首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkenylhydrolase (EC 3.3.2.2; EC 3.3.2.5) has been purified 200-fold to a specific activity of 8.0 mumol/min per mg from rat liver microsomes with 51% of the activity recovered. Purification was accomplished by solubilization of the membrane-associated enzyme with octylglucoside and chromatographic resolution on sequential DEAE cellulose and hydroxylapatite (HPLC) columns in the presence of octylglucoside. The partially purified enzyme, specific for the 2-deacylated plasmalogen, lysoplasmalogen (1-alk-1'-enyl-sn-glycero-3-phosphocholine or -ethanolamine), had no hydrolytic activity with intact plasmalogens or 1-acyl-sn-glycero-3-phosphoethanolamine. Kinetic analyses of enzymic activity demonstrated apparent Km values of 5.5 and 42 microM for 1-alk-1'-enyl-sn-glycero-3-phosphocholine and 1-alk-1'-enyl-sn-glycero-3-phosphoethanolamine, respectively. The Vmax values were 11.7 and 13.6 mumol/min per mg with the choline and ethanolamine substrates, respectively. The optimal pH range was between 6.6 and 7.1 with both substrates; the energy of activation for the purified enzyme was 15,200 cal. The enzyme required no cofactors and was unaffected by low millimolar concentrations of Ca2+, Mg2+, Mn2+ or EDTA. It was inhibited by the sulfhydryl-reacting reagent, p-chloromercuribenzoate. Mono- or diradylglycerophospholipids or sphingomyelin did not affect the enzymic activity at 37 degrees C. Activity of the purified enzyme, destroyed by freezing at -20 degrees C, was preserved if stored at this temperature in the presence of 300-600 microM diradylglycerophosphocholine or 50% glycerol. A continuous spectrophotometric assay, adapted in our laboratory for the assay of liver alkenylhydrolase, facilitated this purification. This is the first reported purification of alkenylhydrolase.  相似文献   

2.
A phosphatidylinositol kinase in rat mast cell granules   总被引:2,自引:0,他引:2  
Intact granules were isolated from sonicated purified rat serosal mast cells on a Percoll gradient. The granules were shown to contain a highly active phosphatidylinositol kinase that catalyzes the formation of diphosphoinositide from endogenous phosphatidylinositol in the granule membrane. The enzyme requires ATP and Mg2+ or Mn2+ for activity; Ca2+, fluoride and cyclic AMP are inhibitory. The Km for ATP is 25 microM. The initial reaction is rapid, but the response ceases within a few minutes. A comparison of the rate of phosphorylation of intact and broken membrane granules suggests that the phosphorylation occurs on the outer (cytoplasmic) surface of the granules.  相似文献   

3.
A cyclic AMP phosphodiesterase form of rat brain cytosol was purified by means of affinity chromatography on an immobilized analog of the specific inhibitor rolipram, followed by an exclusion chromatography step. The resulting preparation presented two protein bands in polyacrylamide gel electrophoresis, both with phosphodiesterase activity. Kinetics of cyclic AMP hydrolysis by the purified enzyme proved of the Michaelis type, with a Km of 3 microM, while hydrolysis of cyclic GMP displayed anomalous negatively cooperative kinetics. At micromolar concentrations, this enzyme from hydrolyzed highly specifically cyclic AMP (50-fold faster than cyclic GMP). Cyclic GMP proved a poor competitor of cyclic AMP hydrolysis (Ki 1.04 mM). The neurotropic compound, rolipram, strongly inhibited the enzyme, in a competitive manner (Ki 0.9 microM). This enzyme displayed a molecular mass of around 44 kDa as determined by exclusion chromatography, but two molecular masses of 42 kDa and 89 kDa were observable by electrophoresis on a polyacrylamide gradient gel, compatible with an equilibrium between dimeric and monomeric forms. Isoelectric focusing of the preparation gave rise to two activity peaks of pI 4.8 and 6.7, with identical properties, probably representing two charge isomers of the same protein. An enzyme prepared from rat heart cytosol by the same techniques as for brain phosphodiesterase isolation shared numerous characteristics with the enzyme of cerebral origin, suggesting identity of the rolipram-sensitive form between the two tissues. Since the rolipram-sensitive form detected in crude brain preparations markedly differs from the above-described isolated enzyme, both by its molecular mass in exclusion chromatography and by its pI, it is suggested that an alteration of the native protein, due to dissociation of putative subunits, occurs during the purification procedure.  相似文献   

4.
Two cyclic nucleotide phosphodiesterase activities were separated by ion-exchange chromatography of cytosol from male mouse germ cells. A form eluted at low salt concentration showed high affinity (Km congruent to 2 microM) and low affinity (Km congruent to 20 microM) for cyclic AMP, and high affinity (Km congruent to 3.5 microM) for cyclic GMP. A second form, eluted at high salt concentration, showed high affinity (Km congruent to 5 microM) for cyclic AMP and was similar to a phosphodiesterase activity described in rat germ cells. The present study was performed to characterize the first form, which represents most of the phosphodiesterase activity in mouse germ cells. The enzyme was sensitive to Ca2+ and calmodulin stimulation, which increased its activity 3-4-fold. Calmodulin stimulation depended on direct interaction of the activator with the enzyme, as indicated by the reversible changes in the chromatographic elution pattern in the presence of Ca2+, as well as by the increase in the sedimentation coefficient in the presence of calmodulin. Reciprocal inhibition kinetics between cyclic AMP and cyclic GMP for the calmodulin-dependent form demonstrated a non-competitive inhibition between the two substrates, suggesting the presence of separate catalytic sites. This is in agreement with kinetic parameters and different thermal stabilities of cyclic AMP- and cyclic GMP-hydrolysing activities. Furthermore, the relevant change in s value, depending on the absence or presence of Ca2+ and calmodulin, suggested that the enzyme is composed of subunits, which aggregate in the presence of the activator. A model for catalytic site composition and reciprocal interaction is also proposed.  相似文献   

5.
We have separated and characterized a Ca2+- and calmodulin-insensitive cyclic nucleotide phosphodiesterase from rat liver supernatant as well as an analogous enzyme from HTC hepatoma cells. Chromatography of rat liver supernatant on DEAE-cellulose in the presence and subsequently in the absence of 0.1 mM-CaCl2 resulted in the separation of two distinct phosphodiesterase activities, both of which preferentially hydrolysed cyclic GMP rather than cyclic AMP. One enzyme, E-Ib, was activated in the presence of Ca2+ and calmodulin, and the other, E-Ia, was not. The E-Ia enzyme, which did not bind to calmodulin-Sepharose, had Mr 325 000 and displayed anomalous kinetic behaviour [Km (cyclic GMP) 1.2 microM; Km (cyclic AMP) 15.4 microM]. The E-Ib enzyme, which bound to calmodulin-Sepharose in the presence of Ca2+, had Mr 150 000 and exhibited Michaelis-Menten kinetics for hydrolysis of cyclic GMP [Km (basal) 6.5 microM; Km (activated) 12.0 microM]. E-Ia activity was diminished by incubation with alpha-chymotrypsin and was unaffected by the action of a rat kidney lysosomal proteinase. Partial hydrolysis of E-Ib enzyme by alpha-chymotrypsin or the kidney proteinase resulted in irreversible activation of the enzyme. The E-I enzyme isolated from HTC hepatoma cells was similar to the rat liver E-Ia enzyme in many respects. Its apparent Mr was 325 000. Its activity was unaffected by calmodulin in the presence of Ca2+ or by incubation with the kidney proteinase, and was decreased by digestion with alpha-chymotrypsin. Unlike the liver E-Ia enzyme, however, the hepatoma enzyme exhibited normal kinetic behaviour, with Km (cyclic GMP) 3.2 microM. Although HTC cells contain two other phosphodiesterases analogous to those in rat liver and a calmodulin-like activator of phosphodiesterase, no calmodulin-sensitive phosphodiesterase was detected.  相似文献   

6.
A low-Km cyclic nucleotide phosphodiesterase solubilised from rat liver membranes by mild proteolysis with chymotrypsin has been purified to apparent homogeneity. The purification included chromatography on cellulose phosphate, Ecteola-cellulose, hydroxyapatite, a theophylline affinity matrix and HPLC on a DEAE-substituted column. The purified enzyme has linear kinetic plots with a Km of 0.24 microM and a Vmax of 6.2 mumol mg-1 min-1 with cyclic AMP as a substrate. It also hydrolyses cyclic GMP with a Km of 0.17 microM and a Vmax which is about a third of that with cyclic AMP. Cyclic GMP is also a competitive inhibitor of cyclic AMP hydrolysis with a Ki of 0.18 microM. The proteolytically solubilised enzyme has a subunit molecular mass of 73 kDa by SDS gel electrophoresis and of 130 kDa by HPLC size-exclusion chromatography, suggesting that it exists as a dimer. A partially purified preparation of this enzyme was used to raise antiserum in a sheep. The antiserum immunoprecipitated activity from liver and adipose tissue of rat and mouse. It had little activity against phosphodiesterase from other rat tissues or other species. Insulin-activated phosphodiesterase from both adipocytes and hepatocytes was immunoprecipitated by the antiserum suggesting that the purified enzyme was an insulin-sensitive phosphodiesterase.  相似文献   

7.
M Le Hir  R Gandhi  U C Dubach 《Enzyme》1989,41(2):87-93
5'-Nucleotidase activity was solubilized from a particulate fraction of rat renal homogenates by Sulphobetaine 14. An 11,430-fold purification was achieved by a two-step chromatographic procedure using concanavalin-A Sepharose and ADP-agarose. SDS-PAGE of the purified material revealed a single polypeptide band with a Mr of 69,000. The enyzme exhibited absolute specificity for 5'-mononucleotides. Among 7 tested substrates, adenosine monophosphate (AMP) showed the highest value of V/Km. The Km for 5'-AMP is 5.1 mumol/l and V is 632 mumol/min/mg. The plot of activity versus pH shows a broad plateau between pH 6.8 and 8.0. The hydrolysis of 5'-AMP was competitively inhibited by adenosine 5'-triphosphate (ATP; Ki = 1.2 mumol/l), adenosine 5'-diphosphate (ADP; Ki = 0.032 mumol/l) and alpha, beta-methyleneadenosine 5'-diphosphate (AOPCP; Ki = 0.005 mumol/l). All of the 5 detergents tested activated the enzyme. Sulphobetaine 14 was the most potent and resulted in a 4-fold stimulation by increasing V without change of Km. Addition of exogenous divalent cations was not required for activity. However, the enzyme was inhibited by EDTA. This inhibition was overcome by the addition of Co2+, Mn2+ and to a lesser extent of Mg2+. Hg2+, Zn2+, Cu2+ and Pb2+ inhibited in the low micromolar range. The properties of this enzyme from the rat kidney are similar to those reported in the literature for ecto 5'-nucleotidases from other sources.  相似文献   

8.
gamma-Aminobutyraldehyde dehydrogenase was purified to homogeneity from bovine brain. The molecular weight of the native enzyme and subunit were 230,000 and 58,000, respectively. The Km value for gamma-aminobutyraldehyde and NAD+ were 154 microM and 53 microM, respectively. The optimum pH and temperature were 8.0 and 37 degrees C, respectively. N-terminal sequence of the enzyme is as follows: NH2-S-A-A-T-Q-A-V-P-T-P-N-Q-Q-COOH. The enzyme migrates on isoelectric focusing with pI = 6.5. Enhancement of the enzyme activity by polyamine, Mn2+, Mg2+ and inhibition by gamma-aminobutyric acid and Zn2+ will enhance the limited information on regulation of the gamma-ABALDH activity and GABA metabolism to some extent.  相似文献   

9.
The predominant protein of canine seminal plasma is an enzyme   总被引:1,自引:0,他引:1  
One protein in canine seminal plasma accounts for over 90% of the total protein and is present at the high concentration of approximately 10 mg/ml. We demonstrate that this predominant protein is a proteolytic enzyme. The enzyme has been purified and migrates as a single symmetrical peak of apparent molecular mass of 29,000 daltons on a column of Sephadex G-75 and as a single band of approximately 30,000 daltons when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. Under reducing conditions, the enzyme dissociates into subunits of 15,000 and 12,000-14,000 daltons. The 15,000-dalton subunit contains the enzyme active site as determined by labeling with [3H]diisopropyl fluorophosphate. The enzyme hydrolyzed the synthetic ester substrates N alpha-benzoyl-L-arginine ethyl ester and N alpha-tosyl-L-arginine methyl ester with maximum specific activities at 25 degrees C of 105 mumol/min/mg and 33 mumol/min/mg, and Km values of 7.4 and 9.1 mM, respectively. The enzyme exhibited a pH optimum of 8.0. The metal ions, Cu2+, Zn2+, Cd2+, and Co2+ were reversible inhibitors and diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride irreversible inhibitors of enzymatic activity. By immunofluorescence, the enzyme can be detected on the tail and postacrosomal regions of washed ejaculated canine sperm, but it is absent from epididymal sperm.  相似文献   

10.
1. The cyclic AMP phosphodiesterase in homogenates of the submaxillary gland and pancreas was found to be associated mainly with the 300,000 times g supernatant fraction. A Lineweaver-Burk plot showed a high-affinity (Km app. = 1.6 muM) and a low-affinity (Km app. greater than 100muM) component for the cyclic AMP substrate. The enzyme was magnesium dependent, and strongly inhibited by papaverine, theophylline and caffeine. Cyclic GMP inhibited cyclic AMP phosphodiesterase, but only in concentrations greatly exceeding that of the cyclic AMP. Calcium did not alter the activity of the enzyme. The activity of the submaxillary cyclic AMP phosphodiesterase was not influenced by noradrenaline, dopamine, histamine, 5-hydroxytryptamine or gamma-amino butyric acid, and that of the pancreatic enzyme by acetylcholine, pancreozymin or secretin. 2. Adenylate cyclases from guinea-pig submaxillary gland and cat pancreas are particulate enzymes. The highest specific activity was recovered from the 1500 times g pellet. Guineo-pig submaxillary adenylate cyclase was activated by fluoride, noradrenaline, isoprenaline and adrenaline. The noradrenaline activation was blocked by the beta-adrenoceptor blocker, propranolol, but not by the alphs-adrenoceptor blocker, phentolamine. Neither acetylcholine nor carbachol had any effect on the adenylate cyclase activity. The apparent Km value for the 10- minus 4 M noradrenaline activated adenylate cyclase activity was completely aboliched by 5 mM calcium. Cat pancreatic adenylate cyclase was clearly and consistently activated by secretin, but not by pancreozymin or carbachol.  相似文献   

11.
A phospholipase C which hydrolyzes [14C]phosphatidylcholine has been purified 1782-fold from 70% ammonium sulfate extract of bull seminal plasma. Purification steps included acid precipitation, chromatography on DEAE-Sephacel, concanavalin A, octyl-Sepharose 4B and Ultrogel AcA 34. The final step provided homogeneous phospholipase C as determined by polyacrylamide gel electrophoresis. The enzyme comprised two subunits, Mr 69,000 and Mr 55,000, respectively. The enzyme had an optimum at pH 7.2 and pI 5.0. EDTA, Cd2+, Pb2+, Ni2+, Fe2+, and Zn2+ inhibited phospholipase C activity. Km and Vmax on p-nitrophenyl phosphorylcholine and phosphatidylcholine substrates were 20 mM and 17 mumol/min/mg of the purified enzyme and 100 microM and 18 mumol/min/mg of the purified enzyme, respectively. The enzyme appeared to be localized in the acrosome as judged by the binding of anti-phospholipase C to the acrosome. This phospholipase C, unlike other known phospholipases (C), did not hydrolyze [1-14C]phosphatidylinositol. The testicular extract of the guinea pig contained inactive phospholipase C which was activated on incubation with acrosin and trypsin but not chymotrypsin.  相似文献   

12.
A Ca2+, calmodulin-dependent protein kinase from rat brain with a MW of 640,000 phosphorylated calmodulin-sensitive phosphodiesterase from the brain cytosol. The Km of the enzyme for the phosphodiesterase was 5.0 microM and the Vmax was 212 nmol/mg/min. The amount of phosphate incorporated into the phosphodiesterase was 0.7 mol/mol subunit. Phosphorylation of the phosphodiesterase enhanced the enzyme activity by about 20% for hydrolysis of a higher concentration of cyclic AMP.  相似文献   

13.
The enzymes responsible for the phosphorylation of deoxyadenosine and nucleoside analogs are important in the pathogenesis of adenosine deaminase deficiency and in the activation of specific anticancer and antiviral drugs. We examined the role of adenosine kinase in catalyzing these reactions using an enzyme purified 4000-fold (2.1 mumol/min/mg) from human placenta. The Km values of deoxyadenosine and ATP are 135 and 4 microM, respectively. Potassium and magnesium are absolute requirements for deoxyadenosine phosphorylation, and 150 mM potassium and 5 mM MgCl2 are critical for linear kinetics. With only 0.4 mM MgCl2 in excess of ATP levels, the Km for deoxyadenosine is increased 10-fold. ADP is a competitive inhibitor with a Ki of 13 microM with variable MgATP2-, while it is a mixed inhibitor with a Ki and Ki' of 600 and 92 microM, respectively, when deoxyadenosine is variable. AMP is a mixed inhibitor with Ki and Ki' of 177 and 15 microM, respectively, with variable deoxyadenosine; it is a non-competitive inhibitor with a Ki of 17 microM and Ki' of 27 microM with variable ATP. Adenosine kinase phosphorylates adenine arabinoside with an apparent Km of 1 mM using deoxyadenosine kinase assay conditions. The Km values for 6-methylmercaptopurine riboside and 5-iodotubercidin, substrates for adenosine kinase, are estimated to be 4.5 microM and 2.6 nM, respectively. Other nucleoside analogs are potent inhibitors of deoxyadenosine phosphorylation, but their status as substrates remains unknown. These data indicate that deoxyadenosine phosphorylation by adenosine kinase is primarily regulated by its Km and the concentrations of Mg2+, ADP, and AMP. The high Km values for phosphorylation of deoxyadenosine and adenine arabinoside suggest that adenosine kinase may be less likely to phosphorylate these nucleosides in vivo than other enzymes with lower Km values. Adenosine kinase appears to be important for adenosine analog phosphorylation where the Michaelis constant is in the low micromolar range.  相似文献   

14.
Approximately 94% of rat parotid cyclic AMP phosphodiesterase activity measured at a substrate concentration of 0.1 microM cyclic AMP was found in the 100,000 X g supernatant while the remaining enzyme activity was in the particulate fraction. Incubation of parotid slices with 10 microM isoproterenol resulted in approximately 40% activation of the cyclic AMP phosphodiesterase activity of the 100,000 X g supernatant. The enzyme activity in the particulate fraction was unaffected. The activation resulted from an increase in the value of the Vmax while the apparent Km (0.51 microM) was unaffected. The concentration of isoproterenol required to give half-maximal activation was 0.34 microM. The activation was rapid, became significant after 2 min and reached maximum after 30 min incubation of the parotid slices with isoproterenol. The activation of the enzyme activity by isoproterenol could be blocked by propanolol but was unaffected by cycloheximide. Dibutyryl-cyclic AMP was also effective while phenylephrine and carbamylcholine were ineffective in increasing the activity of the enzyme.  相似文献   

15.
Two enzymes displaying cyclic GMP-stimulated cyclic AMP phosphodiesterase activity were purified from rat liver to apparent homogeneity: a 'particulate enzyme' found as an integral membrane protein associated with the plasma membrane, and a 'soluble' enzyme found in the cytosol. The physical properties of these enzymes were very similar, being dimers of Mr 134,000, composed in each instance of two subunits of Mr = 66,000-67,000. Both enzymes showed similar kinetics for cyclic AMP hydrolysis. They are both high-affinity enzymes, with kinetic constants for the particulate enzyme of Km = 34 microM and Vmax. = 4.0 units/mg of protein and for the cytosolic enzyme Km = 40 microM and Vmax. = 4.8 units/mg of protein. In both instances hydrolysis of cyclic AMP appeared to show apparent positive co-operativity, with Hill coefficients (happ.) of 1.5 and 1.6 for the particulate and cytosolic enzymes respectively. However, in the presence of 2 microM-cyclic GMP, the hydrolysis of cyclic AMP obeyed Michaelis kinetics (happ. = 1) for both enzymes. The addition of micromolar concentrations of cyclic GMP had little effect on the Vmax. for cyclic AMP hydrolysis, but lowered the Km for cyclic AMP hydrolysis to around 20 microM in both cases. However, at low cyclic AMP substrate concentrations, cyclic GMP was a more potent activator of the particulate enzyme than was the soluble enzyme. The activity of these enzymes could be selectively inhibited by cis-16-palmitoleic acid and by arachidonic acid. In each instance, however, the hydrolysis of cyclic AMP became markedly more sensitive to such inhibition when low concentrations of cyclic GMP were present. Tryptic peptide maps of iodinated preparations of these two purified enzyme species showed that there was considerable homology between these two enzyme forms.  相似文献   

16.
Glycerate kinase from leaves of C3 plants   总被引:2,自引:0,他引:2  
D-Glycerate-3-kinase (EC 2.7.1.31) in six C3 species, including dicots (Pisum sativum, Spinacea oleracea, Antirrhinum majus) and monocots (Secale cereale, Hordeum vulgare, Avena sativa), ranged in activity from 44 to 353 mumol X mg chl-1 X h-1. Studies with protoplast extracts of these species indicate that the enzyme is localized in the chloroplasts. Glycerate kinase was partially purified from Secale (rye, 288-fold) and Pisum (pea, 252-fold) chloroplasts by DEAE-cellulose chromatography, sucrose gradient centrifugation, and chromatofocusing. The enzymes from both species showed similar physical (Mr = 41,000, pI = 4.6-4.7) and kinetic (Km ATP = 655 to 692 microM, Km D-glycerate = 180-188 microM) properties. Activity of the enzyme was essentially insensitive to variations in assay pH from 6.4 to 9.0 and to energy charge variations from 0.4 to 1.0. Rye glycerate kinase was able to utilize UTP and GTP but less effectively than ATP. Neither ADP nor pyrophosphate served as an energy source. Mn2+, Co2+, Ca2+, and Sr2+ could function as metal cofactors, although to a lesser extent than Mg2+. Millimolar levels of sulfate were found to significantly inhibit the enzyme while similar concentrations of other anions (Cl-, NO-3, NO-2, and acetate) had little or no effect.  相似文献   

17.
M C Alliegro  H Schuel 《Biochemistry》1985,24(15):3926-3931
A serine protease from sea urchin eggs has been isolated by affinity chromatography on soybean trypsin inhibitor-agarose. Benzamidine hydrochloride was included to minimize autodegradation. We present data on the properties of the protease with respect to molecular weight and its interaction with trypsin inhibitors and substrates. The molecular weight of the enzyme is 47 000 by gel filtration under nonreducing conditions and 35 000 by electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol. The pH optimum and Km with N alpha-benzoyl-L-arginine ethyl ester (BAEE) are 8.0 and 75 microM, respectively. The specific activity is comparable to that of bovine pancreatic trypsin. Proteolytic activity was measured by beta-casein hydrolysis. The caseinolytic activity is completely inhibited by 1 mumol of soybean trypsin inhibitor (SBTI) per micromole of enzyme. BAEE esterase activity is inhibited competitively by SBTI (Ki = 1.6 nM), lima bean trypsin inhibitor (150 nM), chicken ovomucoid (100 nM), and leupeptin (130 nM). Bowman-Birk inhibitor, benzamidine hydrochloride, and antipain are also inhibitors of the purified enzyme. Inhibition by phenylmethanesulfonyl fluoride and N alpha-p-tosyl-L-lysine chloromethyl ketone indicates the presence of serine and histidine residues in the active center, respectively. The chymotrypsin inhibitor L-1-(tosylamido)-2-phenylethyl chloromethyl ketone is ineffective. The protease is susceptible to autodegradation which can result in the appearance of a minor 23-kilodalton component. The egg protease appears to be similar in many respects to trypsins and trypsin-like enzymes isolated from a wide variety of sources, including sea urchin and mammalian sperm.  相似文献   

18.
Intact spermatozoa from rat cauda epididymides possess an ecto-(cyclic AMP-dependent protein kinase) activity that causes the transfer of the terminal phosphate group of ATP to the serine residues of all the histone fractions. The enzyme showed a high degree of substrate specificity for the phosphorylation of histones rather than protamine, casein and phosvitin. The cell-external-surface protein kinase requires Mg2+ for activity, and other bivalent cations such as Mn2+ and Co2+ can substitute partially for Mg2+, whereas Ca2+ and Zn2+ are potent inhibitors of the enzyme. The enzyme has markedly higher affinity for cyclic AMP than for other cyclic nucleotides for its activation, with an apparent Km value for cyclic AmP of 80 nM. Spermatozoal ecto-kinase activity is not due to contamination of broken cells or any possible cell damage during incubation and isolation of spermatozoa. There was no loss of kinase activity from the cells when washed with 2 mM-EDTA, and the histones phosphorylated by intact spermatozoa were located outside the cells. Protein kinase activity of intact cells was strongly inhibited (approx. 90%) by p-chloromercuribenzenesulphonic acid (10 microM), which is believed not to enter the cells. These data provide further support for the localization of a protein kinase on the external surface of spermatozoa.  相似文献   

19.
Bradykinin-hydrolyzing enzyme was purified 200-fold from a soluble fraction of cornified cells from 2-day-old rat epidermis. The enzyme has an Mr of 80,000 as identified by SDS polyacrylamide gel electrophoresis and HPLC gel filtration. The isoelectric point of the enzyme is 5.05. The enzyme hydrolyzed Phe5-Ser6 of bradykinin and seven bradykinin-related peptides, and Tyr5-Ser6 of Tyr5-bradykinin. Production of bradykinin fragments, Arg-Pro-Pro-Gly-Phe and Ser-Pro-Phe-Arg, proceeded in a stoichiometric fashion. Km and Vmax values for bradykinin were 33 microM and 22.2 mumol/min per mg, respectively. The enzyme did not hydrolyze azocasein, denatured hemoglobin or synthetic substrates for other epidermal proteinases. The enzyme activity was enhanced by reducing agents and inhibited by sulfhydryl-blocking agents and divalent cations. Diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride had no effects. The enzyme has a pH optimum of 7.0-7.5 and is stable at 4 degrees C for 1 month, but loses activity completely at 60 degrees C for 10 min. The epidermal endopeptidase differs in several properties from endooligopeptidase A purified from brain which hydrolyzes Phe5-Ser6 of bradykinin.  相似文献   

20.
Succinate semialdehyde dehydrogenase (SSADH) has been purified from potato tubers with 39% yield, 832-fold purification, and a specific activity of 6.5 units/mg protein. The final preparation was homogeneous as judged from native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel filtration on Sepharose 6B gave a relative molecular mass (Mr) of 145,000 for the native enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a single polypeptide band of Mr 35,000. Thus the enzyme appears to be a tetramer of identical subunits. Chromatofocusing of the enzyme gave a pI of 8.7. The enzyme was maximally active at pH 9.0 in 100 mM sodium pyrophosphate buffer. In 100 mM Tris-HCl buffer, pH 9.0, the enzyme gave only 20% of the activity found in pyrophosphate buffer and had a shorter linear rate. The enzyme was specific for succinate semialdehyde (SSA) as substrate and could not utilize acetaldehyde, glyceraldehyde 3-phosphate, malonaldehyde, lactate, or ethanol as substrates. The enzyme was also specific for NAD+ as cofactor and NADP+ and 3-acetylpyridine adenine dinucleotide could not serve as cofactors. Potato SSADH had a Km of 4.6 microM for SSA when assayed in pyrophosphate buffer and was inhibited by that substrate at concentrations greater than 120 microM. The Km for NAD+ was found to be 31 microM. The enzyme required exogenous addition of a thiol compound for maximal activity and was inhibited by the thiol-directed reagents p-hydroxymercuribenzoate, dithionitrobenzoate, and N-ethyl-maleimide, by heavy metal ions Hg2+, Cu2+, Cd2+, and Zn2+, and by arsenite. These results indicate a requirement of a SH group for catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号