converged structures is 2.2 +/- 0.3 A for crambin (nine structures), 2.4 +/- 0.3 A for CPI (eight structures) and 2.5 +/- 0.2 A for BSPI-2 (five structures). The backbone atomic r.m.s. difference between the mean structures derived by averaging the coordinates of the converged structures and the corresponding X-ray structures is 1.2 A for crambin, 1.6 A for CPI and 1.7 A for BSPI-2. 相似文献
16.
Refinement of the three-dimensional solution structure of barley serine proteinase inhibitor 2 and comparison with the structures in crystals. 总被引:6,自引:0,他引:6
S Ludvigsen H Y Shen M Kjaer J C Madsen F M Poulsen 《Journal of molecular biology》1991,222(3):621-635
The three-dimensional structure of barley serine proteinase inhibitor, CI-2, has been determined using nuclear magnetic resonance spectroscopy. The present structure determination is a refinement of the structure previously determined by us, using in the present case stereo-specific assignments, and a virtually complete set of assignments of the two-dimensional nuclear Overhauser spectrum. The structure determination is based on the identification of more than 1300 nuclear Overhauser effects, of which 961 were used in the structure calculation as distance restraints, and on 94 dihedral angle restraints, of which 31 are for chi 1 angles in defined chiral centers. These have been used to calculate a series of 20 three-dimensional structures using a combination of distance geometry, simulated annealing and restrained molecular dynamics. Each of the 20 structures was in agreement within less than 0.5 A of each of the distance restraints and with all dihedral angle restraints. When compared to the geometric average structure of the 20 refined structures the root-mean-square differences for the backbone atoms were 0.8 (+/- 0.2) A and for all atoms were 1.6 (+/- 0.2) A. By comparison, the values obtained for the structures determined previously were 1.4 (+/- 0.2) A and 2.1 (+/- 0.1) A, respectively. The structures were also compared to the structure determined in the crystalline state by X-ray diffraction showing root-mean-square differences of 1.6 (+/- 0.2) A and 2.8 (+/- 0.2) A for the backbone and all atoms, respectively. Common features of the solution structure and the two crystal structures are the four-stranded beta-structure, composed of a pair of parallel strands, and three pairs of antiparallel beta-strands flanked on one side by a 12-residue alpha-helix and on the other side by a loop containing the serine proteinase binding site. The new analysis of the structure has revealed an additional pair of antiparallel beta-strands, consisting of residues 65 to 67 and 81 to 83, that was not seen in either of the crystal structures or the previous solution structure. Identification of this was based on nuclear magnetic resonance evidence for the hydrogen bond (67HN to 81CO) not reported previously. Also the presence of a bifurcated hydrogen bond involving Phe69 CO and HN atoms of Ala77 and Gln78 was observed in solution but not in crystals. Minor differences between the two structures were observed in the phi-angles of residues Met59 and Glu60 in the inhibitory site. 相似文献
17.
C B Post 《Journal of molecular biology》1992,224(4):1087-1101
Dynamic averaging effects from internal motions on interproton distances estimated from nuclear Overhauser effects (NOE) are determined by using a molecular dynamics simulation of lysozyme. Generalized order parameters measuring angular averaging and radial averaging parameters are calculated. The product of these two parameters describes the full averaging effects on cross-relaxation. Analysis of 2778 non-methyl NOE interactions from the protein interior and surface indicates that distances estimated by assuming a rigid molecule have less than 10% error for 89% of the NOE interactions. However, analysis of 1854 methyl interactions found that only 68% of the distances estimated from cross-relaxation rates would have less than 10% error. Qualitative evaluation of distances according to strong, medium and weak NOE intensities, when used to define only the upper bound for interproton separation, would misassign less than 1% of the distance constraints because of motional averaging. Internal motions do not obscure the identification of secondary structure, although some instances of significant averaging effects were found for interactions in alpha-helical regions. Interresidue NOEs for amino acids more than three residues apart in the primary sequence are more extensively averaged than intraresidue or short-range interresidue NOEs. Intraresidue interactions exhibit a greater degree of angular averaging than those involving interresidue proton pairs. An internal motion does not equally affect all NOE interactions for a particular proton. Thus, incorporation of averaging parameters in nuclear magnetic resonance structure determination procedures must be made on a proton-pair-wise basis. On the basis of the motional averaging results, particular fixed-distance proton pairs in proteins are suggested for use as distance references. A small percentage of NOE pairs localized to three regions of the protein exhibit extreme averaging effects from internal motions. The regions and types of motions involved are described. 相似文献
18.
Barthwal R Monica Awasthi P Srivastava N Sharma U Kaur M Govil G 《Journal of biomolecular structure & dynamics》2003,21(3):407-423
Solution conformation of self-complementary DNA duplex d-CGATCG, containing 5' d-CpG 3' site for intercalation of anticancer drug, daunomycin and adriamycin, has been investigated by nuclear magnetic resonance (NMR) spectroscopy. Complete resonance assignments of all the protons (except some H5'/H5" protons) have been obtained following standard procedures based on double quantum filtered correlation spectroscopy (dQF COSY) and two-dimensional nuclear Overhauser effect (NOE) spectra. Analysis of sums of coupling constants in one-dimensional NMR spectra, cross peak patterns in dQF COSY spectra and inter proton distances shows that the DNA sequence assumes a conformation close to the B-DNA family. The deoxyribose sugar conformation is in dynamic equilibrium with predominantly S-type conformer and a minor N-type conformer with N<-->S equilibrium varying with temperature. At 325 K, the mole fraction of the N-conformer increases for some of the residues by approximately 9%. Using a total of 10 spin-spin coupling constants and 112 NOE intensities, structural refinement has been carried out using Restrained Molecular Dynamics (rMD) with different starting structures, potential functions and rMD protocols. It is observed that pseudorotation phase angle of deoxyribose sugar for A3 and T4 residues is approximately 180 degrees and approximately 120 degrees, respectively while all other residues are close to C2'endo-conformation. A large propeller twist (approximately -18 degrees) and smallest twist angle (approximately 31 degrees) at A3pT4 step, in the middle of the sequence, a wider (12 A) and shallower (3.0 A) major groove with glycosidic bond rotation as high anti at both the ends of hexanucleotide are observed. The structure shows base-sequence dependent variations and hence strong local structural heterogeneity, which may have implications in ligand binding. 相似文献
19.
A M J?rgensen S M Kristensen J J Led P Balschmidt 《Journal of molecular biology》1992,227(4):1146-1163
The solution structure of the B9(Asp) mutant of human insulin has been determined by two-dimensional 1H nuclear magnetic resonance spectroscopy. Thirty structures were calculated by distance geometry from 451 interproton distance restraints based on intra-residue, sequential and long-range nuclear Overhauser enhancement data, 17 restraints on phi torsional angles obtained from 3JH alpha HN coupling constants, and the restraints from 17 hydrogen bonds, and the three disulphide bridges. The distance geometry structures were optimized using restrained molecular dynamics (RMD) and energy minimization. The average root-mean-square deviation for the best 20 RMD refined structures is 2.26 A for the backbone and 3.14 A for all atoms if the less well-defined N and C-terminal residues are excluded. The helical regions are better defined, with root-mean-square deviation values of 1.11 A for the backbone and 2.03 A for all atoms. The data analysis and the calculations show that B9(Asp) insulin, in water solution at the applied pH (1.8 to 1.9), is a well-defined dimer with no detectable difference between the two monomers. The association of the two monomers in the solution dimer is relatively loose as compared with the crystal dimer. The overall secondary and tertiary structures of the monomers in the 2Zn crystal hexamer is found to be preserved. The conformation-averaged NMR structures obtained for the monomer is close to the structure of molecule 1 in the hexamer of the 2Zn insulin crystal. However, minor, but significant deviations from this structure, as well as from the structure of monomeric insulin in solution, exist and are ascribed to the absence of the hexamer and crystal packing forces, and to the presence of monomer-monomer interactions, respectively. Thus, the monomer in the solution dimer shows a conformation similar to that of the crystal monomer in molecular regions close to the monomer-monomer interface, whereas it assumes a conformation similar to that of the solution structure of monomeric insulin in other regions, suggesting that B9(Asp) insulin adopts a monomer-like conformation when this is not inconsistent with the monomer-monomer arrangement in the dimer. 相似文献
20.
Solution structure of human insulin-like growth factor 1: a nuclear magnetic resonance and restrained molecular dynamics study 总被引:11,自引:0,他引:11
The solution structure of human insulin-like growth factor 1 has been investigated with a combination of nuclear magnetic resonance and restrained molecular dynamics methods. The results show that the solution structure is similar to that of insulin, but minor differences exist. The regions homologous to insulin are well-defined, while the remainder of the molecule exhibits greater disorder. The resultant structures have been used to visualize the sites for interaction with a number of physiologically important proteins. 相似文献