首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stress failure in pulmonary capillaries   总被引:1,自引:0,他引:1  
In the mammalian lung, alveolar gas and blood are separated by an extremely thin membrane, despite the fact that mechanical failure could be catastrophic for gas exchange. We raised the pulmonary capillary pressure in anesthetized rabbits until stress failure occurred. At capillary transmural pressures greater than or equal to 40 mmHg, disruption of the capillary endothelium and alveolar epithelium was seen in some locations. The three principal forces acting on the capillary wall were analyzed. 1) Circumferential wall tension caused by the transmural pressure. This is approximately 25 dyn/cm (25 mN/m) at failure where the radius of curvature of the capillary is 5 microns. This tension is small, being comparable with the tension in the alveolar wall associated with lung elastic recoil. 2) Surface tension of the alveolar lining layer. This contributes support to the capillaries that bulge into the alveolar spaces at these high pressures. When protein leakage into the alveolar spaces occurs because of stress failure, the increase in surface tension caused by surfactant inhibition could be a powerful force preventing further failure. 3) Tension of the tissue elements in the alveolar wall associated with lung inflation. This may be negligible at normal lung volumes but considerable at high volumes. Whereas circumferential wall tension is low, capillary wall stress at failure is very high at approximately 8 x 10(5) dyn/cm2 (8 x 10(4) N/m2) where the thickness is only 0.3 microns. This is approximately the same as the wall stress of the normal aorta, which is predominantly composed of collagen and elastin. The strength of the thin part of the capillary wall is probably attributable to the collagen IV of the basement membranes. The safety factor is apparently small when the capillary pressure is raised during heavy exercise. Stress failure causes increased permeability with protein leakage, or frank hemorrhage, and probably has a role in several types of lung disease.  相似文献   

2.
The entire alveolar surface is lined by a thin fluid continuum. As a consequence, surface forces at the air-liquid interface are operative, which in part are transmitted to the delicate lung tissue. Morphologic and morphometric analyses of lungs show that the alveolar surface forces exert a moulding effect on alveolar tissue elements. In particular, in lungs at low degrees of inflation, equivalent to the volume range of normal breathing, there is a derecruitment of alveolar surface area with increasing surface tensions which reflects equilibrium configurations of peripheral air spaces where the sum of tissue energy and surface energy is minimum. Thus, changes in surface tension alter the recoil pressure of the lung directly and indirectly by deforming lung tissue and hence changing tissue tensions. However, the interplay between tissue and surface forces is rather complex, and there is a marked volume dependence of the shaping influence of surface forces. With increasing lung volumes the tissue forces transmitted by the fiber scaffold of the lung become the predominant factor of alveolar micromechanics: at lung volumes of 80% total lung capacity or more, the alveolar surface area-volume relation is largely independent of surface tension. Most important, within the range of normal breathing, the surface tension, its variations and the associated variations in surface area are small. The moulding power of surface forces also affects the configuration of capillaries, and hence the microcirculation, of free cellular elements such as the alveolar macrophages beneath the surface lining layer, and of the surfaces of the peripheral airways. Still enigmatic is the coupling mechanism between the fluid continua of alveoli and airways which might also be of importance for alveolar clearance. As to the surface active lining layer of peripheral air spaces, which determines alveolar surface tension, its structure and structure-function relationship are still ill-defined owing to persisting problems of film preservation and fixation. Electron micrographs of alveolar tissue, of lining layers of captive bubbles, and scanning force micrographs of surfactant films transferred on mica plates reveal a complex structural pattern which precludes so far the formulation of an unequivocal hypothesis.  相似文献   

3.
4.
Analysis of adhesion of large vesicles to surfaces.   总被引:2,自引:1,他引:1       下载免费PDF全文
An experimental procedure that can be used to measure the interfacial free energy density for the adhesion of membranes of large vesicles to other surfaces is outlined and analyzed. The approach can be used for both large phospholipid bilayer vesicles and red blood cells when the membrane force resultants are dominated by isotropic tension. The large vesicle or red cell is aspirated by a micropipet with sufficient suction pressure to form a spherical segment outside the pipet. The vesicle is then brought into close proximity of the surface to be tested and, the suction pressure reduced to permit adhesion, and the new equilibrium configuration is established. The mechanical analysis of the equilibrium shape provides the interfacial free energy density for the surface affinity. With this approach, the measurable range of membrane surface affinity is 10(-4)-3 erg/cm2 for large phospholipid bilayer vesicles and 10(-2)-10 erg/cm2 for red blood cells.  相似文献   

5.
It is generally believed that lung alveoli contain an extracellular aqueous layer of surfactant material, which is allegedly required to prevent alveolar collapse at small lung volume; the surfactant's major constituent is a fully saturated phospholipid, referred to as dipalmitoyl lecithin or DPL. I herein demonstrate that the surfactant hypothesis of alveolar stability is fundamentally wrong. Although DPL is synthesized inside type II epithelial cells and stored in the typical inclusion bodies therein and lowers surface tension to zero in the surface balance, there is no evidence to the effect that type II cells secrete the DPL surfactant into the aqueous intra-alveolar layer which is shown by electron microscopy in support of the surfactant theory. To the contrary, all the evidence indicates that, when seen, such an extracellular layer is an artifact. This is probably upon the damage glutaraldehyde inflicts onto alveolar structures during fixation of air-inflated lung tissue. Furthermore, several cogent arguments invalidate the belief that an extracellular layer of DPL and serum proteins is present in the alveoli of normal lung. In light of these arguments, a surface tension role of DPL in alveolar stability is excluded. Three hypotheses for an alternative role of DPL in respiration mechanics are proposed. They are: (a) alveolar clearance by viscolytic and surfactant action (bubble or foam formation) on the aqueous systems which are present in lung alveoli during edema and in prenatal life and which would otherwise be impervious to air; (b) homeostasis of blood palmitate in normal lung; (c) modulation of the elasticity of terminal lung tissue by the intact inclusion bodies and parts thereof inside type II cells in normal lung.  相似文献   

6.
Pulmonary surfactant forms a monolayer of lipids and proteins at the alveolar air/liquid interface. Although cholesterol is a natural component of surfactant, its function in surface dynamics is unclear. To further elucidate the role of cholesterol in surfactant, we used a captive bubble surfactometer (CBS) to measure surface activity of spread films containing dipalmitoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylglycerol (DPPC/POPC/POPG, 50/30/20 molar percentages), surfactant protein B (SP-B, 0.75 mol %), and/or surfactant protein C (SP-C, 3 mol %) with up to 20 mol % cholesterol. A cholesterol concentration of 10 mol % was optimal for reaching and maintaining low surface tensions in SP-B-containing films but led to an increase in maximum surface tension in films containing SP-C. No effect of cholesterol on surface activity was found in films containing both SP-B and SP-C. Atomic force microscopy (AFM) was used, for the first time, to visualize the effect of cholesterol on topography of SP-B- and/or SP-C-containing films compressed to a surface tension of 22 mN/m. The protrusions found in the presence of cholesterol were homogeneously dispersed over the film, whereas in the absence of cholesterol the protrusions tended to be more clustered into network structures. A more homogeneous dispersion of surfactant lipid components may facilitate lipid insertion into the surfactant monolayer. Our data provide additional evidence that natural surfactant, containing SP-B and SP-C, is superior to surfactants lacking one of the components, and furthermore, this raises the possibility that the cholesterol found in surfactant of warm-blooded mammals does not have a function in surface activity.  相似文献   

7.
The surface monolayer theory of Clements was tested on open surface films of calf lung surfactant extract in a leak-free vertical film surface balance in which alveolar area (A) changes in each lung zone were simulated in accordance with the theory. We found that: 1) physiologically necessary low surface tension (gamma), < 4 dyn/cm, was sustained only by continuous film compression ("expiration"); 2) compression from A equivalent to total lung capacity to functional residual capacity produced fleeting gamma reduction in all zones and quick reversal to high gamma with A changes that simulated tidal volume (VT) breathing at both 14 (adult) and 40 (neonatal) cpm; 3) phase differences between gamma and A axes of VT loops that indicate mixed surface film composition may be attributable to film inertia and viscoelasticity; 4) estimated alveolar retraction pressure due to gamma (P gamma) exceeds "net" transpulmonary pressure, i.e., favors alveolar collapse, under virtually all conditions of the theory in all zones; 5) return to transient, fleeting low gamma in successive VT cycles was determined by the inherent difference in compression and decompression rates, which results in exhaustion of available A in very few cycles; 6) the "sigh", which restores stable low gamma according to the theory, actually produced unstable high gamma during virtually all phases of the maneuver. In contrast, closed bubble films of the surfactant were structurally stable and produce stable near 0 gamma and P gamma.  相似文献   

8.
A species comparison of alveolar size and surface forces   总被引:1,自引:0,他引:1  
The independent roles of alveolar size and surface tension in relation to lung stability were investigated in 11 different mammalian species whose body weight ranged from 0.03 to 50 kg. This range in species provided a wide variation in subgross anatomy as well as a fourfold range in alveolar diameter. Alveolar diameter was estimated from the mean linear intercept (Lm) of fixed lungs. Quasi-static pressure-volume curves were determined in excised lungs and the percent volume remaining on deflation from total lung capacity at 30 cmH2O to 10 cmH2O (%V10) provided an index of deflation stability related to functional surfactant. Surface tension of lung extract was measured in the Wilhelmy balance, and the minimum surface tension measured provided an index of surface tension lowering capacity of surfactant. Relationships of %V10 with alveolar diameter and surface tension with alveolar diameter were examined for correlations. Our results indicated that despite a range in Lm between 31 and 133 micron (mouse to pig), %V10 did not change in proportion with Lm across species. Similarly, minimum surface tension was about the same (6.1 to 8.8 dyn/cm) across a threefold difference in alveolar diameter. These results suggest that a stable alveolar configuration is maintained by both surface and tissue forces in a complex manner yet to be analyzed.  相似文献   

9.
The structures formed by a pulmonary surfactant model system of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and recombinant surfactant-associated protein C (SP-C) were studied using scanning force microscopy (SFM) on Langmuir-Blodgett films. The films appeared to be phase separated, in agreement with earlier investigations by fluorescence light microscopy. There were smooth polygonal patches of mostly lipid, surrounded by a corrugated rim rich in SP-C. When the films were compressed beyond the equilibrium surface pressure, the protein-rich phase mediated the formation of layered protrusions. The height of these multilamellar structures embodied equidistant steps slightly higher than a DPPC double layer in the gel phase. At the air-water interface too, a high compressibility at low surface tension was indicative of the exclusion of matter. The exclusion process proved to be fully reversible. The present study demonstrates that some of the matter of the model pulmonary surfactant can move in and out of the active monolayer. The SFM images revealed a lipid-protein complex that was responsible for the reversible exclusion of double-layer structures. This mechanism may be important in the natural system too, to keep the surface tension of the alveolar air/water interface constantly low over the range of area encountered upon breathing.  相似文献   

10.
Membrane viscoplastic flow.   总被引:3,自引:0,他引:3       下载免费PDF全文
In this paper, a theory of viscoplasticity formulated by Prager and Hohenemser is developed for a two-dimensional membrane surface and applied to the analysis of the flow of "microtethers" pulled from red blood cells attached to glass substrates. The viscoplastic flow involves two intrinsic material constants: yield shear and surface viscosity. The intrinsic viscosity for plastic flow of membrane is calculated to be 1 X 10(-2) dyn-s/cm from microtether flow experiments, three orders of magnitude greater than surface viscosities of lipid membrane components. The fluid dissipation is dominated by the flow of a structural matrix which has exceeded its yield shear. The yield shear is the maximum shear resultant that the membrane can sustain before it begins to deform irreversibly. The yield shear is found to be in the range 2-8 X 10(-2) dyn/cm, two or three orders of magnitude smaller than the isotropic tension required to lyse red cells.  相似文献   

11.
The effect of surface tension on alveolar macrophage shape and phagocytosis was assessed in vivo and in vitro. Surface tension was regulated in vivo by conditionally expressing surfactant protein (SP)-B in Sftpb-/- mice. Increased surface tension and respiratory distress were produced by depletion of SP-B and were readily reversed by repletion of SP-B in vivo. Electron microscopy was used to demonstrate that alveolar macrophages were usually located beneath the surfactant film on the alveolar surfaces. Reduction of SP-B increased surface tension and resulted in flattening of alveolar macrophages on epithelial surfaces in vivo. Phagocytosis of intratracheally injected fluorescent microbeads by alveolar macrophages was decreased during SP-B deficiency and was restored by repletion of SP-B in vivo. Incubation of MH-S cells, a mouse macrophage cell line, with inactive surfactant caused cell flattening and decreased phagocytosis in vitro, findings that were reversed by the addition of sheep surfactant or phospholipid containing SP-B. SP-B controls surface tension by forming a surfactant phospholipid film that regulates shape and nonspecific phagocytic activity of alveolar macrophages on the alveolar surface.  相似文献   

12.
In resting conscious dogs physiological dead space was calculated using the Bohr equation and measurements of arterial and mixed expired carbon dioxide tension. Whenever dogs inhaled carbon dioxide mixtures (5-10%) that had normal or low oxygen concentrations, the calculated dead space became negative. This paradox was based on the fact that the mixed expired carbon dioxide tension in resting hypercapnic dogs. Under these circumstances carbon dioxide was produced from the lung as measured by gas analyses and blood analyses. By the lung as measured by gas analyses and blood analyses. By reasoning this implies that "alveolar" carbon dioxide tension was higher than pulmonary venous carbon dioxide tension. The negative carbon dioxide gradient persisted at 14 days of chronic hypercapnia and reverted to normal within 10 min of breathing air after chronic hypercapnia. These findings suggest that the exchange of carbon dioxide in the lung cannot be explained solely on the basis of passive diffusion.  相似文献   

13.
As detailed in a companion paper (Berk, D., and E. Evans. 1991. Biophys. J. 59:861-872), a method was developed to quantitate the strength of adhesion between agglutinin-bonded membranes without ambiguity due to mechanical compliance of the cell body. The experimental method and analysis were formulated around controlled assembly and detachment of a pair of macroscopically smooth red blood cell surfaces. The approach provides precise measurement of the membrane tension applied at the perimeter of an adhesive contact and the contact angle theta c between membrane surfaces which defines the mechanical leverage factor (1-cos theta c) important in the definition of the work to separate a unit area of contact. Here, the method was applied to adhesion and detachment of red cells bound together by different monoclonal antibodies to red cell membrane glycophorin and the snail-helix pomatia-lectin. For these tests, one of the two red cells was chemically prefixed in the form of a smooth sphere then equilibrated with the agglutinin before the adhesion-detachment procedure. The other cell was not exposed to the agglutinin until it was forced into contact with the rigid cell surface by mechanical impingement. Large regions of agglutinin bonding were produced by impingement but no spontaneous spreading was observed beyond the forced contact. Measurements of suction force to detach the deformable cell yielded consistent behavior for all of the agglutinins: i.e., the strength of adhesion increased progressively with reduction in contact diameter throughout detachment. This tension-contact diameter behavior was not altered over a ten-fold range of separation rates. In special cases, contacts separated smoothly after critical tensions were reached; these were the highest values attained for tension. Based on measurements reported in another paper (Evans et al. 1991. Biophys. J. 59:838-848) of the forces required to rupture molecular-point attachments, the density of cross-bridges was estimated with the assumption that the tension was proportional to the discrete rupture force x the number of attachments per unit length. These estimates showed that only a small fraction of agglutinin formed cross-bridges at initial assembly and increased progressively with separation. When critical tension levels were reached, it appeared that nearly all local agglutinin was involved as cross-bridges. Because one cell surface was chemically fixed, receptor accumulation was unlikely; thus, microscopic "roughness" and steric repulsion probably modulated formation of cross-bridges on initial contact.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The ultrastructural characteristics of alveolar (ABM) and capillary (CBM) basement membranes in the adult rat lung have been defined using tannic acid fixation, ruthenium red staining, or incubation in guanidine HCl. ABM is dense and amorphous, has 3- to 5-nm filaments in the lamina rara externa (facing the alveolus) that run between the lamina densa and the basal cell surface of the epithelium, has an orderly array of ruthenium red-positive anionic sites that appear predominantly (79%) on the lamina rara externa, and has discontinuities beneath alveolar type II cells but not type I cells that allow penetration of type II cytoplasmic processes into the interstitium of the alveolar wall. The CBM is fibrillar and less compact than ABM, has no lamina rara filaments, and has one fifth the number of ruthenium red- positive anionic sites of ABM that appear predominantly (64%) overlying the lamina densa. Incubation of lung tissue with Flavobacterium heparinum enzyme or with chondroitinase has shown that ABM anionic sites represent heparan sulfate proteoglycans, whereas CBM anionic sites contain this and other sulfated proteoglycans. The CBM fuses in a local fashion with ABM, compartmentalizing the alveolar wall into a thick and thin side and establishing a thin, single, basement-membrane gas-exchange surface between alveolar air, and capillary blood. The potential implications of ABM and CBM ultrastructure for permeability, cell differentiation, and repair and morphogenesis of the lung are discussed.  相似文献   

15.
Surfactant protein B (SP-B) is a 17-kDa dimeric protein produced by alveolar type II cells. Its main function is to lower the surface tension by inserting lipids into the air/liquid interface of the lung. SP-B's function can be mimicked by a 25-amino acid peptide, SP-B(1-25), which is based on the N-terminal sequence of SP-B. We synthesized a dimeric version of this peptide, dSP-B(1-25), and the two peptides were tested for their surface activity. Both SP-B(1-25) and dSP-B(1-25) showed good lipid mixing and adsorption activities. The dimeric peptide showed activity comparable to that of native SP-B in the pressure-driven captive bubble surfactometer. Spread surface films led to stable near-zero minimum surface tensions during cycling while protein free, and films containing SP-B(1-25) lost material from the interface during compression. We propose that dimerization of the peptide is required to create a lipid reservoir attached to the monolayer from which new material can enter the surface film upon expansion of the air/liquid interface. The dimeric state of SP-B can fulfill the same function in vivo.  相似文献   

16.
Mice with surfactant protein (SP)-D deficiency have three to four times more surfactant lipids in air spaces and lung tissue than control mice. We measured multiple aspects of surfactant metabolism and function to identify abnormalities resulting from SP-D deficiency. Relative to saturated phosphatidylcholine (Sat PC), SP-A and SP-C were decreased in the alveolar surfactant and the large-aggregate surfactant fraction. Although large-aggregate surfactant from SP-D gene-targeted [(-/-)] mice converted to small-aggregate surfactant more rapidly, surface tension values were comparable to values for surfactant from SP-D wild-type [(+/+)] mice. (125)I-SP-D was cleared with a half-life of 7 h from SP-D(-/-) mice vs. 13 h in SP-D(+/+) mice. Although initial incorporation and secretion rates for [(3)H]palmitic acid and [(14)C]choline into Sat PC were similar, the labeled Sat PC was lost from the lungs of SP-D(+/+) mice more rapidly than from SP-D(-/-) mice. Clearance rates of intratracheal [(3)H]dipalmitoylphosphatidylcholine were used to estimate net clearances of Sat PC, which were approximately threefold higher for alveolar and total lung Sat PC in SP-D(-/-) mice than in SP-D(+/+) mice. SP-D deficiency results in multiple abnormalities in surfactant forms and metabolism that cannot be attributed to a single mechanism.  相似文献   

17.
Summary Air bubbles were introduced into living hair cells ofNicotiana miersii. The air entered through wounds inflicted on slightly flaccid trichomes from the base of a fruiting stem. Protoplasmic streaming often continued normally in the threads that were near or apparently touched the air bubble. When air bubbles were included within a plasmolyzing protoplast, the protoplasm nearest the air bubble appeared and behaved like that further away.The volume of an included air bubble is affected by many factors, but as the bubble gets smaller, the overriding factor determining the rate of decrease in volume is the surface tension. The effect of the surface tension on the pressure within the bubble is such that the slope, in a graph of the radius of the bubble to the third power against time, is a constant. The value of this slope constant varies directly with the surface tension, although the surface tension is not the only factor determining its magnitude. The rate of volume decrease of bubbles both in living and in dead cells tended to be constant for small bubbles, and the value of the slope for radius cubed vs. time ranged from – 5 3/sec. to –14 3/sec, with most values near –10 3/sec. A theoretical value for the slope of a nitrogen bubble in water at 25 C. is calculated to be –94 3/sec. A minimum estimate of the surface tension of the cell content surrounding the air bubble is therefore 1/10th of the value of water.The relatively high value of the surface tension is interpreted to indicate that the organization of the cell content at the surface of the air bubble is not of the structural complexity assumed for the plasmalemma.A portion of this paper was presented at the annual meeting of the Botanical Society of America, Physiology Section, Lafayette, Indiana, 1961.This investigation was partly supported by a grant (G 8716) from the National Science Foundation.  相似文献   

18.
Pulmonary surfactant is a mixture of lipids and proteins which is secreted by the epithelial type II cells into the alveolar space. Its main function is to reduce the surface tension at the air/liquid interface in the lung. This is achieved by forming a surface film that consists of a monolayer which is highly enriched in dipalmitoylphosphatidylcholine and bilayer lipid/protein structures closely attached to it. The molecular mechanisms of film formation and of film adaptation to surface changes during breathing in order to remain a low surface tension at the interface, are unknown. The results of several model systems give indications for the role of the surfactant proteins and lipids in these processes. In this review, we describe and compare the model systems that are used for this purpose and the progress that has been made. Despite some conflicting results using different techniques, we conclude that surfactant protein B (SP-B) plays the major role in adsorption of new material into the interface during inspiration. SP-C's main functions are to exclude non-DPPC lipids from the interface during expiration and to attach the bilayer structures to the lipid monolayer. Surfactant protein A (SP-A) appears to promote most of SP-B's functions. We describe a model proposing that SP-A and SP-B create DPPC enriched domains which can readily be adsorbed to create a DPPC-rich monolayer at the interface. Further enrichment in DPPC is achieved by selective desorption of non-DPPC lipids during repetitive breathing cycles.  相似文献   

19.
In tissue, medical, or dental engineering, when blood comes into contact with a new artificial material, the flow may be influenced by surface tension between the blood and the surface of the material. The effect of surface tension on the flow of blood is significant, especially in microscale. The leading edge of the flowing blood is the triple point where the blood, the material surface, and a stationary gas orfluid meet. The movement of the triple point, i.e., the advancing front of the flow, is driven by surface tension, resisted by viscous shear stress, and balanced by the inertial force (-mass x acceleration). In this article, the dynamics is illustrated in detail in the case of blood flowing into a capillary tube by contact. The capillar, tube draws the blood into it. It is shown theoretically that initially the flow of blood in the capillary has a large acceleration, followed by a relatively large deceleration over the next short period of time, then the acceleration becomes small and oscillatory. The velocity history appears impulsive at first, then slows down. The history of the length of blood column appears smooth after integration. Existing solutions of the Navier-Stokes equation permit the analysis of simpler cases. Further fluid mechanics development is needed to meet the practical needs of bioengineering. The importance of experimental study of surface tension and contact angle over a biological surface or a man-made material as a future direction of research is pointed out.  相似文献   

20.
A study is conducted into the oscillatory behavior of a finite element model of an alveolar duct. Its load-bearing components consist of a network of elastin and collagen fibers and surface tension acting over the air-liquid interfaces. The tissue is simulated using a visco-elastic model involving nonlinear quasi-static stress-strain behavior combined with a reduced relaxation function. The surface tension force is simulated with a time- and area-dependent model of surfactant behavior. The model was used to simulate lung parenchyma under three surface tension cases: air-filled, liquid-filled, and lavaged with 3-dimenthyl siloxane, which has a constant surface tension of 16 dyn/cm. The dynamic elastance (Edyn) and tissue resistance (Rti) were computed for sinusoidal tidal volume oscillations over a range of frequencies from 0.16-2.0 Hz. A comparison of the variation of Edyn and Rti with frequency between the model and published experimental data showed good qualitative agreement. Little difference was found in the model between Rti for the air-filled and lavaged models; in contrast, published data revealed a significantly higher value of Rti in the lavaged lung. The absence of a significant increase in Rti for the lavaged model can be attributed to only minor changes in the individual fiber bundle resistances with changes in their configuration. The surface tension was found to make an important contribution to both Edyn and Rti in the air-filled duct model. It was also found to amplify any existing tissue dissipative properties, despite exhibiting none itself over the small tidal volume cycles examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号